Please use this identifier to cite or link to this item:

Title: On C∗-Algebras from Interval Maps
Authors: Correia Ramos, C.
Editors: Jorgensen., Palle
Keywords: Interval maps
Symbolic dynamics
Cuntz–Krieger algebras
Representations of algebras
Issue Date: 2013
Publisher: Springer Verlag
Citation: Ramos, C. Correia; Martins, Nuno; Pinto, Paulo R. On C∗-algebras from interval maps. Complex Anal. Oper. Theory 7 (2013), no. 1, 221–235.
Abstract: Given a unimodal interval map f , we construct partial isometries acting on Hilbert spaces associated to the orbit of each point. Then we prove that such partial isometries give rise to representations of a C∗-algebra associated to the subshift encoding the kneading sequence of the critical point. This construction has the advantage of incorporating maps with a non necessarily Markov partition (e.g. Fibonacci unimodal map). If we are indeed in the presence of a finite Markov partition, then we prove that these new representations coincide with the (previously considered by the authors) representations arising from the Cuntz–Krieger algebra of the underlying (finite) transition matrix.
Type: article
Appears in Collections:CIMA - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica
MAT - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
representations_C_star_2013.pdf81.17 kBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois