|
Please use this identifier to cite or link to this item:
http://hdl.handle.net/10174/34873
|
Title: | An uncertainty prediction approach for active learning - application to earth observation |
Authors: | Raiyani, Kashyap Damjibhai |
Advisors: | Rato, Luís Gonçalves, Teresa |
Keywords: | Sentinel-2 High-resolution Imagery Scene Classification Sen2Cor Surface Reflectance Artificial Intelligence Machine Learning Mahalanobis Distance Classification Prediction Error Active Learning Training Data Reduction Sentinel-2 Imagens de alta resolução Classificação de Cenas Sen2Cor Refletância de Superfície Inteligência Artificial Aprendizagem Automática Distância Mahalanobis Erro de Previsão de Classificação Aprendizagem Ativa Redução de dados de treino |
Issue Date: | 23-Jan-2023 |
Publisher: | Universidade de Évora |
Abstract: | Mapping land cover and land usage dynamics are crucial in remote sensing since farmers
are encouraged to either intensify or extend crop use due to the ongoing rise in the world’s
population. A major issue in this area is interpreting and classifying a scene captured in
high-resolution satellite imagery. Several methods have been put forth, including neural
networks which generate data-dependent models (i.e. model is biased toward data) and
static rule-based approaches with thresholds which are limited in terms of diversity(i.e.
model lacks diversity in terms of rules). However, the problem of having a machine learning
model that, given a large amount of training data, can classify multiple classes over different
geographic Sentinel-2 imagery that out scales existing approaches remains open.
On the other hand, supervised machine learning has evolved into an essential part of many
areas due to the increasing number of labeled datasets. Examples include creating classifiers
for applications that recognize images and voices, anticipate traffic, propose products, act
as a virtual personal assistant and detect online fraud, among many more. Since these
classifiers are highly dependent from the training datasets, without human interaction or
accurate labels, the performance of these generated classifiers with unseen observations
is uncertain. Thus, researchers attempted to evaluate a number of independent models
using a statistical distance. However, the problem of, given a train-test split and classifiers
modeled over the train set, identifying a prediction error using the relation between train
and test sets remains open.
Moreover, while some training data is essential for supervised machine learning, what
happens if there is insufficient labeled data? After all, assigning labels to unlabeled datasets
is a time-consuming process that may need significant expert human involvement. When
there aren’t enough expert manual labels accessible for the vast amount of openly available
data, active learning becomes crucial. However, given a large amount of training and
unlabeled datasets, having an active learning model that can reduce the training cost of
the classifier and at the same time assist in labeling new data points remains an open
problem.
From the experimental approaches and findings, the main research contributions, which
concentrate on the issue of optical satellite image scene classification include: building
labeled Sentinel-2 datasets with surface reflectance values; proposal of machine learning
models for pixel-based image scene classification; proposal of a statistical distance based
Evidence Function Model (EFM) to detect ML models misclassification; and proposal of
a generalised sampling approach for active learning that, together with the EFM enables
a way of determining the most informative examples.
Firstly, using a manually annotated Sentinel-2 dataset, Machine Learning (ML) models
for scene classification were developed and their performance was compared to Sen2Cor the reference package from the European Space Agency – a micro-F1 value of 84%
was attained by the ML model, which is a significant improvement over the corresponding
Sen2Cor performance of 59%. Secondly, to quantify the misclassification of the ML models,
the Mahalanobis distance-based EFM was devised. This model achieved, for the labeled
Sentinel-2 dataset, a micro-F1 of 67.89% for misclassification detection. Lastly, EFM was
engineered as a sampling strategy for active learning leading to an approach that attains
the same level of accuracy with only 0.02% of the total training samples when compared
to a classifier trained with the full training set.
With the help of the above-mentioned research contributions, we were able to provide
an open-source Sentinel-2 image scene classification package which consists of ready-touse
Python scripts and a ML model that classifies Sentinel-2 L1C images generating a
20m-resolution RGB image with the six studied classes (Cloud, Cirrus, Shadow, Snow,
Water, and Other) giving academics a straightforward method for rapidly and effectively
classifying Sentinel-2 scene images. Additionally, an active learning approach that uses, as
sampling strategy, the observed prediction uncertainty given by EFM, will allow labeling
only the most informative points to be used as input to build classifiers; Sumário:
Uma Abordagem de Previsão de Incerteza para
Aprendizagem Ativa – Aplicação à Observação da Terra
O mapeamento da cobertura do solo e a dinâmica da utilização do solo são cruciais na
deteção remota uma vez que os agricultores são incentivados a intensificar ou estender as
culturas devido ao aumento contínuo da população mundial. Uma questão importante
nesta área é interpretar e classificar cenas capturadas em imagens de satélite de alta resolução.
Várias aproximações têm sido propostas incluindo a utilização de redes neuronais
que produzem modelos dependentes dos dados (ou seja, o modelo é tendencioso em relação
aos dados) e aproximações baseadas em regras que apresentam restrições de diversidade
(ou seja, o modelo carece de diversidade em termos de regras). No entanto, a criação de
um modelo de aprendizagem automática que, dada uma uma grande quantidade de dados
de treino, é capaz de classificar, com desempenho superior, as imagens do Sentinel-2 em
diferentes áreas geográficas permanece um problema em aberto.
Por outro lado, têm sido utilizadas técnicas de aprendizagem supervisionada na resolução
de problemas nas mais diversas áreas de devido à proliferação de conjuntos de dados etiquetados.
Exemplos disto incluem classificadores para aplicações que reconhecem imagem
e voz, antecipam tráfego, propõem produtos, atuam como assistentes pessoais virtuais e
detetam fraudes online, entre muitos outros. Uma vez que estes classificadores são fortemente
dependente do conjunto de dados de treino, sem interação humana ou etiquetas
precisas, o seu desempenho sobre novos dados é incerta. Neste sentido existem propostas
para avaliar modelos independentes usando uma distância estatística. No entanto, o problema
de, dada uma divisão de treino-teste e um classificador, identificar o erro de previsão
usando a relação entre aqueles conjuntos, permanece aberto.
Mais ainda, embora alguns dados de treino sejam essenciais para a aprendizagem supervisionada,
o que acontece quando a quantidade de dados etiquetados é insuficiente? Afinal,
atribuir etiquetas é um processo demorado e que exige perícia, o que se traduz num envolvimento
humano significativo. Quando a quantidade de dados etiquetados manualmente por
peritos é insuficiente a aprendizagem ativa torna-se crucial. No entanto, dada uma grande
quantidade dados de treino não etiquetados, ter um modelo de aprendizagem ativa que
reduz o custo de treino do classificador e, ao mesmo tempo, auxilia a etiquetagem de novas
observações permanece um problema em aberto.
A partir das abordagens e estudos experimentais, as principais contribuições deste trabalho,
que se concentra na classificação de cenas de imagens de satélite óptico incluem:
criação de conjuntos de dados Sentinel-2 etiquetados, com valores de refletância de superfície;
proposta de modelos de aprendizagem automática baseados em pixels para classificação de cenas de imagens de satétite; proposta de um Modelo de Função de Evidência (EFM)
baseado numa distância estatística para detetar erros de classificação de modelos de aprendizagem;
e proposta de uma abordagem de amostragem generalizada para aprendizagem
ativa que, em conjunto com o EFM, possibilita uma forma de determinar os exemplos mais
informativos.
Em primeiro lugar, usando um conjunto de dados Sentinel-2 etiquetado manualmente,
foram desenvolvidos modelos de Aprendizagem Automática (AA) para classificação de cenas
e seu desempenho foi comparado com o do Sen2Cor – o produto de referência da
Agência Espacial Europeia – tendo sido alcançado um valor de micro-F1 de 84% pelo classificador,
o que representa uma melhoria significativa em relação ao desempenho Sen2Cor
correspondente, de 59%. Em segundo lugar, para quantificar o erro de classificação dos
modelos de AA, foi concebido o Modelo de Função de Evidência baseado na distância de
Mahalanobis. Este modelo conseguiu, para o conjunto de dados etiquetado do Sentinel-2
um micro-F1 de 67,89% na deteção de classificação incorreta. Por fim, o EFM foi utilizado
como uma estratégia de amostragem para a aprendizagem ativa, uma abordagem
que permitiu atingir o mesmo nível de desempenho com apenas 0,02% do total de exemplos
de treino quando comparado com um classificador treinado com o conjunto de treino
completo.
Com a ajuda das contribuições acima mencionadas, foi possível desenvolver um pacote
de código aberto para classificação de cenas de imagens Sentinel-2 que, utilizando num
conjunto de scripts Python, um modelo de classificação, e uma imagem Sentinel-2 L1C,
gera a imagem RGB correspondente (com resolução de 20m) com as seis classes estudadas
(Cloud, Cirrus, Shadow, Snow, Water e Other), disponibilizando à academia um método
direto para a classificação de cenas de imagens do Sentinel-2 rápida e eficaz. Além disso, a
abordagem de aprendizagem ativa que usa, como estratégia de amostragem, a deteção de
classificacão incorreta dada pelo EFM, permite etiquetar apenas os pontos mais informativos
a serem usados como entrada na construção de classificadores. |
URI: | http://hdl.handle.net/10174/34873 |
Type: | doctoralThesis |
Appears in Collections: | BIB - Formação Avançada - Teses de Doutoramento
|
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
|