Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/3624

Title: A data mining approach to improve multiple regression models of soil nitrate concentration predictions in Quercus rotundifolia montados (Portugal)
Authors: Nunes, Jorge
Madeira, Manuel
Gazarini, Luiz
Neves, José
Vicente, Henrique
Keywords: Decision trees
k-means
Nitrogen
Mediterranean oak woodlands
Issue Date: 12-Jan-2012
Publisher: Springer
Citation: Agroforest Syst (2012) 84:89–100
Abstract: The changes in the soil nitrate concentration were studied during 2 years in a ‘‘montado’’ ecosystem, in the South of Portugal. Total rainfall, air and soil temperature and soil water content under and outside Quercus rotundifolia canopy were also evaluated. A cluster analysis was carried out using climatic and microclimatic parameters in order to maximize the intraclass similarity and minimize the interclass similarity. It was used the k-Means Clustering Method. Several cluster models were developed using k values ranging between 2 and 5. Thereafter, in each cluster, the data were divided according to their origin (soil under canopy and open areas, and from surface and deep layers). Multiple regression models were tested for each cluster, to assess the relationship between soil nitrate concentration and a set of climatic and microclimatic parameters and the results were compared with models assessed without clustering. The models achieved with data grouped in result of clustering analysis showed better performance than the models achieved without clustering, mostly for data from open areas soils. When temperature is low and/or water presents excess or scarcity levels, the data from soils in undercanopy areas, give rise to models with worst performance than models from open soil areas data. The results obtained for undercanopy area suggest that nitrification process in soil under Quercus rotundifolia trees influence is more complex than for open areas, and subject to other relevant factors beyond water and temperature.
URI: http://hdl.handle.net/10174/3624
Type: article
Appears in Collections:MED - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica
BIO - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
A data mining approach to improve multiple regression models of soil nitrate concentration predictions in Quercus rotundifolia montados.pdf59.87 kBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois