Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/38703

Title: When Do the Moments Uniquely Identify a Distribution
Authors: Coelho, Carlos
Alberto, Rui
Grilo, Luís
Editors: Kumar, S.
Arnold, B. C.
Shimizu, K.
Laha, A. K.
Keywords: Moment problem
Identifiability
Separating functions
Log-normal distribution
F distribution
Issue Date: 6-May-2025
Publisher: Springer Nature
Citation: Coelho, C. A., Alberto, R. P. & Grilo, L. M. (2025). When Do the Moments Uniquely Identify a Distribution. Springer Nature. Directional and Multivariate Statistics (A Volume in Honour of Ashis SenGupta). Editado por Somesh Kumar, Barry C. Arnold, Kunio Shimizu and Arnab Kumar Laha (online: May 06, 2025). https://link.springer.com/chapter/10.1007/978-981-96-2004-3_13
Abstract: The authors establish when do the moments E(Xh), for h in some subset C of IR, uniquely identify the distribution of any positive random variable X, that is, when is xh a separating function. The simple necessary and sufficient condition is shown to be related with the existence of the moment generating function of the random variable Y = logX. The subset C of IR is thus the set of values of h for which the moment generating function of Y is defined. Examples of random variables characterized in this way by the set of their h-th moments are given.
URI: https://link.springer.com/chapter/10.1007/978-981-96-2004-3_13
http://hdl.handle.net/10174/38703
Type: bookPart
Appears in Collections:MAT - Publicações - Capítulos de Livros

Files in This Item:

File Description SizeFormat
2025_May06_SpringerBook_Coelho_Alberto_Grilo_When do the Moments Uniquely Identify a Distribution.pdf275.73 kBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois