Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/3148

Title: Implement and soil condition effects on tillage-induced erosion
Authors: Marques da Silva, José Rafael
Soares, J.M.C.N.
Karlen, D.L.
Keywords: Soil translocation by tillage
Soil quality
Mouldboard
Offset disc harrow
Issue Date: 2004
Publisher: ELSEVIER
Citation: MARQUES da SILVA, J. R., SOARES, J. M. C. N. and Karlen, D. L. (2004); Implement and soil condition effects on tillage-induced erosion. In (Ed) Douglas L. Karlen; Soil Quality As An Indicator of Sustainable Tillage Practices - soil quality and tillage. Soil & Tillage Research Journal 78: 207-216.
Abstract: Water, wind, or tillage-induced soil erosion can significantly degrade soil quality. Therefore, understanding soil displacement through tillage translocation is an important step toward developing tillage practices that do not degrade soil resources. Our primary objective was to determine the effects of soil condition (i.e. grassland stubble versus previously tilled soil), opening angle, and harrow speed on soil translocation. A second field study also conducted on a Lixisol but only in the stubble field, quantified displacement effects of mouldboard ploughing. The field studies were located 12 km South of Évora, Portugal. Soil displacement or translocation after each tillage operation in both studies was measured using aluminium cubes with a side length of 15mm as ‘tracers’. Offset angles for the harrow disk were 20◦, 44◦ and 59◦; tractor velocities ranged from 1.9 to 7.0 km h−1 and tillage depth ranged from 4 to 11 cm. The depth of mouldboard ploughing was approximately 40 cm with a wheel speed of 3.7 km h−1. The translocation coefficients for the two implements were very different averaging 770 kgm−1 for the mouldboard plough and ranging from 9 to 333 kgm−1 for the harrow disk. This shows that the mouldboard plough was more erosive than the harrow disk in these studies. All three variables (soil condition, opening angle, and tillage velocity) were critical factors affecting the translocation coefficient for the harrow disk. Displacement distances were the largest for compacted soils (stubble field), with higher opening or offset angles, and at higher velocities. The results also showed significant correlation for (a) mean soil displacement in the direction of tillage and the slope gradient and (b) soil transport coefficient and the opening angle. Our results can be used to predict the transport coefficient (a potential soil quality indicator for tillage erosion) for the harrow disk, provided tillage depth, opening angle, and tool operating speed are known.
URI: http://hdl.handle.net/10174/3148
Type: article
Appears in Collections:MED - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica
ERU - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
Implement and soil condition effects on tillage-induced erosion - Abstract.pdfArticle 1st page69.53 kBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois