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a Distribution 
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Abstract The authors establish when do the moments .E(Xh), for . h in some subset 
.C of . R, uniquely identify the distribution of any positive random variable . X , that 
is, when is .xh a separating function. The simple necessary and sufficient condition 
is shown to be related with the existence of the moment generating function of 
the random variable .Y = logX . The subset .C of . R is thus the set of values of . h for 
which the moment generating function of. Y is defined. Examples of random variables 
characterized in this way by the set of their .h-th moments are given. 

Keywords Moment problem · Identifiability · Separating functions · Log-normal 
distribution · F distribution 

1 Introduction 

The possibility of identifying a distribution from the expression of its moments is 
of unquestionable importance in statistics. There are areas where this is indeed an 
extremely important and useful tool, being used for decades, as it is the case of the 
study and characterization of distributions of l.r.t. (likelihood ratio test) statistics 
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in Multivariate Analysis. Very often one is able to obtain first the expressions for 
the moments of such statistics, from which the distribution is then inferred (see for 
example Kshirsagar, 1972, Chap. 8; Coelho & Marques, 2010; Coelho & Arnold, 
2019, Chap. 5). In this setup the work is done under a very precise framework, which 
is the fact that we are dealing with r.v.’s (random variables) with support or range in 
.(0, 1). It is a well-known fact that r.v.’s with a delimited support or range have their 
distributions completely determined by their moments, more precisely, by the set of 
their positive integer order moments, a fact that is clearly and simply stated by Anant 
Kshirsagar in his landmark book in Multivariate Analysis, when he says “In general, 
the moments of a distribution do not determine the distribution uniquely. … However, 
under certain conditions, the moments do determine a distribution uniquely. A finite 
range is a sufficient condition for this purpose.” (Kshirsagar, 1972, Chap. 8, Sect. 2), 
a fact that derives directly from the so-called Hausdorff moment problem (Hausdorff, 
1921a, 1921b, 1923). 

The Hausdroff moment problem is the problem of finding the necessary and 
sufficient conditions a given sequence of positive values.{mn} .(n ∈ N0) has to verify 
to be taken as the sequence of moments of a r.v. .X with support or range .(0, 1). 
The answer is that such a sequence has to verify the relation.m0 = 1, and (Akhiezer, 
1965, Chap. 2, Sect. 6.4; Feller, 1971, Chap. VII, Sect. 3) 

. 

k∑

i=0

(−1)i
(
k
i

)
mn+i ≥ 0 ,

for all.k, n ∈ N0. If the sequence.{mn} verifies such condition, we have.mn = E(Xn), 
for .n ∈ N0, and the distribution of .X is the only one that has such integer order 
moments. The result may be extended to r.v.’s with any delimited support or range 
(Kshirsagar, 1972, Chap. 8, Sect. 2; Schmüdgen, 2017, Theorems 3.13, 3.14). In prac-
tice, Hausdorff’s result is most commonly used in the following way: once obtained 
an expression for the positive integer order moments of a r.v. with a delimited support 
or range, which yields well-defined finite values for all integer order moments, or 
once asserted that a r.v. with such a support has all positive integer order moments 
defined and finite, we may then infer that the distribution of this r.v. is uniquely deter-
mined by this set of moments and eventually deduce the distribution of the r.v. (see for 
example Khatri, 1965; Kshirsagar, 1972, Chap. 8, Sect. 2; Coelho & Arnold, 2019, 
Chap. 5). Usually it is said that the Hausdorff moment problem is a well-determined 
moment problem, since if such a sequence may be identified as a sequence of positive 
integer order moments of a r.v. with delimited support, then such a r.v. is unique, or 
equivalently, the distribution that yields such moments is unique. 

But, there are other two moment problems, which, in common language, may 
be either determined or undetermined. These are the Hamburger moment prob-
lem (Hamburger, 1920a, 1920b, 1921; Widder, 1946, Chap. III, Sect. 10; Shoat & 
Tamarkin, 1970, Chap. I, II) and the Stieltjes moment problem (Stieltjes, 1894, 1895; 
Widder, 1946, Chap. III, Sect. 13; Shoat & Tamarkin, 1970, Chap. I). The Hamburger 
moment problem refers to r.v.’s with support or range . R, and the Stieltjes moment
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problem to r.v.’s with support or range .R+ or .R+
0 . In very simple terms, in both 

cases the question is: “given a sequence .{mn} .(n ∈ N0), may it be taken as the set 
of positive integer order moments of some r.v., or rather, of some distribution?”. In 
case of an affirmative answer to this question, the following question that arises is: 
“is that r.v. or distribution unique?”. If the answer to both questions is affirmative 
the moment problem is said to be determinate or determined and if the answer to 
the first question is affirmative but the answer to the second question is negative, the 
problem is said to be indeterminate or undetermined. 

We know that if a r.v. .X has a m.g.f. (moment generating function), . MX (t) =
E(et X ), then all of its positive integer order moments are finite and well-defined, and 
the distribution of this r.v. is uniquely identified by the set of these moments. In this 
case the positive integer order moments, say.μn = E(Xn), for.n ∈ N0, yield, for. t in 
some neighborhood of zero, the relation 

.MX (t) =
∞∑

n=0

tnμn

n! for t ∈ Vε,ε′(0), (1) 

where .Vε,ε′(0) = {x : x ∈] − ε, ε′ [ ; ε, ε′ > 0
}
represents a neighborhood of zero. 

That is, the set of positive order moments uniquely identifies a distribution whenever 
the series on the right hand side of (1) is convergent for . t in a neighborhood of zero. 

We should however note that, on one hand, the existence of the m.g.f. for a given 
r.v. implies that its c.f. (characteristic function) is analytic at .t = 0, while, on the  
other hand, the lack of compliance with the convergence of the series in (1) does not 
imply that the r.v. is not uniquely determined by the set of its positive integer order 
moments. 

For r.v.’s that although not having a m.g.f. still have moments of all positive integer 
orders, thus having an analytic c.f. at .t = 0, we may think about checking for the 
applicability of the Carleman condition (Carleman, 1926; Akhiezer, 1965, Chap. 2, 
Probl. 11) or Carleman type conditions (Akhiezer, 1965, Chap. 2; Lin, 1997; Wu, 
2002). See Appendix A for the Carleman condition and a, by far not exhaustive but 
rather limited, list of Carleman type conditions. 

But it still remains to consider two important types of r.v.’s. And it is to these r.v.’s 
that the result in the present work is dedicated. These are r.v.’s with support in . R+
or .R+

0 (or, in fact, in .R
− or .R−

0 ), which 

1. do not have positive integer order moments of all orders, or even of no positive 
integer order, or 

2. have integer order moments of all orders but these fully match the integer order 
moments of other r.v.’s. 

The question is if anyway the distributions of these r.v.’s are still fully determined 
by the set of available moments. 

We may note that in the definition of .E
(
Xh

)
, which, using the notation of the 

Stieltjes integral, is given by
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. E
(
Xh

) =
∫

S

xhdFX (x),

for all cases where .
∫
S |x |hdFX (x) is convergent, where . S is the support of the r.v. 

.X and .FX (x) its c.d.f. (cumulative distribution function), nothing goes against to 
consider .h ∈ R or . h in some subset of . R. 

Let us consider a r.v. in the situation 1 above. Let .X be a r.v. with an .Fm,n distri-
bution. We then have 

.E(Xh) = Γ
(
m
2 + h

)
Γ

(
n
2 − h

)

Γ
(
m
2

)
Γ

(
n
2

)
( n

m

)h
, (2) 

which is valid for .−m/2 < h < n/2. The question is: does this set of moments 
uniquely identify the distribution of . X? 

A sequence of r.v.’s in the situation 2 above is brought to our attention by Stieltjes 
himself (Stieltjes, 1894, 1895, Chap. VIII). Let us consider the sequence of r.v.’s.Xn , 
.(n ∈ N0), with p.d.f.’s (probability density functions) 

. fXn (x) = e− 1
2 (log x)2

√
2πx

{1 + α sin(2nπ log x)}, |α| ≤ 1 (3) 

which for.n = 0 and/or.α = 0 yields the well known standard Log-Normal distribu-
tion. For any .h ∈ R we have 

.

E
(
Xh
n

) =
∫ ∞

0
xh

e− 1
2 (log x)2

√
2πx

{1 + α sin(2nπ log x)}dx

= eh
2/2

∫ ∞

0

e− 1
2 (log x−h)2

√
2πx

{1 + α sin(2nπ log x)}dx
︸ ︷︷ ︸

=1+e− 1
2 (2nπ)2α sin(2nπh)

= eh
2/2

{
1 + e− 1

2 (2nπ)2α sin(2nπh)
}

,

(4) 

where the details in the computation of the integral were left aside since they are a 
bit lengthy while not being the key point in this brief note. For .h ∈ N0 expression 
(4) yields 

.E
(
Xh
n

) = eh
2/2, ∀h ∈ N0, (5) 

which is neither a function of . n nor of . α (see for example Feller, 1971, Chap. VII, 
Sect. 3; Knight, 2000, Sect. 1.7 and also Casella & Berger, 2002, Sect. 2.3, for the 
cases .n = 0 and.n = 1), so that all r.v.’s .Xn .(n = 0, 1, 2, . . .) have exactly the same 
set of positive integer order moments. But the p.d.f.’s in (3) are quite different for 
different values of . n and . α.
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Fig. 1 Plots of the p.d.f.’s in (3) for  .α = 1 and consecutive values of . n: a)  .n = 0 and .n = 1; 
b).n = 2; c).n = 3; d).n = 4. All plots have the same horizontal and vertical scales 

The p.d.f.’s in (3) yield very different plots for different values of . n and . α, as it  
may be seen in Figs. 1 and 2. 

So, the question that remains is exactly similar to the one asked above: does the 
whole set of moments of each .Xn uniquely identify the distribution of each r.v. .Xn? 

So, actually the question to be asked is: is it possible to devise a result or results 
that can be used to assert that the set of available moments for these r.v.’s uniquely 
identifies their distributions? And then the further question that may bear in our minds 

Fig. 2 Plots of the p.d.f.’s in (3) for  .n = 1 and different values of . α: a)  .α = 0.75; b)  .α = 0.5; 
c) .α = 0.25; d)  .α = −0.25; e)  .α = −0.5; f)  .α = −0.75. All plots have the same horizontal and 
vertical scales (see Fig. 1 for the plot corresponding to.n = 1 and.α = 1)
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may be: and is it that the same result may be used for both cases 1 and 2 mentioned 
above, although they may seem at first to correspond to quite different cases? 

The answers to these questions are given in the next Section. 

2 The Main Results 

In what concerns expression (4) above, we may easily see that .E
(
Xh
n

)
is indeed a 

function of both . n and. α, as long as .2nh /∈ Z (i.e., .2nh ∈ R\Z), which is usually an 
overlooked detail. Indeed, in this case we may actually say that although for .h ∈ Z, 
.E

(
Xh
n

)
is given by (5), thus being neither a function of . n nor of . α, for  .h ∈ R the 

moments .E
(
Xh
n

)
uniquely identify the distributions in (3). 

In simple terms, the function .w(·) is said to be separating if and only if for any 
two c.d.f.’s .F(·) and .G(·), 

. 

∫

R

w(x)dF(x) =
∫

R

w(x)dG(x) =⇒ F(x) = G(x),∀x ∈ R.

First of all let us state that, for .i = √−1, and .h ∈ R, the functions .xih are always 
separating for the distributions of r.v.’s with support.R+, since if the r.v.. X has support 
.R

+we may always define the r.v. .Y = log X , with 

.E
(
Xih

) = E
(
eih log X

) = E
(
eihY

) = ΦY (h), h ∈ R, (6) 

which shows that the moments .E
(
Xih

)
, with .h ∈ R, will always exist and will 

uniquely identify the distribution of . X , provided that .X has support .R+, since then 
there will be a r.v. .Y = log X , which will have c.f. .ΦY (h) = E

(
Xih

)
. As it happens 

for the c.f. (and actually also with the m.g.f.), one usually is not much interested 
in individual values but rather in the expression of the c.f. or of the m.g.f. itself, 
since by looking at it, or by using an inverse transform, it is possible to identify the 
distribution of .X and/or to obtain the expression of its p.d.f. or p.m.f. (probability 
mass function), or of its c.d.f.. .E

(
Xih

)
is called the Mellin transform of .X (Mellin, 

1887, 1899, 1900, 1902, 1904, 1910; Bertrand et al., 2010; Debnath & Bhatta, 
2015, Chap. 8; Coelho & Arnold, 2019, Chap. 2, Sect. 2.1). 

Then, using a similar argument and since the m.g.f. of . Y , when it exists, also 
uniquely identifies the distribution of. Y , we may say that if.MY (h) = E

(
ehY

)
exists, 

similarly to (6), 

. MY (t) = E
(
etY

) = E
(
et log X

) = E
(
Xt

)
, t ∈ Vε,ε′(0)

and vice-versa, if .X is a r.v. with support in .R+, with .E(Xh) defined for . h in a 
neighborhood of zero, .Vε,ε′(0), then the r.v. .Y = log X is defined and it has a m.g.f. 
for .t ∈ Vε,ε′(0), with
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. Vε,ε′(0) =
{
x ∈ R : x ∈] − ε, ε′[ ; ε, ε′ ∈ R

+}

where.R
+ = R

+ ∪ {+∞}, with.V−∞,∞(0) = R. All we have to do is to look at. E(Xh)

as a function of . h and if .E(Xh) is defined for . h in a neighborhood of zero, then it 
uniquely identifies the distribution of. X , or, in other words, in that case,. X is the only 
r.v. with that set of moments. 

We may thus first establish the following Lemma, which states that, if for a given 
r.v. .X >0, .E

(
Xh

)
exists (and is finite) for some .h > 0, then .E(Xr ) exists for any 

.r ∈]0, h] and if .E (
Xh

)
exists (and is finite) for some .h < 0 then .E(Xr ) also exists 

for any .r ∈ [h, 0[. 
Lemma 1 If X is a non-negative random variable such that .E(Xh1) < ∞ for some 
.h1 ∈ (−∞, 0) and .E(Xh2) < ∞ for some .h2 ∈ (0,∞), then . E(Xr ) < ∞, ∀r ∈
(h1, h2). 

Proof If .r ∈ (0, h2) then we have .Xr < 1 + Xh2 so that .E(Xr ) < ∞, while, if . r ∈
(h1, 0) we have .(1/X)|r | < 1 + (1/X)|h1|, and we can conclude, in this case, that 
.E(Xr ) = E((1/X)|r |) is finite since .E(Xh1) = E((1/X)|h1|) is finite. . �

Then, we may state the following Proposition. 

Proposition 1 If .X is a r.v. with support in .R+ and .E
(
Xh

)
is defined for some 

.h1 < 0 and some .h2 > 0 then .E
(
Xh

)
is defined for .h ∈ [h1, h2] and, taken for the 

whole range of values of . h for which .E
(
Xh

)
is defined, will uniquely determine the 

distribution of . X. 

Proof From Lemma 1 we have that .E(Xh) is defined for .h ∈ [h1, h2], so that if we 
take .Y = log X , its m.g.f. will be given by 

.. MY (h) = E
[
ehY

] = E
[
eh log X

] = E
[
Xh

]
, h ∈ Vε,ε′(0),

where.[h1, h2] ⊆ Vε,ε′(0), so that in this case the r.v..Y = log X has for sure a m.g.f., 
being as such uniquely characterized by.E

[
ehY

]
and as such also the distribution of 

.X = eY , being uniquely defined as a function of. Y , given the fact that the exponential 
and the logarithm are both one-to-one functions, is also uniquely characterized by 
.E

[
ehY

] = E
[
Xh

]
, for.h ∈ Vε,ε′(0), where.Vε,ε′(0) represents the whole set of values 

of . h for which .E(Xh) is defined. . �

Some examples of application of the result in Proposition 1 follow. 

Example 1 Going back to our first example in the previous section, let us consider 
.X ∼ Fm,n . Then, as noted,.E(Xh) is given by (2), for.−m/2 < h < n/2, and as such 
by using the result in Proposition 1, the set of moments.E(Xh), for.−m/2 < h < n/2, 
uniquely identifies the distribution of . X . Or, in other words, the distribution . Fm,n

is the only distribution with such moments, for given .m, n ∈ N (actually for any 
.m, n ∈ R

+).
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Example 2 Going back to our second example in the previous section, let us consider 
the r.v.’s .Xn with the generalized Log-normal distributions with p.d.f.’s given by 
(3). Then we will have .E(Xh

n ) given by (4), for .h ∈ R. As such, using the result in 
Proposition 1, we may say that the moments.E(Xh

n ) uniquely identify the distribution 
of each .Xn , for a given .n ∈ N and a given . α (with .|α| < 1). Indeed in this case the 
r.v.’s .Zn = log Xn have what we may call ‘generalized’ Normal distributions with 
p.d.f.’s given by 

. fZn (z) = e−z2/2

√
2π

(1 + α sin(2nπz)) (7) 

and m.g.f.’s 

.

MZn (t) = E
(
et Zn

) = E
(
Xt
n

)

= et
2/2

(
1 + e− 1

2 (2nπ)2α sin(2nπt)
)

, t ∈ R
(8) 

so that the functions.xh with.h ∈ R are separating for the distributions of the r.v.’s. Xn

and the moments .E
(
Xh
n

)
, for .h ∈ R, uniquely identify the distributions of the r.v.’s 

.Xn , for any.n ∈ N0 and any given. α, with.|α| ≤ 1. Some authors note that the m.g.f.’s 
in (8) yield very close numerical values for different values of . n (McCullagh, 1994; 
Waller, 1995), although the p.d.f.’s in (7) have many different shapes (see Fig. 3). 
Anyway, as functions of . t , the m.g.f.’s in (8) are able to fully separate the p.d.f.’s 
in (7). See Appendix B for a brief note on some numerical issues related with the 
m.g.f.’s in (8). 

Example 3 The folded Cauchy distribution. Let .X have a standard Cauchy distri-
bution and let .Y = |X |. Then. Y has what we call a folded Cauchy distribution, with 
p.d.f. 

. fY (y) = 2

π(1 + y2)
, y > 0,

and 

. E(Y h) = sec

(
πh

2

)
, − 1 < h < 1,

which shows in the light of Proposition 1 that also in this case .E(Y h) (for . −1 <

h < 1) uniquely identify the distribution of . Y . We should note that . Y , similar to . X , 
does not even have an expected value, but this is no problem in using the result in 
Proposition 1, as already observed in Example 1. 

Example 4 The folded Student T distribution. Let .X have a .Tn distribution, and let 
.Y = |X |. Then. Y has what we call a folded. T distribution, with. n degrees of freedom, 
with p.d.f. 

. fY (y) = 2

B
(
n
2 ,

1
2

) n− 1
2

(
1 + y2

n

)− n+1
2

, y > 0,
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Fig. 3 Plots of the p.d.f.’s in (7) for consecutive values of . n: a)  .n = 0 and .n = 1; b)  .n = 2; 
c).n = 3; d).n = 4. All plots have the same horizontal and vertical scales 

and 

. E(Y n) = nh/2 Γ
(
h+1
2

)
Γ

(
n−h
2

)
√

π Γ
(
n
2

) , − 1 < h < n,

which shows, once again, that using Proposition 1 we may assert that the moments 
.E(Y h) (for.−1 < h < n) uniquely identify the distribution of. Y . We may observe that 
for.n = 1,.X has a standard Cauchy distribution and. Y a folded Cauchy distribution. 

Example 5 Let .X have a .Beta(a, b) distribution. Then 

. E(Xh) = Γ (a + h) Γ (a + b)

Γ (a) Γ (a + b + h)
, h > −a.

It is a well-known fact that, using Hausdorff’s result, the distribution of .X is fully 
determined by the set of its positive integer order moments, which existence is easy 
to spot from the expression for .E(Xh) above. Anyway, we may also use in this case 
the result in Proposition 1 to assert that, since the expression for .E(Xh) is valid for 
. h in a neighborhood of zero, .E(Xh) uniquely identifies the distribution of . X . 

Example 6 Let .X be a r.v. with support in .R
+, with p.d.f. 

. fX (x) = λ e−λ 1
x

x2
, λ > 0; x > 0.
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We may note that .Y = 1/X has an Exponential distribution with parameter . λ. Then 
we have 

. E(Xh) = λh Γ (1 − h), h < 1,

and as such the distribution of .X is fully determined by the moments above. 

Example 7 Let .X have a standard Pareto distribution, that is, let .X be a r.v. with 
support .(1,+∞), with p.d.f. 

. fX (x) = α

xα+1
, α > 0; x > 1.

Then 
. E(Xh) = α

α − h
, h < α,

so that, from Proposition 1 we may say that the above set of moments uniquely 
identifies the distribution of . X . 

3 Conclusions 

As a conclusion we may say that the answer to the question’When are the functions. xh

.(h ∈ C ⊂ R) separating or, equivalently, when do the moments.E
(
Xh

)
. (h ∈ C ⊂ R)

uniquely identify the distribution of .X and how is the set . C defined?’ is: 

(i) whenever .X has support .R+, it is thus possible to define the r.v. .Y = log X (or 
.Y = − log X ), and, 

(ii) the moments .E(Xh) are defined for .h ∈ C ⊂ R, where .C = Vε,ε′(0), that is, 
the moments .E(Xh) are defined for . h in some neighborhood of zero, since in 
this case the r.v. .Y = log X will have a m.g.f. .MY (h) = E

(
Xh

)
for . h ∈ C =]−ε, ε′[ = Vε,ε′(0), .

(
ε, ε′ > 0

)
; 

so that we may state that 

• if .X has support .R+ and we take .ε < 0 to be the smallest value of . h for which 
.E

(
Xh

)
is defined, and.ε′ > 0 as the largest value of. h for which.E

(
Xh

)
is defined, 

then.E
(
Xh

)
, for .h ∈ [ε, ε′], determines the distribution of . X ; or we may even say 

that it defines the distribution of . X , since then we will be able to use a Laplace 
inversion, at least numerically (Abate & Valkó, 2004; Cohen, 2007), to obtain the 
distribution of.Y = log X , from which the distribution of. X will be readily at hand, 

and thus we may say that 

• .xh is separating for the distributions of r.v.’s in.R
+, if it is defined for.h ∈ Vε,ε′(0), 

where.Vε,ε′(0) is the set of all values. h for which.E
(
Xh

)
is defined (that is, the set 

of all values . h for which .
∫
S

∣∣xh
∣∣ dFX (x) converges),
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or we may also just say that 

• if .X1 and .X2 are two r.v.’s with support .R+such that .E
(
Xh
1

) = E
(
Xh
2

)
for every 

.h ∈ Vε,ε′(0), where .Vε,ε′(0) is the set of all values . h for which .E
(
Xh
1

)
is defined, 

then the r.v.’s .X1 and .X2 have the same distribution, the reason being that in this 
case the r.v.’s.Y1 = log X1 and.Y2 = log X2 will have the same f.g.m., and as such 
will have the same distribution. 

We may say that if we consider the real order moments, of both positive and negative 
orders, these moments characterize the distribution they come from in a more insight-
ful way than the positive integer order moments. This fact is indeed related to the fact 
that, as for example Ortigueira et al. (2005) and Machado (2003) state, “integer-order 
derivatives depend only on the local behavior of a function, while fractional order 
derivatives depend on the whole history of the function”. If we are concerned with 
the fact that it may seem not possible to obtain such real order moments from the 
c.f. or the m.g.f. as we usually do with the integer order moments, we should note 
that we only have to consider the real order derivatives of those functions in order 
to obtain the real order moments, and that such real order derivatives if taken as the 
extension for .h ∈ R of 

. 
∂h

∂th
ΦX (t)

∣∣∣∣
t=0

= i h
∫

S

xhdFX (x),

will not only agree with the usual Grünwald-Letnikov definition of non-integer order 
derivative (Samko et al., 1993, Chap. 4, § 20; Mathai & Haubold, 2017, Sect. 6.4) as 
well as with other more general definitions as the Cauchy convolutional definition 
of derivative in Ortigueira et al. (2005). 

Appendix 1 

A Brief Note on the Carleman Condition and Other Carleman 
Type Conditions 

The aim of this Appendix is to briefly refer to the Carleman condition and some of 
the Carleman type conditions available in the literature. For the proofs we refer the 
reader to the references cited. 

The Carleman condition (Carleman, 1926; Akhiezer, 1965, Chap. 2, Problem 11) 
is usually referred as the result in the following Theorem. 

Theorem 1 Let .μr = E (Xr ) < ∞. If  

.

∞∑

r=1

1

μ
1/2r
2r

= +∞
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then the distribution of the r.v. .X is uniquely determined by its positive integer order 
moments. . �

We should note that the result in (1), although of the same type, of the result in 
Theorem 1, is indeed stronger, since 

Another condition is the one presented in Theorem 2 (Shiryaev, 1996, Chap. II, 
Sect. 12, Theorem 7). 

Theorem 2 Let .μ∗
r = E (|X |r ) < ∞. If  

. lim sup
r→∞

(μ∗
r )

1/r

r
< ∞,

then the distribution of .X is determined by its positive integer order moments. . �

We should note that the condition in the hypothesis of Theorem 2 implies indeed 
that the c.f. of the r.v. .X has to be analytic at the origin. Feller (1971, Chap. XV, 
Sect. 4, Appendix) states a similar result, although using.μr = E(Xr ) instead of .μ∗

r , 
and states in case that relation is verified, the c.f. of.X “is analytic in a neighborhood 
of any point of the real axis, and hence completely determined by its power series 
about the origin”, which is equivalent to say that the distribution of .X is completely 
determined by the sequence of its positive order moments. 

Wu (2002) presents a pair of simple but useful results, the first of them derived 
from Theorem 1, by applying the D’Alembert criterium. 

Theorem 3 Let .X be a r.v. with .E (Xr ) < ∞,∀r ∈ N. If  

. lim
r→∞

1

r

∣∣∣∣
μr+1

μr

∣∣∣∣ < ∞

then the distribution of the r.v. .X is uniquely determined by its positive integer order 
moments. . �

And for discrete r.v.’s, derived from Theorem 2 above we have the following 
result. 

Theorem 4 Let .X be a discrete r.v. with support .N and 

. pk = P(X = k) ∀k ∈ N

(and as such with .
∑∞

k=1 pk = 1 ). If there is .α ≥ 1 such that .pk = O
(
e−kα)

, that 
is, such that .∀k ∈ N, .pk/e−kα

remains bounded, then the distribution of the r.v. .X is 
uniquely determined by the set of its positive integer order moments. . �

In a slightly different framework, Lin (1997) obtains four criteria, the first two of 
which refer to r.v.’s with support . R, while the last two are for r.v.’s with support .R+. 
Two of these conditions refer to r.v.’s with a differentiable p.d.f.
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Theorem 5 Let .X be a r.v. with an absolutely continuous c.d.f. and p.d.f. . f (x) >

0,∀x ∈ R. If .E (Xr ) < ∞,∀r ∈ N and 

.

∞∫

−∞

− log f (x)

1 + x2
dx < ∞ (9) 

then the distribution of the r.v. .X is not uniquely determined by its positive integer 
order moments. . �
Theorem 6 Let .X be a r.v. with an absolutely continuous c.d.f. and p.d.f. . f (x) >

0,∀x ∈ R, symmetrical about zero and differentiable in . R, such that . E (Xr ) <

∞,∀r ∈ N, with 

. f (x) −→
x→∞ 0, −x

f ′(x)
f (x)

−→
x→∞ ∞

and 

. 

∞∫

−∞

− log f (x)

1 + x2
dx = ∞

then the distribution of the r.v. .X is uniquely determined by its positive integer order 
moments. . �

As pointed out by Lin (1997), a sufficient condition for (9) to hold is the logarith-
mic mean function 

. g(t) = 1

2t

t∫

−t

| log f (x)|dx (t ∈ R)

to be bounded in . R. 
Theorem 5 bears a close relation with Theorems I and II in Paley and Wiener 

(1934). Lin (1997) refers that while it was already proved by Akhiezer (1965, p. 87),  
using a result from Krein (1945), he proves it using the Hardy space theory. 

Also as Lin (1997) shows in the proof of Theorem 6, its hypothesis is a necessary 
condition for the Carleman condition to be satisfied. 

Using the above two theorems it is possible to prove that if .X is a normally 
distributed r.v., its distribution is uniquely determined by its positive integer order 
moments, while the distributions of .X2n+1(n ∈ N) are not (Berg, 1988). 

For r.v.’s in .R
+we have the following two theorems. 

Theorem 7 Let .X be a r.v. with an absolutely continuous c.d.f. and p.d.f. . f (x) >

0,∀x ∈ R
+ and . f (x) = 0,∀x ∈ R

−
0 . If .E (Xr ) < ∞,∀r ∈ N and 

.

∞∫

0

− log f (x2)

1 + x2
dx < ∞
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then the distribution of the r.v. .X is not uniquely determined by its positive integer 
order moments. . �

Theorem 8 Let .X be a r.v. with an absolutely continuous c.d.f. and p.d.f. . f (x) >

0,∀x ∈ R
+ and . f (x) = 0,∀x ∈ R

−
0 , differentiable in .R

+, such that . E (Xr ) <

∞,∀r ∈ N, with 

. f (x) −→
x→∞ 0, −x

f ′(x)
f (x)

−→
x→∞ ∞

and 

. 

∞∫

0

− log f
(
x2

)

1 + x2
dx = ∞

then the distribution of the r.v. .X is uniquely determined by its positive integer order 
moments. . �

Stoyanov et al. (2020) recently devised some new conditions for moment deter-
minacy of r.v.’s with p.d.f.’s with support either in. R or.R+. We state their Theorems 
1–4 in Theorems 9 through 12, with slight adaptations in the writing, to better fit in 
the wording of the previous theorems in this Appendix. The two first theorems are 
for continuous r.v.’s, and the last two for discrete r.v.’s. 

Theorem 9 Suppose the density of .X is symmetric on . R and continuous and strictly 
positive outside an interval .(−x0, x0), .x0 > 1, such that the following condition 
holds: 

. K∗[ f ] =
∫

|x |≥x0

− log f (x)

x2 log |x | dx = ∞.

Further, let . f be such that 

. 
− log f (x)

log x
↗ ∞ as x0 ≤ x → ∞.

Then the moments of .X satisfy Carleman’s condition, and hence the distribution of 
. X is fully determined by the positive integer order moments of. X. Moreover, the same 
happens with .X2. . �

Theorem 10 Assume that the density . g of .X is continuous and strictly positive on 
.[a,∞) for some .a > 1 such that the following condition holds: 

. K∗[g] =
∞∫

a

− log g(x2)

x2 log x
dx = ∞.

In addition, let . g be such that
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. 
− log g(x)

log x
↗ ∞ as a ≤ x → ∞.

Then the moments of .X satisfy Carleman’s condition, and hence the distribution of 
.X is fully determined by the positive integer order moments of . X. . �
Theorem 11 Suppose that the discrete r.v. .X has a p.m.f. . fX (x) = P(X = x), with 
support . Z that is symmetric about the origin, and that all its [positive integer order] 
moments are finite, and the following condition holds: 

. 

∑

| j |≥ j0

− log fX ( j)

j2 log | j | = ∞.

Here . j0 ≥ 2, and we assume further that 

. 
− log fX ( j)

log j
↗ ∞ as j0 ≤ j → ∞.

Then the moments of .X satisfy Carleman’s condition, and hence the distribution of 
. X is fully determined by the positive integer order moments of. X. Moreover, the same 
happens with .X2. . �
Theorem 12 Suppose that the discrete r.v. . X, with p.m.f. . fX (x) = P(X = x), with 
support .N0, and that all its [positive integer order] moments are finite, and the 
following condition holds: 

. 

∑

n≥n0

− log fX (n)

n2 log n
= ∞.

Here .n0 ≥ 2, and we assume further that 

. 
− log( fX (n)/2)

log n
↗ ∞ as n0 ≤ n → ∞.

Then the moments of .X satisfy Carleman’s condition, and hence the distribution of 
. X is fully determined by the positive integer order moments of. X. Moreover, the same 
happens with .X2. . �

Appendix 2 

A Brief Note on Some Numerical Issues 

McCullagh (1994) states that the m.g.f.’s of the r.v.’s.Xn in (8) are numerically virtu-
ally indistinguishable (for.α = 1/2 and.n = 0, n = 1 ) and Waller (1995), states that
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Fig. 4 Plots of the differences of m.g.f.’s in (8), of the distributions with p.d.f.’s in (7), for . −3 ≤
t ≤ 3 and for consecutive values of. n: a).n = 0 and.n = 1; b).n = 1 and.n = 2; c).n = 2 and.n = 3; 
d).n = 3 and.n = 4. All plots have the same horizontal scale but different vertical scales 

only the imaginary part of the c.f. helps in this numerical discrimination. However, 
there is a clear scale problem when plotting the m.g.f.’s in (8). If instead we plot the 
difference between the values of the two m.g.f.’s. and we take the plot far enough in 
terms of the absolute value of. t it is no longer true that the two m.g.f.’s look the same 
(see Fig. 4). Actually, for example for .α = 1/2, t = 9.9 the two functions differ by 
something like .1.507163 × 1012 while for .t = 12.7 they differ by something like 
.1.343462 × 1026. 

We should note that the above are also exactly the differences between the 
moments of order .h = 9.9 and .h = 12.7 for the r.v.’s .X0 and .X1 with p.d.f.’s in (3) 
for .α = 1/2 while if we take .α = 1 the corresponding differences will be roughly 
the double. 

We should be aware that if we do not have enough precision in the computation 
process we may not be able to spot such differences since although being quite large 
in magnitude they are quite small when compared with the original values. 

Anyway, we should consider that although the numerical values of such functions 
may be quite close, they are analytically different for different values of . n. 
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