Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/21551

Title: Potential of different energy saving strategies in heated greenhouse
Authors: Gilli, C.
Kempkes, F.
Munoz, P.
Montero, J.I.
Giuffrida, F.
Baptista, F.J.
Stepowska, A.
Stanghellini, C.
Editors: Öztekin, G.B.
Tüzel, Y.
Keywords: temperature integration
screen
dehumidification
tomato
energy efficiency
Issue Date: 2017
Publisher: ISHS
Citation: Gilli, C., Kempkes, F., Munoz, P., Montero, J.I., Giuffrida, F., Baptista, F.J., Stepowska, A. and Stanghellini, C. (2017). Potential of different energy saving strategies in heated greenhouse. Acta Hortic. 1164, 467-474. DOI: 10.17660/ActaHortic.2017.1164.61
Abstract: In heated greenhouses, large amounts of energy are used to optimize climate conditions (temperature, humidity). In conventional tomatoes production, the estimated annual energy consumption is 320 kWh m-2 in France, with large differences across regions, 400 kWh m-2 in Brittany and 240 kWh m-2 in the South (ADEME, 2007). In Switzerland, it varies between 245 and 500 kWh m-2 according to the regions. With increasing energy prices and environmental concerns, growers have to find solutions to reduce their energy use and to improve the energy efficiency. Several axes could be used to achieve this goals, one of them is climate management. Within the working group “Energy saving and neutral production” of the Cost Action FA 1105 “BioGreenhouse”, a review on the potential for energy saving in heated greenhouse thanks to climate management was done. Basically, there are two ways to reduce energy consumption: related to temperature control and to humidity control. The energy saving potential of lowered day and night temperature set points, temperature integration (TI) and screen management will be presented in relation to the effects on production. In Switzerland, three trials from 2006 to 2008 in tomato crops showed that an energy saving potential of 15 to 30% could be achieved with TI compared to the standard temperature treatment. An energy saving between 23 and 30% with screens management based on external temperature and light intensity compared to a management according to the sunrise was obtained. To reduce energy consumption related to humidity control, dehumidification with heat recovery was studied. A traditional dehumidification (ventilation and heating) was compared with dehumidification with a heat pump in tomatoes crop. In 2013, 15% energy saving was achieved with the dehumidifier and in 2014 reached 25%. No difference in plant growth, yield and fruit quality was measured.
URI: http://hdl.handle.net/10174/21551
Type: article
Appears in Collections:MED - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica
ERU - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
Gilli et al_AH1164_2017.pdf1.03 MBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois