Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/38784

Title: Connecting molecular biomarkers, mineralogical composition, and microbial diversity from Mars analog lava tubes
Authors: Palma, V
González-Pimentel, J
Jimenez-Morillo, N
Sauro, F
Gutiérrez-Patricio, S
De la Rosa, JM
Tomasi, I
Massironi, M
Onac, B
Tiago, I
González-Pérez, J
Laiz, L
Caldeira, A Teresa
Cubero, B
Miller, A
Keywords: Volcanic caves
Speleothems
Issue Date: 2024
Publisher: Elsevier
Citation: Vera Palma, José L. González-Pimentel, Nicasio T. Jimenez-Morillo, Francesco Sauro, Sara Gutiérrez-Patricio, José M. De la Rosa, Ilaria Tomasi, Matteo Massironi, Bogdan P. Onac, Igor Tiago, José A. González-Pérez, Leonila Laiz, Ana T. Caldeira, Beatriz Cubero, Ana Z. Miller (2024).Connecting molecular biomarkers, mineralogical composition, and microbial diversity from Mars analog lava tubes, Science of The Total Environment https://doi.org/10.1016/j.scitotenv.2023.169583.
Abstract: Lanzarote (Canary Islands, Spain) is one of the best terrestrial analogs to Martian volcanology. Particularly, Lanzarote lava tubes may offer access to recognizably preserved chemical and morphological biosignatures valuable for astrobiology. By combining microbiological, mineralogical, and organic geochemistry tools, an indepth characterization of speleothems and associated microbial communities in lava tubes of Lanzarote is to gain insight into the possibility of similar subsurface microbial habitats on Mars and to identify biosignatures preserved in lava tubes unequivocally. The microbial communities with relevant representativeness comprise chemoorganotrophic, halophiles, and/ or halotolerant bacteria that have evolved as a result of the surrounding oceanic environmental conditions. Many of these bacteria have a fundamental role in reshaping cave deposits due to their carbonatogenic ability, leaving behind an organic record that can provide evidence of past or present life. Based on functional profiling, we infer that Crossiella is involved in fluorapatite precipitation via urea hydrolysis and propose its Ca-rich precipitates as compelling biosignatures valuable for astrobiology. In this sense, analytical pyrolysis, stable isotope analysis, and chemometrics were conducted to characterize the complex organic fraction preserved in the speleothems and find relationships among organic families, microbial taxa, and precipitated minerals. We relate organic compounds with subsurface microbial taxa, showing that organic families drive the microbiota of Lanzarote lava tubes. Our data indicate that bacterial communities are important contributors to biomarker records in volcanic-hosted speleothems. Within them, the lipid fraction primarily consists of low molecular weight n-alkanes, α-alkenes, and branched-alkenes, providing further evidence that microorganisms serve as the origin of organic matter in these formations. The ongoing research in Lanzarote's lava tubes will help develop protocols, routines, and predictive models that could provide guidance on choosing locations and methodologies for searching potential biosignatures on Mars.
URI: http://hdl.handle.net/10174/38784
Type: article
Appears in Collections:HERCULES - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
STE_mainext.pdf6.93 MBAdobe PDFView/OpenRestrict Access. You can Request a copy!
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois