Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/3100

Title: Measuring and Modelling Transpiration Versus Evapotranspiration of a Tomato Crop Grown on Soil in a Mediterranean Greenhouse
Authors: Baptista, F.J.
Bailey, B.J.
Meneses, J.F.
Editors: van Straten et al, G.
Keywords: modelling
evapotranspiration
transpiration
tomato crop
Issue Date: 2005
Publisher: Elsevier
Citation: BAPTISTA FJ, BAILEY BJ AND MENESES JF. 2005. Measuring and modelling transpiration versus evapotranspiration of a tomato crop grown on soil in a Mediterranean greenhouse. Acta Horticulturae 691:313-319.
Abstract: The main sources of water vapour in a greenhouse are plant transpiration and the evaporation of water from soil (evapotranspiration). These processes are influ- enced by environmental factors such as solar radiation and water vapour pressure deficit, as shown by the Penman-Monteith equation. Most previous studies have been conducted in Northern countries and with soiless crops, which means that they only refer to transpiration. In Mediterranean greenhouses many crops are still grown on soil, so evaporation adds another component to the water vapour balance. The purpose of this study was: 1 – to measure the evapotranspiration (soil and crop) and transpiration (crop), of a tomato crop grown on a heavy soil using a lysi- meter; 2 – to develop models as a function of the inside solar radiation and water vapour pressure deficit; 3 – to validate the models using data from different days and 4 - to compare the models. Experiments were conducted in a Mediterranean unheated greenhouse covered with co-extruded PE-EVA-PE film, with a soil grown tomato crop, located in Lisbon. The orientation was east-west and ventilation was achieved by continuous apertures located on the side walls over its entire length. Trickle ferti-irrigation tubes were located between each two rows of plants. Climatic parameters, such as dry and wet bulb air temperatures, crop and leaf temperatures and solar radiation were measured and recorded using a data logger. Information on the evolution of the crop was also recorded. To compute evapotranspiration and transpiration a lysimeter was used and data of irrigation, drainage and soil moisture content were recorded. For the evalua- tion of the transpiration, the lysimeter was covered with a plastic film to prevent evaporation from the soil. To develop the models, data were recorded over periods of several days at different stages of plant development and another set of data from different periods was used for model validation. Comparison between measured and estimated data shows good agreement for both models. Differences between transpiration and evapo- transpiration were very small, which reveals that, under the conditions experienced, evaporation from the soil can be neglected when trickle ferti-irrigation is used.
URI: http://hdl.handle.net/10174/3100
Type: article
Appears in Collections:MED - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica
ERU - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
actahort691.pdf28.75 kBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois