Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/32980

Title: The Protective Biochemical Properties of Arbuscular Mycorrhiza Extraradical Mycelium in Acidic Soils Are Maintained throughout the Mediterranean Summer Conditions
Authors: Faria, J. M. S.
Teixeira, D. M.
Pinto, A. P.
Brito, I.
Barrulas, P.
Carvalho, M.
Editors: MDPI
Keywords: acidic soil
apoplast
arbuscular mycorrhizal fungi
manganese superoxide dismutase
Issue Date: Apr-2021
Publisher: Agronomy/MDPI
Citation: Faria, J.M.S.; Teixeira, D.M.; Pinto, A.P.; Brito, I.; Barrulas, P.; Carvalho, M. The Protective Biochemical Properties of Arbuscular Mycorrhiza Extraradical Mycelium in Acidic Soils Are Maintained throughout the Mediterranean Summer Conditions. Agronomy 2021, 11, 748. https://doi.org/ 10.3390/agronomy11040748
Abstract: In acidic soils with manganese (Mn) toxicity, arbuscular mycorrhizal fungi (AMF) can improve plant host growth by enhancing nutrition and protecting against environmental stress. The intact extraradical mycelium (ERM) of AMF is able to survive Mediterranean summer conditions and provide an earlier colonization of winter crops. This study evaluated if summer season conditions hindered the beneficial effects of wheat colonization by the intact ERM associated with a native plant, in acidic soil. Wheat was grown in soil with intact or disrupted ERM associated with Ornithopus compressus (ORN), developed for 7 or 24 weeks, to simulate ERM summer survival. The activity of antioxidant enzymes was determined, and the quantitative analysis of Mn and macronutrients was performed by inductively coupled plasma mass spectrometry (ICP-MS), in wheat shoots and respective subcellular fractions. Wheat colonization by intact ERM decreased shoot Mn concentration but increased the proportion of Mn in the apoplast. Overall, antioxidant enzymatic activity decreased but the proportion of Mn-superoxide dismutase activity over the remaining isoforms increased, suggesting its important role in the AMF-mediated mitigation of Mn toxicity. Summer conditions did not substantially reduce the benefits provided by ORN ERM. A no-till strategy allied to the development of native microbiota can contribute to the sustainable optimization of acidic soil use.
URI: http://hdl.handle.net/10174/32980
Type: article
Appears in Collections:QUI - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica
MED - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
agronomy 2021.pdf6.18 MBAdobe PDFView/OpenRestrict Access. You can Request a copy!
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois