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Abstract

Mapping land cover and land usage dynamics are crucial in remote sensing since farmers
are encouraged to either intensify or extend crop use due to the ongoing rise in the world’s
population. A major issue in this area is interpreting and classifying a scene captured in
high-resolution satellite imagery. Several methods have been put forth, including neural
networks which generate data-dependent models (i.e. model is biased toward data) and
static rule-based approaches with thresholds which are limited in terms of diversity(i.e.
model lacks diversity in terms of rules). However, the problem of having a machine learning
model that, given a large amount of training data, can classify multiple classes over different
geographic Sentinel-2 imagery that out scales existing approaches remains open.

On the other hand, supervised machine learning has evolved into an essential part of many
areas due to the increasing number of labeled datasets. Examples include creating classifiers
for applications that recognize images and voices, anticipate traffic, propose products, act
as a virtual personal assistant and detect online fraud, among many more. Since these
classifiers are highly dependent from the training datasets, without human interaction or
accurate labels, the performance of these generated classifiers with unseen observations
is uncertain. Thus, researchers attempted to evaluate a number of independent models
using a statistical distance. However, the problem of, given a train-test split and classifiers
modeled over the train set, identifying a prediction error using the relation between train
and test sets remains open.

Moreover, while some training data is essential for supervised machine learning, what
happens if there is insufficient labeled data? After all, assigning labels to unlabeled datasets
is a time-consuming process that may need significant expert human involvement. When
there aren’t enough expert manual labels accessible for the vast amount of openly available
data, active learning becomes crucial. However, given a large amount of training and
unlabeled datasets, having an active learning model that can reduce the training cost of
the classifier and at the same time assist in labeling new data points remains an open
problem.

From the experimental approaches and findings, the main research contributions, which
concentrate on the issue of optical satellite image scene classification include: building
labeled Sentinel-2 datasets with surface reflectance values; proposal of machine learning
models for pixel-based image scene classification; proposal of a statistical distance based
Evidence Function Model (EFM) to detect ML models misclassification; and proposal of
a generalised sampling approach for active learning that, together with the EFM enables
a way of determining the most informative examples.

Firstly, using a manually annotated Sentinel-2 dataset, Machine Learning (ML) models
for scene classification were developed and their performance was compared to Sen2Cor
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– the reference package from the European Space Agency – a micro-F1 value of 84%
was attained by the ML model, which is a significant improvement over the corresponding
Sen2Cor performance of 59%. Secondly, to quantify the misclassification of the ML models,
the Mahalanobis distance-based EFM was devised. This model achieved, for the labeled
Sentinel-2 dataset, a micro-F1 of 67.89% for misclassification detection. Lastly, EFM was
engineered as a sampling strategy for active learning leading to an approach that attains
the same level of accuracy with only 0.02% of the total training samples when compared
to a classifier trained with the full training set.

With the help of the above-mentioned research contributions, we were able to provide
an open-source Sentinel-2 image scene classification package which consists of ready-to-
use Python scripts and a ML model that classifies Sentinel-2 L1C images generating a
20m-resolution RGB image with the six studied classes (Cloud, Cirrus, Shadow, Snow,
Water, and Other) giving academics a straightforward method for rapidly and effectively
classifying Sentinel-2 scene images. Additionally, an active learning approach that uses, as
sampling strategy, the observed prediction uncertainty given by EFM, will allow labeling
only the most informative points to be used as input to build classifiers.

Keywords: Sentinel-2; High-resolution Imagery; Scene Classification; Sen2Cor; Surface
Reflectance; Artificial Intelligence; Machine Learning; Mahalanobis Distance; Classification
Prediction Error; Active Learning; Training Data Reduction



Sumário

Uma Abordagem de Previsão de Incerteza para
Aprendizagem Ativa – Aplicação à Observação da Terra

O mapeamento da cobertura do solo e a dinâmica da utilização do solo são cruciais na
deteção remota uma vez que os agricultores são incentivados a intensificar ou estender as
culturas devido ao aumento contínuo da população mundial. Uma questão importante
nesta área é interpretar e classificar cenas capturadas em imagens de satélite de alta reso-
lução. Várias aproximações têm sido propostas incluindo a utilização de redes neuronais
que produzem modelos dependentes dos dados (ou seja, o modelo é tendencioso em relação
aos dados) e aproximações baseadas em regras que apresentam restrições de diversidade
(ou seja, o modelo carece de diversidade em termos de regras). No entanto, a criação de
um modelo de aprendizagem automática que, dada uma uma grande quantidade de dados
de treino, é capaz de classificar, com desempenho superior, as imagens do Sentinel-2 em
diferentes áreas geográficas permanece um problema em aberto.

Por outro lado, têm sido utilizadas técnicas de aprendizagem supervisionada na resolução
de problemas nas mais diversas áreas de devido à proliferação de conjuntos de dados eti-
quetados. Exemplos disto incluem classificadores para aplicações que reconhecem imagem
e voz, antecipam tráfego, propõem produtos, atuam como assistentes pessoais virtuais e
detetam fraudes online, entre muitos outros. Uma vez que estes classificadores são forte-
mente dependente do conjunto de dados de treino, sem interação humana ou etiquetas
precisas, o seu desempenho sobre novos dados é incerta. Neste sentido existem propostas
para avaliar modelos independentes usando uma distância estatística. No entanto, o prob-
lema de, dada uma divisão de treino-teste e um classificador, identificar o erro de previsão
usando a relação entre aqueles conjuntos, permanece aberto.

Mais ainda, embora alguns dados de treino sejam essenciais para a aprendizagem supervi-
sionada, o que acontece quando a quantidade de dados etiquetados é insuficiente? Afinal,
atribuir etiquetas é um processo demorado e que exige perícia, o que se traduz num envolvi-
mento humano significativo. Quando a quantidade de dados etiquetados manualmente por
peritos é insuficiente a aprendizagem ativa torna-se crucial. No entanto, dada uma grande
quantidade dados de treino não etiquetados, ter um modelo de aprendizagem ativa que
reduz o custo de treino do classificador e, ao mesmo tempo, auxilia a etiquetagem de novas
observações permanece um problema em aberto.

A partir das abordagens e estudos experimentais, as principais contribuições deste tra-
balho, que se concentra na classificação de cenas de imagens de satélite óptico incluem:
criação de conjuntos de dados Sentinel-2 etiquetados, com valores de refletância de superfí-
cie; proposta de modelos de aprendizagem automática baseados em pixels para classificação
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de cenas de imagens de satétite; proposta de um Modelo de Função de Evidência (EFM)
baseado numa distância estatística para detetar erros de classificação de modelos de apren-
dizagem; e proposta de uma abordagem de amostragem generalizada para aprendizagem
ativa que, em conjunto com o EFM, possibilita uma forma de determinar os exemplos mais
informativos.

Em primeiro lugar, usando um conjunto de dados Sentinel-2 etiquetado manualmente,
foram desenvolvidos modelos de Aprendizagem Automática (AA) para classificação de ce-
nas e seu desempenho foi comparado com o do Sen2Cor – o produto de referência da
Agência Espacial Europeia – tendo sido alcançado um valor de micro-F1 de 84% pelo clas-
sificador, o que representa uma melhoria significativa em relação ao desempenho Sen2Cor
correspondente, de 59%. Em segundo lugar, para quantificar o erro de classificação dos
modelos de AA, foi concebido o Modelo de Função de Evidência baseado na distância de
Mahalanobis. Este modelo conseguiu, para o conjunto de dados etiquetado do Sentinel-2
um micro-F1 de 67,89% na deteção de classificação incorreta. Por fim, o EFM foi uti-
lizado como uma estratégia de amostragem para a aprendizagem ativa, uma abordagem
que permitiu atingir o mesmo nível de desempenho com apenas 0,02% do total de exem-
plos de treino quando comparado com um classificador treinado com o conjunto de treino
completo.

Com a ajuda das contribuições acima mencionadas, foi possível desenvolver um pacote
de código aberto para classificação de cenas de imagens Sentinel-2 que, utilizando num
conjunto de scripts Python, um modelo de classificação, e uma imagem Sentinel-2 L1C,
gera a imagem RGB correspondente (com resolução de 20m) com as seis classes estudadas
(Cloud, Cirrus, Shadow, Snow, Water e Other), disponibilizando à academia um método
direto para a classificação de cenas de imagens do Sentinel-2 rápida e eficaz. Além disso, a
abordagem de aprendizagem ativa que usa, como estratégia de amostragem, a deteção de
classificacão incorreta dada pelo EFM, permite etiquetar apenas os pontos mais informa-
tivos a serem usados como entrada na construção de classificadores.

Palavras chave: Sentinel-2; Imagens de alta resolução; Classificação de Cenas; Sen2Cor;
Refletância de Superfície; Inteligência Artificial; Aprendizagem Automática; Distância Ma-
halanobis; Erro de Previsão de Classificação; Aprendizagem Ativa; Redução de dados de
treino



Chapter 1

Introduction

“The greatest challenge to any thinker is stating the problem in a way that will allow a
solution.”

— Bertrand Russell

Human civilization is gradually altering the Earth system. Identifying possible reper-
cussions and preventing negative ones using Artificial Intelligence (AI) based solutions is
becoming crucially influential (Dwivedi et al., 2021). At the same time, when using AI
based solutions, quantifying errors in those solutions is critical for the success and depend-
ability of AI applications (Tavazza et al., 2021). Furthermore, AI based systems require a
large amount of training data; in this context, employing limited training data may result
in faster and less expensive AI based solutions (Felderer and Ramler, 2021).

Thus, a discussion of the thesis title, “An Uncertainty Prediction Approach for Active
Learning - Application to Earth Observation,” is presented next, where Active Learning,
Uncertainty Prediction, and Earth Observation are the three domains.

1.1 Context

This section attempts to address three questions for each of the Active Learning, Uncer-
tainty Prediction, and Earth Observation domains: what, when, and where.

1.1.1 Active Learning

What is Active Learning in Machine Learning?

In Machine Learning (ML), “Active Learning” (AL) allows a learning algorithm to engage
with a user to classify incoming data points with the intended responses, when there is a
large amount of unlabeled data, yet human labeling is expensive. Learning algorithms can
actively ask the user for labels in this situation. Active learning is the term coined for this
iterative supervised learning method (Settles, 2010).

1



2 CHAPTER 1. INTRODUCTION

When is Active Learning Valuable?

So, while having training data is required for machine learning, what happens if you don’t
have enough data? After all, adding labels to unlabeled datasets is a time-consuming
procedure that may need substantial human work before you can even begin supervised
ML training.

Here is where active learning comes into play. Through active learning, an algorithm may
scan unlabeled training data and choose just the most significant data points for labeling.
Because the algorithm only picks the data points necessary for training, the total number
of data points required for analysis is far lower than in traditional supervised learning (Das
et al., 2016).

Where is Active Learning Used?

Let the examples below help us understand where active learning can be used:

Active learning is a fitting choice for a variety of remote sensing applications, including
the detection of local surface changes. Here, changes are infrequent, and their appearance
is diverse and scattered, making it difficult to collect a representative training set ahead of
time (Campbell and Wynne, 2011).

As an example, building natural language processing models necessitates training datasets
that have been tagged to represent portions of speech, named things, and so on. It can be
difficult to find datasets that have such mentioned labeling as well as enough unique data
points. Active learning has proven particularly beneficial in this regard (Thompson et al.,
1999).

Active learning has also proved beneficial in medical imaging and other situations where a
human annotator identifies quantity of data necessary to aid the algorithm. Although the
process might be lengthy at times since the model must continually modify and retrain
based on incremental labeling updates, it can still save time when compared to traditional
data gathering approaches (Komura and Ishikawa, 2019).

1.1.2 Uncertainty Prediction

What is Uncertainty Prediction in Machine Learning?

Everyday scenarios deal with a wide range of uncertainty, from investment possibilities and
medical diagnoses to sports tournaments and weather predictions and, in all situations,
judgments are based on obtained data. Machine learning based models are frequently used
for all forms of inference and decision-making, and before these systems can be used in
practice, it is becoming increasingly vital to assess their reliability and efficacy. Because
models’ predictions are sensitive to noise and model inference mistakes, they are prone to
uncertainty in predictions (Abdar et al., 2021).

In other words, in a machine learning model, evaluating prediction uncertainty entails
estimating the variability in model prediction owing to uncertainty in input values and
determining the contribution of dominating inputs to the variance. Thus, Uncertainty
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Prediction can be defined as a process of predicting or recognizing such variance or vari-
ability by dominating inputs.

When is Uncertainty Prediction Valuable?

Quantifying uncertainty in Artificial Intelligence (AI) based substance property predictions
are critical for AI applications in materials science to succeed and be reliable. While
confidence intervals for ML models are regularly published, prediction intervals, or the
evaluation of the uncertainty on each prediction, are not as prevalent (Zhan and Kitchin,
2022).

The assessment of uncertainty may be a critical component, especially in areas where the
dependability associated with a specific prediction is significant, such as the medical sector
or weather forecast, where the accuracy of the model is at the greatest expectancy.

Where is Uncertainty Prediction Used?

Knowing prediction uncertainty could also help further research areas like ‘Active Learn-
ing’ (Settles, 2009) or ‘Disagreement based Active Learning’ (Hanneke, 2014). The reason-
ing is that given a large amount of freely available data where the expert’s lack of manual
labels is noticeable, providing a feature of ‘measurement of uncertainty’ could help in gen-
erating labeled datasets where human input is only required for data with an excessive
amount of uncertainty.

1.1.3 Earth Observation

What is Earth Observation?

Earth Observation is the collection of data about the physical, chemical, and biological
processes of the planet Earth. It entails keeping track of and evaluating changes in natu-
ral and man-made environments. With the development of remote-sensing satellites and
more high-tech “in-situ” sensors, Earth observation has grown increasingly sophisticated
in recent years. Floating buoys for monitoring ocean currents, temperature, and salinity;
land stations for recording air quality and rainwater trends; sonar and radar for estimating
fish and bird populations; seismic and GPS stations; and over 60 high-tech environmental
satellites that scan the Earth from space are among today’s Earth observation instruments.
Because of the significant influence that contemporary human civilization is having on the
global environment, Earth monitoring is now more crucial than ever (Barrett, 2013).

Space-based technologies provide repeatable and trustworthy datasets, which, when paired
with suitable research and development, give a unique means of acquiring knowledge about
the planet. Monitoring the status and evolution of our environment, whether on land, sea,
or air, and the capacity to quickly analyze situations during emergencies such as extreme
weather occurrences or times of human conflict are just a few examples.
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When is Earth Observation Valuable?

The Earth system is becoming progressively influenced by human civilisation. Earth ob-
servations are crucial for assessing and preventing unwanted consequences. They can also
be utilized to take advantage of new opportunities, such as sustainable natural resource
management. The following are some examples showing when Earth observation is valu-
able:

Forecasting weather and monitoring developments in biodiversity and wildlife; land-use
change measurement (such as deforestation); monitoring and responsiveness to catastrophic
events such as fires, floods, earthquakes, and tsunamis; agriculture, energy sources, and
freshwater resources are all under management; handling new illnesses and other threats
to one’s health; climate change prediction, adaptation, and mitigation.

Where is Earth Observation Used?

The United Nations relies on Earth observations to carry out its missions, resolutions, and
operations (Guanter et al., 2015). Satellite sensors (government or commercial organiza-
tions), air fleet (planes or helicopters) or, more recently, unmanned aerial systems (also
known as drones) can all provide remotely sensed data.

In Earth observation, classifying parts of the high-resolution optical satellite images into
morphological categories (e.g., land, water, cloud, etc.) is known as scene classifica-
tion (Mohajerani et al., 2018). Recently, the challenge of optical satellite image scene
classification has been the focal point of many researchers. Scene classification plays a key
role for example, in urban and regional planning (Hashem and Balakrishnan, 2015; Rah-
man et al., 2012), environmental vulnerability and impact assessment (Liou et al., 2017;
Nguyen and Liou, 2019) and natural disasters and hazard monitoring (Dao and Liou, 2015).
Further, given the current population growth and industrial expansion needs, assessment
of land-use dynamics is certainly required for the well-being of individuals.

1.2 Motivation

According to Dubovik et al. (2021), satellite remote sensing has become one of the most ef-
fective technologies for surveying the Earth at local, regional, and global spatial scales over
the last five decades. The non-destructive nature of these space-based studies enables quick
monitoring of the ambient atmosphere, its underlying surface, and the ocean’s mixed layer.
Satellite instrumentation may also study poisonous or dangerous areas without endanger-
ing humans or equipment. Detailed (but scarce) field observations are supplemented by
large-scale continuous satellite observations, which give measurements of unrivaled volume
and content for theoretical modeling and data assimilation.

It seems there are a great number of critical applications that rely on data from satel-
lites (Wielicki et al., 1996) such as weather forecast, pollution monitoring, climate variabil-
ity, and other applications rely on atmospheric sensing. Similarly, for coastal areas changes
like, meteorological parameters and salinity, maritime ecosystem and carbon biomass, sea-
level rise, coastal traffic and fisheries, and mapping of water current and underlying topog-
raphy in shallow areas are all monitored via remote sensing of ocean surfaces (Fu et al.,



1.2. MOTIVATION 5

2019). In addition, satellite-based remote sensing of the land helps in mineral discovery,
flood and drought monitoring, soil moisture, vegetation, deforestation, forest fires, agricul-
tural monitoring, and urban planning, among other things (Jeyaseelan, 2003; Lentile et al.,
2006; Xie et al., 2008; Atzberger, 2013; Kadhim et al., 2016; Zhang et al., 2017; Babaeian
et al., 2019; Gao et al., 2020).

Satellite remote sensing has also been demonstrated to be an excellent instrument to col-
lect statistical information, including orbital geomorphology (Rees and Rees, 1999); tro-
pospheric profiles of temperature, water vapour, carbon dioxide, and other trace gases
(Van der Meer et al., 2012); geology and biological compositions of the surface and atmo-
sphere; polar caps properties such as snow, sea ice, glaciers, and melting ponds (Bhardwaj
et al., 2016); particle and electromagnetic properties of the thermosphere, ionosphere, and
magnetosphere (Dubovik et al., 2021).

Copernicus (2018) is the world’s third-largest data supplier and the leading producer of
Earth Observation data. Every day, Copernicus transmits 20 TB of geodata; this implies
that a day’s worth of Copernicus data is the equivalent of a 1.5-year-long high-definition
video; Moreover, a total of 11.8 million images have been delivered by Sentinel satellites;
this corresponds roughly to the population of Madrid, Berlin, Rome, and Paris added
together.

Also, given the vast expanse of farmland, optical satellite images of farms are used to create
maps that depict land-use dynamics and behaviour depending on time, crops, and regions,
as well as under varied environmental circumstances (Joshi et al., 2016). In this context, a
major issue in this area is interpreting and classifying a scene captured in high-resolution
satellite imagery (Zhong et al., 2015). Several methods have been put forth, including
neural networks with data-dependent limits and static rule-based thresholds with diversity
as restrictions. However, the problem of “is it possible to have a machine learning model
that can classify multiple classes over different geographic Sentinel-2 imagery and can out
scale existing approaches?” remains open given a large amount of available data.

As a result of the vast quantity of accessible data, supervised machine learning has grown
into an integral aspect of any problem-solving process throughout time (Alzubi et al., 2018).
However, in the absence of human involvement or correct labels, the effectiveness of these
produced classifiers is heavily dependent on the training dataset, leaving the judgment of
unseen observations unknown (Attenberg et al., 2015). Researchers attempted to assess
the model’s goodness-of-fit by comparing it to a large number of independent models using
a statistical distance (McDonald and Marsh, 1990; Hunter et al., 2008; Read and Cressie,
2012). However, the problem of “is it possible to identify a prediction error without human
interaction?” remains open. The main motivation, however, remained the lack of a publicly
accessible methodology for estimating prediction error based on the relationship between
the train and test sets.

While some training data is required for supervised machine learning, supervised learning
algorithms will be unable to make sense of it if it is not labeled (Carneiro et al., 2007).
Labeling such a massive volume of data would need a great quantity of effort and would be
expensive in terms of human expertise and time. When there aren’t enough expert manual
labels available for the massive volume of publicly available data, active learning becomes
critical (Budd et al., 2021). However, given the current active learning approaches, the
problem of “is it conceivable to create an active learning model that can reduce classifier
training costs while also assisting in labeling new data points?” remains open.
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Given these problem contexts, the research questions are posed next.

1.3 Research Questions

The following Research Questions (RQ) are posed:

RQ1 Can we provide an ML model that can scene classify any new image, regardless of
region, using Sentinel-2 images?

RQ2 Can we provide an AI model that can detect misclassification for any new data,
regardless of the classification algorithm used, without knowledge about new data?

RQ3 Can we provide an AL model that can reduce the data required for training classifiers
and assist in the generation of new labeled data?

1.4 Proposed Approach

This doctorate research focuses on three research topics, Active Learning, Uncertainty
Prediction, and Earth Observation. Following the above-mentioned research questions,
the proposed approaches are divided as:

A Machine Learning Model for Sentinel-2 Image Scene Classification

Several approaches have been proposed, either using static rule-based thresholds with
limitation of diversity or neural networks with data-dependent restrictions (Raiyani et al.,
2021). We proposed an inductive method of learning from surface reflectances approach and
built a Machine Learning model for image scene classification, generating classified images
that reflect land dynamics and their response over different time frames, and regions with
varying environmental conditions.

Further, investigating the land activity and providing support information to farmers will
help to have a better understanding of the land and its dynamics for quantitative and
qualitative crop production, contributing to Sustainable Development Goal 2, Zero Hunger.

Prediction Uncertainty Identification for ML Classifiers

ML classification solutions aims at performing well on the test set, but there is no method
to verify the performance of the ML model when used against real-world data without
human input (Raiyani et al., 2022b). Could there be a system that supports humans in
judging performance with minimum human involvement? In other words, the system will
detect ML models’ errors. We proposed a generalised approach for detecting classifiers’
misclassifications using the Mahalanobis statistical distance between train and test sets.
The approach also helps in selecting the most informative points within the datasets,
introducing a novel sampling strategy for Active Learning.

This generalised technique was also used to detect misclassification in Sentinel-2 classified
image scenes, as well as to identify the most informative points for classifier training.
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An Active Learning Approach to Abbreviate Classification Training Cost

The absence of manual labeling is noteworthy, given the large amount of publically available
data. There should be a supervised learning system that uses active learning to scan
unlabeled training data and select only the most significant data points for analysis. This
way, the algorithm only selects data points needed for training, and the total number of
data points required for analysis is much lower than in classical supervised learning (Raiyani
et al., 2022a). We proposed Active Learning based generalised sampling methods which
reduces the number of labeled instances needed for training an ML classifier. The proposed
approach is less data-intensive.

Further, we incorporated the uncertainty identification model (from the previous module)
as one of the sampling methods for reducing the label cost for Sentinel-2 image scene
classification.

1.5 Main Contributions

The main contributions in this research work can be stated as:

• Two Sentinel-2 datasets, image scene and waterbody. The image scene dataset has
60 images, 6.6 million points with six classes and a matching Sen2Cor class. The
waterbody dataset has 49 images, 2.3 million with a single class. For both datasets,
13 raw bands are supplied for each point.

• ML model for pixel-based image scene classification. Empirically it was shown that
the ML model outperforms Sen2Cor, a rule-based image scene classification tech-
nique.

• A statistical distance based Evidence Function Model proposal to detect misclassifi-
cation caused by an ML model. Empirically detection of misclassification was shown
over Sentinel-2 classified image scenes.

• Proposed a generalised sampling approach for active learning, together with the
Evidence Function Model, as a way of determining the most informative points for
pixel-based Sentinel-2 image scene classification, resulting in a reduction in training
cost.

In addition, an exhaustive assessment of the literature on Earth observation was provided,
as well as documented current gaps in domain specific applications, particularly image
scene classification. Similarly, the working concept of active learning was described, along
with several benchmark criteria for implementation and outlined existing gaps in remote
sensing and reducing training costs.

Also, published an open-source application package Raiyani (2023). A simpler technique for
classifying Sentinel-2 scene images more quickly and accurately; a learning-based strategy,
enabling researchers to label more datasets using the prediction uncertainty identification
model. Note: our purpose in discussing and demonstrating the use of these free resources
is not to prescribe the best practice or the most accurate tools and procedures for Sentinel-
2 image classification and identifying prediction uncertainty, nor is it to dismiss directly
obtained data.
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1.6 Research Methodology

The goal of using the Research Methodology in this doctoral study is to propose a generic
answer to a topic rather than to prove a theory. Then, the generalized solutions are tested
against a domain-specific application.

To formulate any significant problem with a solution, a proper research methodology struc-
ture is required. The Design Science Research (DSR) is an approach to discover and iden-
tify the problem statement, which includes the purpose of research, research questions,
and procedures to obtain the solution, and analyse the significance and limitation of the
solution.

DSR, which is centered on practical problem solving, comprises prescriptive or knowledge,
which may be utilized to create answers to complicated and relevant domain issues using
the results of scientific justification (inferring, interpreting, or describing phenomena). Its
fundamental aim is to produce information that may be used by experts in the domain
in question to build solutions to their field problem by presenting and analyzing possible
courses of action in dealing with domain challenges (Hanid, 2014).

DSR was selected as the (philosophical) approach for the reason: at the moment, much
academic research is based on the theory-driven technique of descriptive knowledge (ex-
planatory science), with the core mission of developing conceptually-valid expertise by
understanding the natural or social world, or more specifically - describing, explaining,
possibly predicting, and producing shared understanding (Van Aken, 2005; Voordijk, 2009).

Figure 1.1 depicts the selected Research Methodology Flow.

Figure 1.1: Adopted research method.

Area of Research. The study field should, ideally, be related to a future professional
path and have the potential to aid in the attainment of career goals.

Research Question. The most important stage in research is to define the scope of
the project and follow the processes in a methodical manner until a conclusion is reached
based on the studied data. According to the hypothesis test, this research topic must be
validated or disproved.

Background Research. This stage entails looking at comparable works in order to figure
out what the researcher intends to achieve. State-of-the-art study is often undertaken by
conducting research and participating in discussion groups to determine if the work has
been done before, to examine comparable techniques, and to design an approach with a
suitable perspective to have an influence on the area of research.
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Formulate Hypothesis. To test each study question, one or more scientific hypotheses
might be defined. It usually gives a study issue more clarity, precision, and concentration.
Hypotheses are recast if the outcomes from the more advanced phases are unsatisfactory.

Design Experiment. This stage establishes the feasibility of the research. Engineering
research frequently entails the creation of prototypes or system designs in order to de-
velop variables that can be changed and measured, as well as the need for quantifiable
research findings. Overall, thesis validation must be accomplished using this step’s design
experiment.

Test Hypothesis. The implementation of the prototype, data collection, and execution
tests according to the predefined validation technique are all part of the hypothesis testing
process. This stage highlights the necessity to alter the prototype design and retesting to
confirm the result.

Analyse Results. The results of the tests may be evaluated using quantitative and
qualitative analysis. This stage necessitates an in-depth study to generate conversations
regarding the relevance of the findings. If the conclusion fails the tests, it must be rejected
or retested, and the process should restart from Formulate Hypothesis step.

Publish Findings. The research findings indicate a step forward for the community, and
it is highly suggested that the conclusions are published and a critical analysis is provided
from peers. Typically, conference proceedings are released with interim results to solicit
input. The collected results are the focus of articles in referred journals.

The traditional phases of the scientific process was followed during this doctoral study.
Common results were submitted to reputable conferences and journals for publication,
and backward loops were used when necessary.

1.7 Document Structure

This dissertation is divided into six parts. Figure 1.2 displays the thesis structure and the
links between the chapters and different parts.

The first part is an introduction. The second part, which includes Chapters 2 and 3,
introduces background information, the state-of-the-art, and related work in Earth obser-
vation and active learning; the third part, Chapter 4 introduces proposals for achieving
the thesis goal and answering the research questions; the fourth part describes the dataset
built (Chapter 5); the fifth part presents the modeling and the results obtained (Chapter 6
to Chapter 8). Finally, the fifth section discusses the findings and future work (Chapter 9).

The chapters are breakdown as follows:

Earth Observation. Details what Earth observation is, how the Sentinel mission, par-
ticularly Sentinel-2, works, what land usage and land cover (LULC) is, how LULC may be
monitored, what image scene classification is and the different approaches available, and
how Sen2Cor does image scene classification. It also provides a comprehensive analysis of
existing methodologies for LULC and image scene classification, as well as an assessment
of their strengths and drawbacks in terms of practical applications.

Active Learning. Provides an in-depth introduction to the theory of active learning, dis-
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Figure 1.2: The structure of the thesis and the relationships between the chapters.

tinct sampling and query selection methods, baseline setting for active learning in practice,
and the application of active learning to reduce classifier training costs. It also provides
a thorough overview of current active learning approaches in remote sensing and analyzes
their strengths and shortcomings in the context of operational applications.

Evidence Function Model (EFM). Discusses confidence estimates and the concept of
evidence and presents a broad and statistical interpretation of it in relation to ML models;
describes the Mahalanobis distance and how it is employed in the Evidence Function Model.
It also specifies where the Evidence Function Model can be applied.

Experimental Datasets. Presents three separate datasets to validate the established
methodologies. Image Scene dataset consists of 60 Sentinel-2 images classified into six
classes; the Waterbody dataset consists of 49 Sentinel-2 images with one class and two
unlabeled Sentinel-2 images.

Image Scene Classification: Modeling and Results. Describes the ML techniques
used to construct classifier models, along with a comprehensive experimental setup. It
also contrasts the usage of Sen2Cor vs. Sentinel-2 raw bands for image scene classifica-
tion, and it last shows how the classifier model can be used in Atmospheric Disturbance
Identification.

Misclassification Detection: Modeling and Results. Details EFM modeling in rela-
tion to an image scene classification problem and provides a broad grasp of how misclas-
sification might be discovered for the same, as well as a complete experimental setup. It
also evaluates the modeled EFM across a variety of experimental datasets.

Abbreviating Train Cost: Modeling and Results. Proposes and discusses a broad
concept of the suggested sampling algorithm, which can be used with any query selection
technique, and introduces and discusses EFM as a new query selection method and its
application. It also shows how to reduce training costs in general, particularly for Sentinel-
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2 image scene classifiers, and compares Entropy and EFM approaches.

Conclusions and Future Work. Provides a summary of the research’s major results
and discusses prospects and research implications for transferring technology to potential
end users.





Chapter 2

Earth Observation

“Not everything that can be counted counts, and not everything that counts can be
counted.”

— Albert Einstein

Agriculture in Europe has witness a substantial change after the creation of the Common
Agriculture Policy (CAP) (Komissio, 2018) in 1962. Food security is now ensured in
most parts of Europe but there is evidence that increased production has led to significant
including, harmful environmental consequences in terms of water pollution, greenhouse gas
emissions and damaged natural surroundings (Geiger et al., 2010; Marja et al., 2019). To
face this, agricultural subsidies shifted recently from production support towards delivering
public goods and services (environmental related) (Zarco-Tejada et al., 2014). However,
an increase of production will be needed to sustain an estimated global population growth
from the current level of about 7 billion to 9 billion by 2050 (UNESCO, 2013). Despite
the apparently opposing pressures to preserve our environment and be careful with our
resources (Tilman et al., 2011), the agriculture sector has to face this main challenge and
produce more food. The way to address this challenge is to rely on science and technology
for possible answers.

Over the last few decades many new technologies have been developed for, or adapted
to, agricultural use. Examples of these include: low-cost positioning systems such as
the Global Navigation Satellite System (GNSS), Geographic Information Systems (GIS),
sensors mounted on agricultural machinery, geophysical sensors aimed at measuring soil
properties, low-cost remote sensing techniques and reliable devices to store, process and
exchange/share sensory information (Pierce and Nowak, 1999; Gibbons, 2000).

In remote sensing, Earth observation can be defined as gathering physical, chemical, and
biological information about the planet surface using surveying techniques at a distance,
without coming into direct physical contact (San, 2014). The principle behind remote sens-
ing is the use of electromagnetic spectrum (visible, infrared and microwaves) for assessing
Earth’s properties. The typical responses of the targets to these wavelength regions are
different so that they are used for distinguishing the vegetation, bare soil, water, and other
similar features (Shanmugapriya et al., 2019). It can also be used to crop growth mon-
itoring, land use pattern and land cover changes, water resources map and water status

13
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under field condition, monitor diseases and pest infestation, forecasting of harvest date and
yield estimation, precision farming and weather forecast along with field observations. To-
gether these new technologies have produced a large amount of affordable, high-resolution
information and have led to the development of fine-scale or site-specific agricultural man-
agement that is often termed Precision Agriculture (PA). There are many aspects related
to Precision Agriculture and this chapter aims at investigating the land scene classification
and providing support information for a better understanding of the land and its dynamics.

Given the limitations of existing approaches, such as ground and air-based sensors in terms
of time-consumed and usage, space-based satellite technologies are increasing relevance for
obtaining spatio-temporal information to supplement them, making remote sensing widely
used techniques for Earth observation.

In remote sensing there are two types of sensors: passive and active. Passive sensors
measure radiation that reaches a detector without the sensor first transmitting a pulse of
radiation; active sensors emit a pulse and later measure the energy returned or bounced
back to the detector. Both passive and active sensors record the intensity of a signal
within a wavelength interval, known as a band or channel, of specified width within the
electromagnetic spectrum.

The remainder of the chapter is organized as follows: Section 2.1 talks about Sentinel Mis-
sion, the Copernicus Program, a part of the European Union’s Earth monitoring system;
Section 2.2 details Land Usage and Land Cover (LULC), describing different monitoring
parameters, along with LULC case studies; Section 2.3 shows Image Scene Classification,
describing different type of classification methodology.

2.1 Sentinel Mission

The Copernicus Program, a part of the European Union’s Earth monitoring system, coor-
dinates the Sentinel missions. The European Commission, in collaboration with European
Space Agency (ESA), European Union (EU) member states, and EU agencies, funds all
activities of Sentinel missions (Machado et al., 2005). The ESA and the EU launched the
Global Monitoring for Environment and Security (GMES) program in 1998, which was
renamed Copernicus Program in 2014 (Drusch et al., 2012). The Copernicus Programme
has strategic plans for developing seven satellite missions (Sentinel-1, 2, 3, 4, 5P, 5, 6) (Eu-
ropean Space Agency, 2022i). Table 2.1 details the various satellites under the Sentinel
mission project.

Figure 2.1 shows the six high priority candidate ‘extension’ missions being researched by
ESA in preparation for the second generation of Copernicus (Copernicus 2.0) to meet EU
policy and gaps in Copernicus user demands, as well as to expand the current capabilities
of the Copernicus Space Component (European Space Agency, 2022a). They are:
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Table 2.1: Sentinel Mission.

Satellite Service Launch
Time:DD.MM.YY Vehicle Site

Sentinel-1 Day and night
radar imaging

A:03.04.14
B:25.04.16 Syuz Kourou

Sentinel-2 High-resolution
optical imaging

A:23.06.15
B:07.03.17 Vega Kourou

Sentinel-3 Sea surface
topography

A:16.02.16
B:25.04.18 Rockot Plesetsk

Cosmodrome

Sentinel-4 Atmospheric
composition 2023 — —

Sentinel-5 Sciamachy
atmospheric 13.10.17 Rockot Plesetsk

Cosmodrome

Sentinel-6 Sea surface
radar imaging

A:21.11.20
B:2025

SpaceX
Falcon 9 Vandenberg

1. Sentinel-7: Anthropogenic CO2 emissions monitoring (CO2M).

2. Sentinel-8: High Spatio-temporal Land Surface Temperature (LSTM).

3. Sentinel-9: Copernicus Polar Ice and Snow Topography Altimeter (CRISTAL).

4. Sentinel-10: Copernicus Hyperspectral Imaging Mission for the Environment (CHIME).

5. Sentinel-11: Polar Imaging Microwave Radiometer (PIMR).

6. Sentinel-12: Radar Observing System for Europe - L-band SAR (ROSE-L).

Figure 2.1: Copernicus 2.0 Sentinel expansion missions (European Space Agency, 2022a).
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Sentinel-2. Sentinel-2 systematically captures high-resolution optical images across land
and coastal waters. Which can be used for a wide variety of services and applications,
including agricultural and forest monitoring, emergency management, land cover catego-
rization, and water quality monitoring. Images also include floods, volcanic eruptions, and
landslides to enhance disaster mapping and humanitarian relief efforts (Gutierres et al.,
2011; Vuolo et al., 2018).

The Sentinel-2 mission has the following key characteristics (European Space Agency,
2022d):

• Multi-spectral data with 13 bands in the visible, near-infrared, and short wave in-
frared part of the spectrum,

• Revisitation every 5 days under the same viewing angles,

• Spatial resolution of 10m, 20m, and 60m,

Sentinel-2 data represents an increment in terms of temporal and spatial resolution than
previous low to medium spatial resolution aerial images (e.g., Landsat). As mentioned,
Sentinel-2 images feature 13 bands with spatial resolutions ranging from 10 to 60 meters.
The visible and near-infrared NIR bands have a spatial resolution of 10 meters, while the
infrared bands have a resolution of 20 meters and the remaining bands have a resolution
of 60 meters. Table 2.2 details the Spectral bands for the Sentinel-2 sensors. Here, VRE:
Vegetation Red Edge, NIR: Near Infrared, and SWIR: Specific Wavelength Range.

Table 2.2: Sentinel-2 Spectral Bands.

Sentinel-2 Bands (B) Sentinel-2A Sentinel-2B Resolution(m)
Central Wavelength (nm)

B1 Coastal aerosol 442.7 442.2 60
B2 Blue 492.4 492.1 10
B3 Green 559.8 559.0 10
B4 Red 664.6 664.9 10
B5 VRE 704.1 703.8 20
B6 VRE 740.5 739.1 20
B7 VRE 782.8 779.7 20
B8 NIR 832.8 832.9 10
B8A Narrow NIR 864.7 864.0 20
B9 Water vapour 945.1 943.2 60
B10 SWIR Cirrus 1373.5 1376.9 60
B11 SWIR 1613.7 1610.4 20
B12 SWIR 2202.4 2185.7 20

While capturing satellite image, the atmosphere affects the spatial and spectral distribu-
tion of the electromagnetic radiation from the Sun before it reaches the Earths surface;
subsequently, it also attenuates the reflected energy recorded by a satellite sensor. Top-
of-Atmosphere (TOA) reflectance is a dimensionless quantity measurement that provides
the ratio between the radiation reflected and the incident solar radiation on a given sur-
face. Bottom-of-Atmosphere (BOA) reflectance is defined as the fraction of incoming solar
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radiation that is reflected from Earth’s surface for a specific incident or viewing case. Fig-
ure 2.2 shows what is TOA and BOA. Here, Es is defined as incoming solar radiation from
Sun and Eo can be defined as reflected solar radiation from Earth, and E−and E+ can be
defined as reflection variation due to atmosphere.

Figure 2.2: Top-of-Atmosphere and Bottom-of-Atmosphere (Mousivand et al., 2015).

Data from Sentinel-2 is available in a variety of processed formats Level-0, Level-1A, Level-
1B, Level-1C, and Level-2A as Sentinel-2 products go through many steps of processing
before they can be accessed by consumers. All these formats are explained as below:

• Level-0 and Level-1A are not available to users and are compressed raw picture data
in instrument source packet (ISP) format (Llewellyn-Jones et al., 2001);

• Level-1B product, granules of 25x23 km2, comprises the revised geometry needed
to create the user-accessible Level-1C products, as well as radiometrically corrected
imagery with TOA radiance values;

• Level-1C is created in cartographic geometry using digital elevation models. Level-
1C product is radiometrically and geometrically corrected including orthorectifica-
tion (Japan Association, 2022). Radiometric and geometric correction is nothing but
the calibration of pixel values and the correction of errors in those values;

• Level-2A product provides BOA reflectance images derived from the associated Level-
1C product. In Sentinel-2, each Level-1C and Level-2A product is composed of
100x100 km2 tiles in cartographic geometry UTM/WGS84 projection (Langley, 1998;
National Geospatial Intelligence Agency, 2022).

2.2 Land Usage and Land Cover

Given the current global population growth scenario, global agricultural production must
be expanded further in the future years to satisfy growing demand and changing consump-
tion habits. This will necessitate either agriculture intensification or farmland expansion.
Having agricultural land cover and usage maps will aid in choosing specific crops to cul-
tivate and giving detailed information about the behavior of land through time Pichón
(1997). This brings us to the critical problem of land cover mapping and land utilization
dynamics, which is critical in crop management vs biodiversity balancing. Typically, the
collection of processes and necessary information varies per crop. Can generic land cover
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information regarding water supplies, soil qualities, and surface energy flow for a specific
region made available? or when and where to grow a certain crop? Gathering such broad
data can aid in land management to preserve biodiversity and economic return. Further-
more, it may give consistent and regional agricultural growth conditions based on crop
kind.

Forecasting parcel/region crop growth, for example, requires knowledge regarding par-
cel/region features such as crop growth, water supplies, soil parameters, and surface en-
ergy flow. Furthermore, land dynamics/properties react differently in different situations
for the same crop, therefore, estimating crop output across diverse agricultural land would
be advantageous.

Since the early 1990s, the number of satellites has increased dramatically, and the trend of a
steady increase in the number of satellites is expected to continue in the future; this brings
coverage of the planet Earth with images characterized by an ever-expanding spatial and
temporal resolution, and an expanding electromagnetic spectrum; leading to underpinning
information layers for a wide range of terrestrial environmental land cover and land use.

2.2.1 Monitoring

Remote sensing is an effective and reliable data source for classifying different land covers.
For example, optical remote sensing images have demonstrated that vegetation types can
be clearly distinguished by exploiting their spectral signature and the phenological stage
at the time of the image acquisition. This application of remote sensing technologies has a
clear impact to optimize production efficiency and to increase quality, but also to minimize
environmental impact and risk, which includes undesirable variability caused by the human
operator.

The key feature of Precision Agriculture comes from positioning systems, principally,
Global Navigation Satellite System (GNSS) that are major enableres of ‘precision’ (Gebbers
and Adamchuk, 2010). Precision Agriculture is most advanced amongst arable farmers,
particularly with large farms and field sizes in the main grain-growing areas where a busi-
ness model to maximize profitability is the main driver1. For example, Controlled Traffic
Farming (CTF) and auto-guiding systems are the most successful applications on arable
land showing clear benefits in nearly all cases (Vermeulen et al., 2010). For Variable Rate
Application (VRA) methods, such as optimizing fertilizer or pesticide use to areas of need,
the success varies greatly according to the specific factors of the application (Clark and
McGuckin, 1996).

The implementation of Precision Agriculture has become possible thanks to the develop-
ment of technologies (in particular remote sensing) combined with procedures that link
mapped variables to appropriate farming management actions such as cultivation, seeding,
fertilization, herbicide application, and harvesting by land cover usage mapping and its
dynamics.

To track agriculture land usage and cover, according to Shanmugapriya et al. (2019),
the following monitoring parameters are important: Vegetation; Crop Condition; Water
Status and Crop Nutrient; Crop-Land Evapo-Transpiration; Pest and Disease Infestation;
Atmospheric Dynamics; Biodiversity.

1https://www.agric.wa.gov.au/generating-more-profit-your-farm-business?nopaging=1

https://www.agric.wa.gov.au/generating-more-profit-your-farm-business?nopaging=1
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The remaining subsection discusses how the above-mentioned monitoring metrics are used
to track agricultural land use and cover describing the most recent work on the topic.

Vegetation. To determine the crop condition such as nutrient stress and water availabil-
ity for assessing the crop health and yield, physical parameters, indexes, of the crop system
are used; a multitude of indexes have been proposed in the recent years. The Normalized
Difference Vegetation Index (NDVI) (Rouse Jr et al., 1973) is the most commonly (Calvao
and Palmeirim, 2004; Wallace et al., 2004) used index to check the vegetation condition,
but soil background and atmospheric noise do hinder the calculation of the NDVI index.

An example of a vegetation index that limits the influence of the soil on remotely sensed
vegetation data is the Soil Adjusted Vegetation Index (SAVI) (Huete, 1988). Moreover
NDVI, Vegetation Condition Index (VCI), Greenness Index (GI), Leaf Area Index (LAI),
General Yield Unified Reference Index (GYURI), and Temperature Crop Index (TCI)
are used for mapping and monitoring drought and assessment of vegetation health and
productivity (Doraiswamy et al., 2005; Ferencz et al., 2004; Prasad et al., 2006).

Other indexes like the Advanced Very High-Resolution Radiometer (AVHRR) were used
to model corn yield and early drought warning in China (Seiler et al., 2000a) and Hadria
et al. (2006) used multiple satellites to calculate LAI aiming to estimate the distribution of
yield and irrigated wheat in semi-arid areas. Table 2.3 presents a list of vegetation indexes
used for agricultural land use monitoring. Appendix A.1 has the individual index formula.

Crop Condition. The health of plants can be determined by their bio-physical param-
eters. These can be measured through timely spectral information using remote sensing.
The physiological changes due to crop stress leads to change in the spectral reflection/emis-
sion characteristics (Menon, 2012). This observation of the stress factor during the crop
growth is a necessary part to know the probable loss of production.

Crop growth and its development is affected by multiple factors such as available soil
moisture, date of planting, air temperature, day length, and soil condition. For example,
if temperatures are too high at the time of corn pollination it will result in negatively corn
crop yields. For this reason, knowing the temperature at the time of corn pollination can
help forecasters better predict corn yields (Nellis et al., 2009).

The occurrence of drought also makes the land incapable for cultivation and renders inhos-
pitable environment for human beings, livestock population, biomass potential and plant
species (Siddiqui, 2003). Drought monitoring through satellite based information have been
used in recent years and the analysis of the NDVI and VCI indexes have been accepted
globally for identifying agricultural drought in different regions with varying ecological con-
ditions (Nicholson and Farrar, 1994; Seiler et al., 2000b; Kogan, 1995; Wang et al., 2001;
Anyamba et al., 2001; Ji and Peters, 2003).

Vegetation Phenology Metrics (VPMs) are used in characterizing agricultural vegetation
response to varying climatic and land management practices (Reed et al., 1994). The term
“vegetation phenology” refers to the description of periodic plant life cycle events that occur
throughout the course of the growing season. Remote sensing is commonly used to track
vegetation phenology using time series of vegetation indicators (Zeng et al., 2020).
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Table 2.3: Vegetation Index and their Applications in Agriculture.

Reference Application Index Sensor

Bausch and Khosla (2010) Plant nitrogen and
plant status CI QuickBird

Snyder et al. (2005) Winter oilseed rape
yield prediction ELAI Groundbased

(CIMEL 33 radiometer)

Chang et al. (2003) Corn yield
predictions GNDVI Airborne Camera

Han et al. (2012)
Corn canopy and
nitrogen content
prediction

MSAVI2 Terra ASTER

Cheng et al. (2013)
Diurnal orchard and
canopy water
detection

NDII Airborne MASTER

Zarco-Tejada et al. (2003) Plant water
content estimation NDWI MODIS

Hatfield and Prueger (2010) Leaf chlorophyll
content estimation NPCI Exotech and CropScan

Mogensen et al. (1996)
Drought of
field grown and
oilseed rape

RRI LI-90s and LI-220S

Fensholt and Sandholt (2003) Canopy water
detection SIWSI MODIS

Jr et al. (2013) Crop nitrogen
detection TGI Landsat TM
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Water Status and Crop Nutrient. Remote sensing and GIS play a key role in nutrient
and water stress management thus helping in reducing the cost of cultivation as well as
increasing the fertilizer use efficiency for the crops. The effective use of water in semi-arid
and arid regions is also possible through the application of precision farming technologies.
For example, Das and Singh (1989) stated that drip irrigation coupled with information
from remotely sensed data such as canopy air temperature difference can be used to increase
the water use efficiency by reducing the runoff and percolation losses. Further, they stated
that higher spectral reflection was observed in water stressed crops compared to non-
stressed ones. Adding to that, vegetation indexes like NDVI, Ratio Vegetation Index
(RVI), Perpendicular Vegetation Index (PVI) and Greenness Index (GI) were found to be
lower for stressed and higher for non-stressed crops. Furthermore, the availability of micro
wave remote sensing has made possible to estimate the presence of soil moisture in the
field (Bandara, 2003).

Fang et al. (2008) found the aspect of nitrogen leaching differently depending upon the soil
properties such as soil organic matter content (Casa et al., 2011), water content (Delin and
Berglund, 2005) and yield zones (Blackmore et al., 2003; Bramley, 2009) under wet tropical
and subtropical climates. This leads to failure of traditional equal spread of fertilizer
where some sites are over-fertilized and others remain under-fertilized (Bredemeier and
Schmidhalter, 2005).

Crop/Land Evapo-Transpiration. Drought is a situation which can be defined as “a
long-term average condition of the balance between precipitation and evapo-transpiration
in a particular area, which also depends on the timely onset of monsoon as well as its
potency” (Wilhite and Glantz, 1985). The vegetation indexes such as Crop Water Stress
Index (CWSI) (Jackson et al., 1981), Surface Temperature (ST) (Jackson, 1986), Water
Deficit Index (WDI) (Moran et al., 1994), and Stress Index (SI) (Vidal et al., 1994) provide
the relationship between water stress and thermal characteristics of the plants. Correlating
land surface temperatures with the vegetation indexes can result into detecting agricultural
drought of a region and provide early warning systems to the farmers (Sruthi and Aslam,
2015). Estimation of evapo-transpiration is critical for assessing the irrigation scheduling,
water and energy balance computations and determining CWSI for climatological, and
meteorological purposes (Veysi et al., 2017).

Batra et al. (2006) defined the Evaporative Fraction (EF), as the ratio of ET and available
radiant energy, by successfully using AVHRR and MODIS data. Generally, Evaporative
Fraction is a ratio of latent heat flux to the sum of latent and sensible heat fluxes (Nichols
and Cuenca, 1993). EF is used to characterize the energy partition over land surfaces.
Most of the approaches use simple direct correlations between remote sensed digital data
and evapo-transpiration values (Dutta et al., 2015; Neale et al., 2005).

Pest and Disease Infestation. The effect of biotic and abiotic factors over crops can
be easily monitored by remote sensing. Franklin (2001) concluded that relating differences
in spectral responses to chlorosis, yellowing of leaves and foliage reduction over a given
time period, assuming that these differences can be correlated while monitoring insect
defoliation, can help in the classification and interpretation of insects. Also, healthy and
unhealthy vegetation cover over different types of vegetation was evaluated using Landsat
imagery (Williams et al., 1979).
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De Beurs and Townsend (2008) stated that “MODIS data represent an important tool for
insect damaged defoliation and determination of vegetation indexes in plot scale”. Ac-
cording to Riedell et al. (2005), remote sensing is an effective and inexpensive method
to identify pest infested and diseased plants; further, they studied detection of specific
insect pests and how to differentiate insects from disease damages over oat crops. They
also suggested that canopy characteristics and spectral reflection differences between insect
infestation and disease infection damages can be measured in oat crop canopies by remote
sensing. Similarly, Mirik et al. (2013) suggested that wheat streak mosaic disease in wheat
crops can be accurately detected and quantified using Landsat 5 TM images.

Atmospheric Dynamics. Meteorological satellites are used for forecasting weather con-
ditions. They are designed to measure the atmospheric temperature, wind, moisture and
cloud cover. The variations in the canopy temperature could indicate the areas of adequate
and inadequate water. The Canopy Temperature Variability (CTV) is used in irrigation
management and Canopy Air Temperature Difference (CATD) is used as an indicator
of crop water stress (Menon, 2012). Monitoring NDVI generated from NOAA-AVHRR
(satellite) data can also help in assessing of district level drought (Lee et al., 2010).

Biodiversity. Here, the term biodiversity refers to the variety of species and certain
characteristics of species, in particular their distribution and number within a given area.
We also use biodiversity more broadly to mean species assemblages and ecological com-
munities (i.e. groups of interacting and interdependent species) (Gaston, 2000). There are
two general approaches to the use of remote sensing for biodiversity (Turner et al., 2003).
One is the direct remote sensing of individual organisms, species assemblages, or ecological
communities from airborne or satellite sensors. The other approach is the indirect remote
sensing of biodiversity through reliance on environmental parameters as proxies. For ex-
ample, many species are restricted to discrete habitats, such as a woodland, grassland, or
sea-grass beds that can be clearly identified remotely.

In general, biodiversity is monitored using passive, like visible, near and middle-infrared,
and thermal-infrared sensors; Table 2.4 provides examples of ecological variables and sen-
sors useful for quantifying and modeling biodiversity. Source data (NASA Landsat Science,
2013; NASA Landsat Missions, 2022; NASA Earth Observatory, 2022; NASA Terra, The
EOS Flagship, 2022; Johnson and Green, 1995; NASA EarthData OceanColor Web, 2022;
NASA EarthData NASA Distributed Active Archive Center, 2022; Seiler et al., 2000b;
NASA Modis, 2022).
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Table 2.4: Examples of Ecological Variables and Data Sources useful for Quantifying and
Modeling Biodiversity.

Approach Ecological
Variable Description Sensor

Direct
Species
Composition

Used for measuring canopy
unique spectral signatures

HYPERION, ASTER,
IKONOS, Quickbird

Land
Cover

Can discriminate different land
surfaces at various resolutions;
land cover classification

TM/ETM, ALI,
MODIS, ASTER,
IKONOS, Quickbird

Indirect Chlorophy II

Assessing presence of
vegetation and relative
greenness measures;
calculating productivity
and plant health

SeaWIFS, HYPERION,
TM/ETM, ALI,
MODIS, ASTER,
IKONOS, Quickbird

Ocean color
and circulation

Circulation patterns can be
inferred from changes in
ocean color, sea surface
height, and ocean temperature

TOPEX/Poseidon,
AVHRR, MODIS,
SeaWIFS

Climate
Rainfall

Detection of precipitation
and surface moisture.
Used for drought management

CERES, AMSR-E

Phenology

Leaf, turnover, flowering
cycles can be inferred.
identification of certain
phenological species

TM/ETM, ALI,
HYPERION, ASTER,
IKONOS, Quickbird

Habitat Topography Microhabitats change detection
due to altitude change ASTER, IKONOS
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2.2.2 Case Studies

To get a better understanding of the Land Usage and Land Cover maps, next we present
five case studies: Willamette Basin — Presents the ecological and economic repercussions
of different land-use patterns; Portugal — Presents the innovative knowledge map that
aids understanding LUC dynamics within Portuguese continental area from 1990 to 2012;
Gujarat — Presents MODIS data time-series over the crop year 2012/13 for deriving a
crop calendar; China — Presents long-term land cover dynamics map from 1986 to 2016
of Northeast China using multi-temporal Landsat images; Iran — Presents agricultural
mapping and land-use patterns of Mashhad basin area, for three crop years 2013/2014,
2014/2015, and 2015/2016;

1 Willamette Basin. Large-scale natural environment changes to human-dominated
environments have led to significant losses in form biodiversity as the human population and
economy grow. It is a critical challenge to conserve biodiversity while meeting expanding
human demands.

For investigating the ecological and economic repercussions of different land-use patterns,
Polasky et al. (2008) created a spatially explicit landscape level model. For terrestrial
vertebrate species, the spatially explicit biological model includes habitat preferences, area
needs, and dispersion abilities between habitat regions to forecast the likely number of
species that will survive on the landscape. To anticipate economic returns for a variety
of prospective land uses, the spatially explicit economic model includes location attributes
and location.

They used a raster grid map of 10,372 parcels from the 1990 land cover Basin map to seek
effective land-use patterns that optimize biodiversity conservation objectives for certain
levels of economic benefits and vice versa. They discovered land-use patterns that support
high levels of biodiversity while still providing economic benefits. Figure 2.3 shows the
major biophysical regions of the Coast Mountain Range (Willamette Basin, Oregon, USA).

Figure 2.3: Biophysical regions of Willamette Basin, Oregon, USA.
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Further, they created a database where each crop species is indexed with its market value.
They were able to create this database by observing/using 1980 to 2003 rural-residential
land-use value in the Willamette Basin. With this database, they were able to find an
efficiency frontier for terrestrial vertebrate conservation and economic returns in the Basin
area, Figure 2.4. Where moving from point ‘A’ to point ‘H’ increases the biological score
and at the same time decreases the economic return; point ‘I’ represent different estimates
for the biological and economic scores for the 1990 land-use pattern.

Increasing the biological score to its maximum at point ‘H’ reduces economic returns to
zero. Because certain species need agricultural land as a habitat, some land is kept in
agriculture, although it is very unproductive, resulting in economic losses. A tiny region
of high-value rural-residential land use on the landscape offsets these economic losses at
point ‘H’. Economic returns increase to $27.6 billion at point ‘A’, but the number of species
that can be supported on the terrain drops to 229.3. Approximately 27 of the 257 species
modeled would not be predicted to survive in the Basin if land-use practices for the land-
scape at point ‘A’ were followed exclusively.

Figure 2.4: Willamette Basin Map Use - Crop Species vs Economic Returns (Polasky et al.,
2008).

In a nutshell, the authors present biological and economic models that leverage land-use and
land-cover patterns to investigate the combined effects of land-use decisions at a regional
landscape scale. The biological model assesses how well a group of species can survive on
a terrain given the land cover pattern. For a particular land-use pattern, the economic
model estimates the net present value of marketable commodities and services from the
landscape.

2 Portugal. The Portuguese territory has experienced relevant Land Use and Land Cover
Changes (LUCC) in recent decades. According to Meneses et al. (2018), the revision of
existing Land Use and Cover (LUC) datasets allowed to produce new datasets for better
understanding of LUCC and LUC over time. They further studied by analyzing the most
recent LUC datasets, which cover the entirety of the Portuguese continental area from 1990
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to 2012 (see Figure 2.5) and present innovative knowledge that aids understanding LUC
dynamics within that period (see Figure 2.6).

Figure 2.5: Land Use and Land Cover in Portugal (Meneses et al., 2018).

The Mainland Portugal, with an are of 88,962.50 km2, is divided into five regions: North
(23.8% of the area), Centre (31.6%), Lisbon (3.6%), Alentejo (35.4%) and Algarve (5.6%).
To determine the LUCC and Coverage of the territory cartography, Meneses et al. (2018)
used four years (1990, 2000, 2006 and 2012) maps2 and predicted future trends using a
CA-Markov model. Figure 2.6 shows a comprehensive examination of relative LUCC per
NUTS II unit that shows diverse geographical and temporal patterns. Here, NUTS II
unit represents the basic regions for the application of regional policy unit (Camagni and
Capello, 2017).

2These maps are available on the European Environment Agency (EEA) and Directorate General of
Training (DGT) websites.
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Figure 2.6: Main LUC dynamics in mainland Portugal (Meneses et al., 2018).

For example, around 1990 and 2000, a significant increase in road and rail networks and
spaces associated with them were witnessed in the North and Lisbon reflecting, in part, new
road infrastructure investments (Estradas de Portugal, 2015) - meanwhile the substantial
rise in this LUC type were noticed in the Centre, Alentejo, and Algarve between 2000 and
2006.

In the first period, between 1990 and 2000, the area of industrial or commercial units rose
in every NUTS II unit, although the gains were more significant in the north, particularly
during the last term. The overall trend of the diminishing area inhabited by this LUC type
found in the other NUTS II units was reversed in these regions.

During the first period, the artificial surfaces exhibited a 20.15% rise in the discontinuous
urban fabric, with a significant drop in that growth in subsequent periods. Green urban
spaces, on the other hand, have expanded in the Center in recent years (11.6%).

Changes in specific agricultural LUC types, such as non-irrigated arable land and irri-
gated land, were also detected. The 1990s saw an expansion in the permanently irrigated
territory, particularly in Alentejo, where the completion of the Alqueva dam increased wa-
ter availability (quantity) and permitted irrigation systems to be installed. This scenario
demonstrates the impact of anthropogenic interventions on the landscape, as well as their
contributions to high LUCC over a short time.
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Except for burnt (ID 334) and thinly vegetated regions (ID 333) in Alentejo, the relative
changes in the classes included in this LUC type were minimal in most cases (1%). During
the period 2000-2006, the class of burnt regions grew by almost 20% in the same NUTS
II unit, while it declined during the other periods. Furthermore, there was an increase in
sparsely vegetated regions, which might be due to natural vegetation regeneration in places
impacted by forest fires or abandoned agricultural land. It’s crucial to note, nevertheless,
that the lower relative LUCC values reflect several hectares due to the size of each NUTS
II unit.

3 Gujarat. Cropping intensity, or the number of crops (single, double, and triple) each
year in a unit farmland area, is a measure of agricultural intensification. For appropri-
ate agricultural management, information regarding the crop calendar (i.e., the number
of crops in a parcel of land, their planting and harvesting dates, and the date of peak
vegetative stage) is required.

Patel and Oza (2014) presented MODIS data series of one agricultural year over Gujarat
state (India). They used NDVI time-series over the crop year 2012/13 for deriving a crop
calendar. Stating that such analysis is very useful for analysing dynamics of kharif and
rabi crops. Kharif, June to October, and Rabi, November to March are the two different
seasonal crops in northern India (Bisht et al., 2014).

The idea was to monitor the land use of agriculture over a year (see Figures 2.7, 2.8,
and 2.9) to determine some key elements like the number of crops per year and their
planting, peak/saturation, and harvesting dates over the crop growth cycle. The analysis
based on values of NDVI at regular time intervals provides useful information about various
crop growth stages and the performance of crops in a season, being also possible to extract
the number of crop cycles per year and their crop calendar.

Figure 2.7: Spatial distribution of crops - number of crops (Patel and Oza, 2014).
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Figure 2.8: Spatial distribution of crops - single crop (Patel and Oza, 2014).

Figure 2.9: Spatial distribution of crops - double crop (Patel and Oza, 2014).

4 China. According to Zhao et al. (2019), Northeast China has a large grain-producing
region, an ecologically significant forest region, and the country’s greatest historic indus-
trial base, all of which are experiencing economic downturn. As a result, long-term land
cover maps are in great demand and accurate in many regional applications. Using multi-
temporal Landsat images, the authors created a collection of continuous yearly land cover
mapping products with a 30m resolution.

They also studied long-term land cover dynamics from 1986 to 2016 of Northeast China
using multi-temporal Landsat images. The land cover map series of the studied area during
the last three decades is found in Figure 2.10. They sampled 2875 locations distributed
across Northeast China for training a spectral indices based classification model to detect
the change in land cover, and model was able to achieve an accuracy of 88.38% and 80.69%
for the year 2015 and 2000 over independent validation dataset, respectively.
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5 Iran. Increased irrigated land in semi-arid countries of Asia and Africa, driven by the
need for additional food production, is placing strain on already stressed available water
supplies. To cope with and control this scenario, basin-level monitoring of the spatial
and temporal dynamics of irrigated area land use is required to assure optimal water
allocation (Pareeth et al., 2019).

Pareeth et al. (2019) created a LULC map at 15m spatial resolution with nine classes for
the crop year 2015/2016 using Landsat 8 for the Mashhad basin area, which covers an
area of 16,750 km2 in northeast Iran (refer Figure 2.11). In addition, for three crop years
2013/2014, 2014/2015, and 2015/2016 five irrigated land use categories were extracted.
For mapping agricultural land-use patterns over this area, the authors adopted a random
forest-based hierarchical technique. They developed their model using the three crop years
cycles, obtaining an accuracy of 87.20% and an estimated kappa of 0.85% when paired
with a field survey. For the cropping years 2013/2014, 2014/2015, and 2015/2016, the total
irrigated area was expected to be 1796.16 km2, 1581.7 km2, and 1578.26 km2, respectively.

Figure 2.11: Mashhad basin in the northeast of Iran (Pareeth et al., 2019).
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2.3 Image Scene Classification

In remote sensing, classifying parts of the high-resolution optical satellite images into mor-
phological categories (e.g., land, water, cloud, etc.) is known as scene classification (Mo-
hajerani et al., 2018). Recently, the challenge of optical satellite image scene classification
has been the focal point of many researchers. Scene classification plays a key role in urban
and regional planning (Hashem and Balakrishnan, 2015; Rahman et al., 2012), environ-
mental vulnerability and impact assessment (Liou et al., 2017; Nguyen and Liou, 2019)
and natural disasters and hazard monitoring (Dao and Liou, 2015), for example. Further,
given the current population growth and industrial expansion needs, assessment of land-use
dynamics is certainly required for the well-being of individuals.

In prior researches, several methods like look-up tables from big databases, atmospheric
corrected images, sensor-specific thresholds rules (Frantz et al., 2018; Main-Knorn et al.,
2018; Zhu and Woodcock, 2012) or time-series analysis (Zhu and Woodcock, 2014; Hagolle
et al., 2010; Petrucci et al., 2015) were used for automated satellite image classification.
Moreover, previous researches focused mainly on classifying individual pixels or objects
through image features (Moustakidis et al., 2011; Munoz-Mari et al., 2012) such as color
histograms, the gist descriptor (Oliva and Torralba, 2001) and local binary patterns (Ojala
et al., 2002) enabling the detection of micro-structures (like points, lines, corners, edges
or plain/flat areas). These image features have proved to be effective in image classifica-
tion to distinguish objects like roads, soil, and water, but can not provide morphological
information such as clouds, vegetation, shadows or urban areas (Hu et al., 2015a).

Currently, for image scene classification, the majority of open-access datasets are either
limited in data diversity, size or the number of classes. For example, the publicly available
dataset UC Merced (Yang and Newsam, 2010) consists of 100 (256 x 256 pixels) images
for 21 classes, the Aerial Image Dataset (AID) (Xia et al., 2017) consists of 10,000 images
within 30 aerial scene types, the Brazilian Coffee Scene Dataset (Penatti et al., 2015)
is composed of 950 (600 x 600 pixels) aerial scene images uniformly distributed over 50
classes, EuroSAT (Helber et al., 2019) comprises of 27,000 (64 x 64 pixels) georeferenced
and labeled image patches, PatternNet (Zhou et al., 2018) contains 38 classes with 800
images per class and BigEarthNet (Sumbul et al., 2019) contains of 590,326 Sentinel-2
image patches acquired between June 2017 and May 2018 over the 10 countries.

For image scene classification, there are mainly two types of classification, Object-based
classification (OBC) and Pixel-based classification (PBC) (Kim et al., 2011).

Pixel-based classification examines multispectral data to assign a pixel to a class based on
spectral similarities between the classes (Sekertekin et al., 2017). Maximum Likelihood
Categorization (Dean and Smith, 2003) and Iterative Self-Organizing Data Analysis Tech-
nique (Vatsavai et al., 2011) are two of the most widely used approaches for pixel-based
classification (Zerrouki and Bouchaffra, 2014; Xiong et al., 2017). However, all of these
techniques have one limitation in common: they don’t make use of spatial and textural
information (Myint et al., 2011).

Unlike single-pixel classification, object-based techniques work with objects made up of
multiple homogenous pixels that have been segmented into meaningful groups (Blaschke
et al., 2004). Image objects provide shape features essential for categorization in addi-
tion to spectral information used in pixel-based classification algorithms (Zhang and Yi,
2012). The problem of under-segmentation and over-segmentation, however, is a possible
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drawback of object-based classification (Liu and Xia, 2010).

The remainder of this section will attempt to cover recent work in both object-based and
pixel-based classification approaches.

2.3.1 Object-based classification

The generalization capacity of the trained model is often increased if the related scene
information is taken into account throughout the scene classification learning process (Zou
et al., 2015). The core premise of object-based categorization is to leverage key infor-
mation (shape, texture, and contextual information) found in image objects and internal
connections (Wang et al., 2004). This technique is also in accordance with the viewpoint of
geographical or landscape ecology, which says that it is desirable to work on a meaningful
item that represents the real spatial pattern rather than a uniform pixels (Blaschke and
Strobl, 2001). The object-based procedures are composed of two steps: segmentation and
classification (Darwish et al., 2003). The main goal of the segmentation step is to divide the
whole image into a series of closed objects that correspond to the spatial pattern. Then, a
knowledge base that defines the properties of output object types guides the classification
process (Haralick and Shapiro, 1992; Mather and Koch, 2011).

Table 2.5 summarize the most frequent classifiers employed using the object-based tech-
nique (Phiri et al., 2020). The table primarily describes the reference, classification ap-
plication and, finally, the classifier that was applied. Here, RF: Random Forest, SVM:
Support Vector Machine, ANN: Artificial Neural Network, KNN: k-Nearest Neighbors.

2.3.2 Pixel-based classification

The pixel has long been the fundamental unit of image analysis, and pixel-based land
cover/use classification is one of the most widely used classification methods for remote
sensing data (Rujoiu-Mare et al., 2017). In this approach, without taking into account the
geographical context of the pixel, pixel’s characteristics and spectral features are used to
identify and analyze the changes (Collins and Woodcock, 1996; Hussain et al., 2013).

Researchers also took a closer look at pixel-based techniques in classification, highlighting
their features, benefits, and drawbacks by applying statistical operators to evaluate each
pixel (Coppin et al., 2004; Lu et al., 2004; İlsever and Ünsalan, 2012). Apart from clas-
sification, pixel-based techniques can also be used for change detection (Gamba et al.,
2006). Change detection is described as “the process of recognizing variations in the state
of an item or phenomena by watching it at various intervals,” according to Singh (1989).
For example, deforestation, damage assessment, disaster monitoring, urban development,
planning, and land management all benefit from land-cover and land-use change data de-
tection.

Table 2.6 summarize the most frequent classifiers employed using the pixel-based tech-
nique (Phiri et al., 2020). The table primarily describes the reference, classification ap-
plication and, finally, the classifier that was applied. Here, RF: Random Forest, CCF:
Canonical Correlation Forest, MESMA: Multiple Endmember Spectral Mixture Analysis,
SVM: Support Vector Machine, ANN: Artificial Neural Network, MLC: Maximum Likeli-
hood.
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Table 2.5: Object-based LULC Classification Survey.

Reference Classification
Application Classifier

Dong et al. (2020) Cropland RF

Csillik and Belgiu (2017) Wheat, Rice Ruleset

Delalay et al. (2019) Settlement
Industry Decision Tree

Derksen et al. (2018) Crops & Road Contextual

Glinskis and Gutiérrez-Vélez (2019) Bare-soil & Forest ANN

Heryadi and Miranda (2019) Forest & Water-body KNN

Laurent et al. (2014) Brown & Green
Leaves Bayesian

Mongus and Žalik (2018) Agriculture & Forest Naive Bayes

Popescu et al. (2016) Urban & Agriculture Latent Dirichlet

Zheng et al. (2018) Roads & Bareland SVM

Table 2.6: Pixel-based LULC Classification Survey.

Reference Classification Application Classifier

Clark (2017) Bareland and Built-up area RF

Colkesen and Kavzoglu (2017) Forest, Soil, and Corn CCF

Degerickx et al. (2019) Pavement, Soil, and Tree MESMA

Denize et al. (2018) Winter crop and Grassland SVM

Forkuor et al. (2018) Agriculture and Urban area ANN

Gutierres et al. (2011) Onion, Sunflower, and Sugar beet RF

Miranda et al. (2018) Water, Forest, and Urban Bareland MLC
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Table 2.7 shows a survey of various pixel-based change detection approaches (Hussain et al.,
2013). The table primarily describes the reference, changed detecting application and,
finally, the technique that was applied. Here, for example, Principal Component Analysis
(PCA), Multi Date Direct Comparison (MDDC), Decision Tree (DT), GIS Integration,
Fuzzy Change, and Multi-Sensor Data Fusion (MSDF), were used to detect changes in
land use and land cover.

Table 2.7: Pixel-based LULC Change Detection Survey.

Reference Change Detection
Application Approach

Collins and Woodcock (1996) Forest Ecosystems Image Differencing

Howarth and Wickware (1981) Environmental Image Rationing

Ludeke et al. (1990) Tropical Deforestation Regression Analysis

Wilson and Sader (2002) Forest Harvest Type Vegetation Index
Differencing

Bayarjargal et al. (2006) Disaster Assessment Change Vector
Analysis

Deng et al. (2008) Land Use PCA

Jin and Sader (2005) Forest Disturbance Tasselled Cap
Transformation

Tomowski et al. (2011) Urban Disaster Texture Analysis

Richards and Jia (2006) Urban Sprawl Post Classication

Lunetta et al. (2006) Land Cover MDDC

Woodcock et al. (2001) Forest Change Articial Neural
Network

Huang et al. (2008) Forest Cover Support Vector
Machine

Im and Jensen (2005) Land Cover Decision Tree

Pijanowski et al. (2002) Land Use GIS Integration

Vila and Barbosa (2010) Post Fire
Vegetation Regrowth

Spectral Mixture
Analysis

Fisher et al. (2006) Landscape Fuzzy Change

Deng et al. (2008) Land Use MSDF
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2.3.3 Rule-based classification algorithm

Rule-based classification algorithm is applicable to both pixel and object based classifi-
cation (Pradhan et al., 2016). Sen2Cor is a rule-based pixel classification method, this
justifies our focus on Rule-based classification in this section.

While capturing satellite images, the atmosphere influences the spatial and spectral dis-
tribution of the electromagnetic radiation from the Sun before it reaches Earth’s surface.
As a result, the reflected energy recorded by a satellite sensor is affected and attenuated,
requiring an atmospheric correction.

Sen2Cor is an algorithm whose pivotal purpose is to correct single-date Sentinel-2 Level-
1C products from the effects of the atmosphere and deliver a Level-2A surface reflectance
product. Level-2A (L2A) output consists of a Scene Classification (SCL) image with eleven
classes together with Quality Indicators for cloud and snow probabilities, Aerosol Optical
Thickness (AOT) and Water Vapour (WV) maps and the surface (or BOA) reflectance
images at different spatial resolutions (60m, 20m, and 10m). Table 2.8 presents the eleven
classes with their corresponding color representation in SCL image. Each particular clas-
sification process (European Space Agency, 2020) is discussed next and Appendix A.1
presents different reflectance ratio used next.

Table 2.8: List of Sen2Cor Scene Classification Classes and Corresponding Colors (Euro-
pean Space Agency, 2020).

No. Class Color Name Color

0 No Data (Missing data) black
1 Saturated or defective pixel red
2 Dark features / Shadows very dark gray
3 Cloud shadows dark brown
4 Vegetation green
5 Bare soils / deserts dark yellow
6 Water (dark and bright) blue
7 Cloud low probability dark gray
8 Cloud medium probability gray
9 Cloud high probability white

10 Thin cirrus very bright blue
11 Snow or ice very bright pink

Cloud and Snow. Figure 2.12 describes the Sen2Cor Cloud/Snow detection algorithm:
it performs six tests and the result of each pixel is a cloud probability ranging from 0 for
high confidence clear sky to 1 for high confidence cloudy sky. After each step, the cloud
probability of a potentially cloudy pixel is updated by multiplying the current pixel cloud
probability by the result of the test. The snow detection follows the same procedure with
five different tests resulting in 0 for high confidence clear, no snow to 1 for high confidence
snowy pixel.
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Figure 2.12: Sen2cor Cloud and Snow mask algorithm.

Vegetation. Two filters, namely the NDV I (Rouse et al., 1974) and a reflectance ratio
(R), are used to identify vegetation pixels. Thresholds of T1 = 0.40 and T2 = 2.50 are
set for NDV I and R, respectively. If the NDV I and R values exceed the corresponding
thresholds, the pixel is classified as vegetation in the classification map.

Soil and Water. Bare soil pixels are detected when their reflectance ratio R1 falls below
a threshold T = 0.55 or exceeds a threshold T = 4.0 the pixel is classified as bright water.

Cirrus Cloud. Under daytime viewing conditions, the presence of thin cirrus cloud in
the upper troposphere is detected by Sentinel-2 band 10 (B10) reflectance threshold. In the
first step, all B10 pixels with a value between T = 0.012 and T = 0.035 are considered
as thin cirrus; in the second step, after generating a probabilistic cloud mask, if the cloud
probability is below or equal to 0.35, the pixel is classified also as a thin cirrus cloud.

Cloud Shadow. The cloud shadow mask is constructed using a “geometrically proba-
ble” cloud shadow, derived from the final cloud mask using sun position and cloud height
distribution and a “radiometrically probable” cloud shadow, derived from a neural net-
work (Kohonen, 1982).

2.4 Summary

Over the last five decades, satellite remote sensing has evolved into one of the most powerful
instruments for scanning the Earth on local, regional, and global sizes. Because this space-
based study is non-destructive, it enables quick monitoring of the ambient atmosphere, its
underlying surface, and the mixed layer of the ocean. This chapter goes into detail on
Earth observation, the Sentinel mission, especially Sentinel-2, land usage and land cover
(LULC), and how LULC may be monitored. Following that, it is detailed what image
scene classification is, as well as the various methodologies accessible and how Sen2Cor
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performs image scene classification. Furthermore, a comprehensive examination of existing
approaches for LULC and image scene classification is offered, together with an assessment
of their operational strengths and weaknesses.



Chapter 3

Active Learning

“Having N labeled training points from a set of classes (C) described by a set of
attributes (A) and T testing points, is it possible to use fewer labeled samples
(S << N) during the training phase and achieve the same accuracy over the test set?”

— Prof. Teresa Gonçalves

Active learning is a supervised learning method in which the learner selects labeled in-
stances using a set of rules aimed at reducing labeling complexity (Angluin, 1988; Muslea
et al., 2006; Leng et al., 2013; Karlos et al., 2021). Here, according to the definition given
by Settles (2009), the number of label requests required and adequate to understand the
target notion is referred to as labeling complexity. Note that, this complexity is not related
to the concepts of Minimal Description length and Kolmogorov complexity (Vitányi and
Li, 2000), where more labeling requests give the same complexity. An active learner can
use an oracle to pose questions about unlabeled data. In many current machine learning
contexts, active learning is well-motivated when unlabeled data is available or inexpensive
to gather, but labeling is difficult, time-consuming, or expensive to obtain.

Several classification applications employing unstructured data, such as speech recognition,
text and web page categorization, image and audio retrieval and filtering, require excellent
classification methods due to the high cost of labeling and the vast volume of available but
unlabeled data (Settles, 2009). In these situations, efficiency refers to a balance of high
accuracy and comprehensiveness with low labeling work. For such cases, active learning had
been an effective learning environment in which learning approaches aiming at a desirable
trade-off can be developed. For example:

• Accurate speech sound categorization takes a long time and needs the skills of lin-
guists with extensive experience. According to Zhu (2005), annotating words takes
ten times the time the audio (e.g., one minute of speech takes ten minutes to label),
but annotating phonemes takes 400 times the time (e.g., almost seven hours).

• Learning to categorize records (such as articles or web pages) or any other sort of
media (such as picture, music, and video files) necessitates assigning precise labels
to each document or media file, such as ‘relevant’ or ‘not relevant’. Annotating
thousands of these instances can be time-consuming and sometimes repetitive.

39



40 CHAPTER 3. ACTIVE LEARNING

This chapter provides an overview of active learning, covering several scenarios, a query
strategy structure, and a comprehensive literature analysis. A review of the empirical and
theoretical evidence for efficient active learning is presented, as well as a description of
problem setting modifications and key challenges, including a review of application of ac-
tive learning in domain-specific problems. To be specific, Section 3.1 delves into different
active learning sampling method, such as membership, stream, and pool; Section 3.2 delves
into different query selection methods, such as committee, expected error reduction, and
uncertainty; Section 3.3 delves into different baseline parameters for active learning exper-
iments; and finally, Section 3.4 delves into the literature on active learning and domain
application.

3.1 Sampling Method

The largest proportion of active learning research is devoted to converting the human
notion of questioning into programmable approaches (Tong and Koller, 2001). When these
programmable techniques are adjusted to the peculiarities of the dataset in consideration,
the resulting strategy can produce excellent results in practice. However, there are a variety
of theories that underpin various ‘human-asked’ queries, and no single concept is likely to
meet the criteria for all data collections (Donmez and Carbonell, 2008a). Properly selecting
methods for each given data collection is thus a crucial practical challenge (Huang et al.,
2010). The following are the three main sampling methods to active learning algorithms.
The active learning algorithm is also referred as learner below.

• Membership-based sampling: The active learner requests the expert to classify the
situations the learning system creates. For each instance, the learner assigns values to
the characteristics and observes the response. This allows the learner the freedom to
frame the data instance that will be most useful to him or her at the time (Angluin,
1988).

• Stream-based sampling: The active learner is supplied with a stream of unlabeled
cases from which it chooses one for the expert to label. This may be thought of as
active learning in an online pool (Freund and Schapire, 1997a).

• Pool-based sampling: the learner is given a pool of unlabeled cases that are dispersed
independently and identically. At each step, the active learner selects an unlabeled
instance to request a label from the expert using a querying function (Lewis and
Gale, 1994a).

3.1.1 Membership-based sampling

Learning through membership queries also known as query synthesis was among the first ac-
tive learning contexts to be explored. Six separate kind of synthesized queries were defined
in this context (Angluin, 1988): membership, equivalence, subset, superset, disjointness,
and exhaustiveness queries. Except for the membership category, which produces a simple
binary (1/0), the answer to each of these queries consists beside the binary response, a
counterargument in the event of a negative response. Figure 3.1 illustrates the process.

The query synthesis idea has been applied to regression learning problems, such as learning
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Figure 3.1: Membership-based sampling active learning life cycle (Settles, 2009).

to predict the exact position of a robot hand supplied with the angular position of its robot
arm as parameters (Cohn et al., 1996a).

While query synthesis is viable for many applications, identifying such arbitrary queries
may be challenging in the case of a human annotator. For example, in Freund et al.
(1997)’s work, membership query learning was used with human annotators to train a
neural network to classify handwritten characters. They ran into an impasse: some of the
learner’s inquiry pictures were devoid of recognized letters, comprising unnatural composite
symbols with no natural semantic information. Likewise, membership queries for natural
language processing tasks may yield jibber-jabber text or audio streams. To address these
constraints, the stream-based and pool-based models (described further in this section)
were constructed.

The membership inquiry situation is described in a new and promising real-world applica-
tion by King et al. (2004a, 2009). They have a ‘cyborg biologist’ who can conduct a series of
unsupervised biomedical investigations on the yeast variant (‘Saccharomyces cerevisiae’)
to discover metabolic pathways. Examples include a combination of chemical solutions
used to create a starter culture and a specific yeast variant. Within the starter culture, if
the yeast variant advances, it is labeled. All experiments are conducted autonomously by
a research lab bot using an active learning method based on inductive logic programming.
When compared to naively executing the least costly experiment, this active strategy saves
three times the amount of money on supplies and a hundred times the amount of money
when compared to randomly created tests. This approach may be a potential method for
automated scientific discovery in disciplines where labels are produced by experimentation
instead of human experts.

3.1.2 Stream-based sampling

Stream-based sampling can be used instead of membership-based sampling (Helmbold and
Panizza, 1997; Atlas et al., 1989). The key presumption is that obtaining an unlabeled
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sample is inexpensive or minimal; consequently, it can be selected from the real distribution
first, and the learner can then choose rather or not to demand its annotation (Zhu et al.,
2007, 2010). Figure 3.2 illustrates the process.

Figure 3.2: Stream-based sampling active learning life cycle (Settles, 2009).

In stream-based or sequential active learning, the learner must determine whether to query
or ignore a single unlabeled sample, retrieved from the source of data one at a time (Das-
gupta et al., 2009). If the data distribution is homogeneous, stream-based sampling may
behave similarly to membership query learning (Chu et al., 2011). Even if the distribution
is non-uniform and even more importantly undefined, queries will always be acceptable
since they are based on a real underlying distribution.

Label efficient learning refers to the trade-off between the cost of asking a query and
the cost of mistakes in a stream-based context (Cesa-Bianchi et al., 2006). Cesa-Bianchi
et al. (2005) introducted a minimum-variance approach to guide instance labeling from
data streams using an ensemble of classifiers. When the number of the acceptable query
is fixed, they came up with matching upper and lower bounds for the greatest possible
confidence interval for the best possible ‘label efficient learning’.

There are several approaches to structure a query instance (Dagan and Engelson, 1995):
‘informativeness measure’ evaluates samples’ informativeness and creates a biased random
selection with more informative instances being chosen more frequently; another approach
is to compute an explicit region of uncertainty, the section of the data space that is still
unclear to the classifier and query this examples that fall inside it. Straightforwardly,
region selection is accomplished by establishing a minimal boundary on an informative-
ness measure that defines the region; the instances exceeding this boundary are then in-
quired (Mitchell, 1982).

A more sensible technique would be to divide a section of the complete model class in
terms of version space. The set of hypotheses consistent with the current labeled training
set is referred as the version space. In other words, an instance in the uncertainty region
is some unlabeled data for which two models from the same model class but with different
parameter values disagree. However, calculating this region fully and explicitly is compu-
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tationally expensive, and it must be maintained after each successive query (Seung et al.,
1992; Dasgupta and Hsu, 2008; Yang et al., 2015; Mayer and Timofte, 2020).

Part-of-speech tagging (Tur et al., 2005), sensor scheduling (Krishnamurthy, 2002), and
learning ranking functions for information retrieval (Yu et al., 2021) have all been investi-
gated using the stream-based scenario. Fujii et al. (1999) employed selective sampling for
active learning in word meaning disambiguation, such as determining if the word ‘bank’
in a given context, relates to riverside land or a financial institution. Not only does the
strategy save time on annotation, but it also reduces the size of the database used in
nearest-neighbor training, allowing the classification process to run faster.

3.1.3 Pool-based sampling

The vast amounts of unlabeled data collected for many real-world learning problems inspire
pool-based sampling, which assumes a small pool of labeled data and a large pool of
unlabeled data (Lewis and Gale, 1994a). In pool-based sampling, queries are often picked
from an unlabeled pool that is deemed closed i.e., fixed or dynamic; however, this is not
always the case. In most cases, instances are greedily queried using an informativeness
metric applied to all unlabeled instances in the pool. Figure 3.3 illustrates the process.

Figure 3.3: Pool-based sampling active learning life cycle (Settles, 2009).

The majority of existing research on pool-based active learning focuses on creating plausible
criteria for labeling instances. Uncertainty sampling is a prominent criterion that asks
the classifier about the instance that is the most unsure (Lewis and Gale, 1994a). For
instance, querying the point closest to the SVM-trained decision border (Vapnik, 1998;
Tong and Koller, 2001) or a point near a boundary is more representative if it is located in
a denser neighbourhood, and they offer density-weighted criteria (Nguyen and Smeulders,
2004; Donmez et al., 2007). Establishing a distance function through clustering is another
method for determining representativeness (Donmez and Carbonell, 2008b; Dasgupta and
Hsu, 2008). Another technique determines representativeness by estimating probable label
assignments for unlabeled occurrences (Huang et al., 2010).
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The main difference between stream-based and pool-based active learning is that stream-
based scans the data sequentially and makes query judgments individually, whilst the
pool-based reviews and ranks the whole collection before selecting the best query. While
the later situation appears to be considerably more common in application papers, there
are times when the stream-based approach is better.

Regardless of the sample scenario, however, there are rarely substantial links between the
human-designed criterion and the performance measure of interest. Furthermore, what a
person considers to be excellent questions may not be appropriate for every data collection
or context. This shortcoming suggests the necessity to select among a variety of methods
in a data-dependent and adaptable manner (Baram et al., 2004).

Many real-world problem have been explored using the pool-based scenario, including text
classification (Lewis and Gale, 1994a; McCallumzy and Nigamy, 1998; Tong and Koller,
2001; Hoi et al., 2006a), information extraction (Thompson et al., 1999; Settles and Craven,
2008), image classification and retrieval (Tong and Koller, 2001; Zhang and Chen, 2002),
video classification and retrieval (Yang et al., 2003; Hauptmann et al., 2006), voice recog-
nition (Tur et al., 2005), and cancer detection (Liu, 2004), to mention a few.

3.2 Query Selection Methods

In every iteration of all active learning scenarios, an unlabeled sample from a specified
distribution is chosen and evaluated for its informativeness. Several different methods of
evaluating approaches have been offered in the literature, and this section gives an overview
of some frameworks that are in use.

3.2.1 Committee

The query-by-committee (QBC) algorithm is a conceptually driven query selection method
(Seung et al., 1992). It entails keeping a committee of models, each of which is trained on
the current labeled set but representing opposing hypotheses. The inquiry candidates are
then voted on by each committee member. The most instructive question is usually the
one in which they disagree the most.

The process of lowering the number of queries necessary to understand a topic is known as
labeling complexity (generalization error), and the majority of previous study on the field
has focused on this (Hanneke, 2007).

To reduce the generalization error, the first step is accomplished by picking a committee of
two random hypotheses that are compatible with the labeled set, as done by Seung et al.
(1992). This may be done more broadly for generative model classes by randomly picking
an arbitrary set of models from a likelihood function. McCallumzy and Nigamy (1998)
and Dagan and Engelson (1995) used the Dirichlet distribution (Wong, 1998) over training
sets to sample regression techniques whereas Normal distribution (Patel and Read, 1996)
to sample hidden Markov models.

Abe et al. (1998) presented query-by-boosting and query-by-bagging for various model
classes, such as discriminative or non-probabilistic models, using the well-known ensemble
learning methods of boosting (Freund and Schapire, 1997b) and bagging (Breiman, 1996)
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to create committees. Another ensemble-based strategy proposed by Melville and Mooney
(2004) expressly encourages diversity among committee members.

Till now, the ideal committee size for the division has not been considered in any of the
reviews described; it relies upon the model class or application. Muslea et al. (2000) created
a committee of two models by separating the feature space. Even small committee sizes
(e.g., two or three) have been proved to be effective (Seung et al., 1992; McCallumzy and
Nigamy, 1998; Settles and Craven, 2008).

Another key challenge is comprehending the fundamental concepts that control query se-
lection criteria. Shannon (1948a) suggest that the information value of a query may be
approximated from the committee’s disagreement, and an increase in disagreement can re-
sult in a substantial information gain. Shannon (1948a) demonstrate the benefits of QBC
over random sampling in two toy classification challenges. When using QBC, the informa-
tion gain of a query approaches a finite value when the number of inquiries hits infinity.
When utilizing random sampling, information gain approaches zero. In both cases, the
asymptotically restricted information gain is responsible for the exponentially decreasing
generalization error as an inverse power law. But random sampling performs poorer than
QBC in terms of information gain.

Based upon uncertainty, in each iteration of active learning process, MacKay (1992) dy-
namically generated informative sub-areas inside the uncertainty region for query selection,
and this region represents the most informative sub-areas within data space. When the
number of the committee exceeds two, further study on QBC reveals a significant rise in
the selection of sub-areas for the selected queries (Freund et al., 1992).

QBC was applied in a text classification challenge by Liere and Tadepalli (1997), using
Winnow (Littlestone, 1988) as a base classifier. Winnow classifiers are well-suited to high-
dimensional feature spaces containing a large number of irrelevant characteristics, such as
those found in text corpora. When comparing QBC to a single Winnow classifier, the
empirical findings demonstrate one to two orders of magnitude decrease in labeling effort.
In regression scenarios, QBC may be used to measure disagreement about the variance
among the committee members’ output predictions (Burbidge et al., 2007).

3.2.2 Expected Error Reduction

One possible query selection approach is to minimize the model’s generalization error. It
means that, selection is not focused upon how much model changes, but the goal is to
predict a model’s projected future error on the remaining unlabeled examples and min-
imize the expected 0/1 loss. Unfortunately, in the majority of circumstances, predicted
error reduction is the most computationally costly query framework. Not only should the
predicted error across unlabeled examples be estimated for each query, but a new model
must be progressively re-trained for each conceivable query labeling, which iterates over
the whole pool. This leads to a drastic increase in computational cost for many model
classes such as binary logistic regression. The incremental training technique is efficient
and precise for multivariate model classes such as Gaussian random fields (Zhu et al., 2003),
making this approach fairly practical.

By forecasting the future error rate with a loss function, Roy and McCallum (2001b) offer
a way to directly optimize the projected error rate decrease. The loss functions assist the
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learner in selecting those occurrences that increase the learner’s confidence in the unla-
beled data. This approach calculates the expected error across a sample in the pool rather
than the entire distribution. The authors use naive Bayes for their classification and class
probability estimations, however SVMs or other models with complicated parameter space
can also be used (Zhu et al., 2003; Moskovitch et al., 2007). Baram et al. (2004) imple-
ments this approach using SVMs and finds that it outperforms the original naive Bayes
algorithm; in the SVM-based technique, the class probabilities are estimated using logistic
regression. Mitra et al. (2004a) demonstrated how to enable vector machine learning using
a probabilistic active learning technique; identifying all genuine support vectors ensures
that future errors are minimal; the approach assigns a confidence factor to all occurrences
inside the border, close to the real support vectors, as well as interior locations far from
the support vectors, using the k closest neighbour technique. The cases are then selected
probabilistically using the confidence factor as a criterion.

Guo and Greiner (2007) proposed an ‘optimistic’ form that uses uncertainty sampling as
a contingency method when the human annotator offers incorrect labeling and biases the
expectation toward the most likely label for computational ease. This approach has the
benefit of being both near-optimal and independent of the model class. All that’s needed
is a suitable objective function and a method for calculating bayesian label probabilities.
For example, naive Bayes, Gaussian random fields, logistic regression, and support vector
machines have all been effectively used applying this methodology. In theory, the general
technique may be used to optimize any generic performance measure of interest, such as
accuracy, recall, F1-measure, or area under the ROC curve, in addition to minimizing loss
functions.

3.2.3 Uncertainty

Uncertainty sampling is perhaps the most basic and often used query framework (Lewis and
Gale, 1994a). In this paradigm, an active learner inquires about the situations for which
there is the least amount of classification certainty. For probabilistic learning models, this
strategy is frequently used. When employing a probabilistic model for binary classification,
for example, uncertainty sampling simply asks the instance whose posterior probability of
being affirmative is closest to 0.5 (Lewis and Catlett, 1994). Seung et al. (1992)’s Query-
by-Committee approach selects samples for labeling by the expert for which the selected
classifiers disagree. According to the authors, their approach may be used with any clas-
sifier that predicts a class and gives a probability estimate of the prediction confidence.
This method has been used in information extraction tasks, for example, with statistical
sequence models (Culotta and McCallum, 2005).

Tong and Koller (2001); Campbell et al. (2000); Schohn and Cohn (2000) used SVMs as
the induction component where the querying function is based on the classifier. To be
specific, the technique seeks to choose instances that are most informative for dividing the
hyperplane. This is similar to uncertainty sampling, in which the algorithm picks the cases
about which it has the most doubts. When using SVMs, the classifier is most unsure about
the instances that are near to the dividing hyperplane’s margin. Tong and Koller (2001) has
suggested variations including the MaxMin Margin and Ratio Margin approaches, which
similarly employ SVM as the learner.

The use of entropy as an uncertainty measure is a more broad and arguably the most
common uncertainty sampling technique. The amount of information required to ‘encode’
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a distribution is measured in entropy, an information-theoretic metric; as a result, it’s fre-
quently used in machine learning as a measure of uncertainty or impurity. Additionally, the
entropy-based method, easily generalizes to probabilistic multi-label classifiers and proba-
bilistic models for more complicated structured examples like sequences and trees (Settles
and Craven, 2008; Hwa, 2004).

Non-probabilistic classifiers can also use uncertainty sampling methodologies. A decision
tree classifier was employed in one of the first studies on uncertainty sampling (Lewis and
Gale, 1994a). Similar methods have been used in active learning using nearest-neighbour
classifiers, in which each neighbor is allowed to vote on the class label, with the proportion
of votes indicating the posterior label likelihood (Lindenbaum et al., 2004).

Uncertainty sampling may also be used in regression situations i.e., learning tasks where
the output variable is a continuous value rather than a set of discrete class labels. In this
case, the learner simply looks for the unlabeled instance with the biggest output variance
in the model’s prediction. The entropy of a random variable is a monotonic function
of its variance under the Gaussian assumption, hence this technique is quite similar to
entropy-based uncertainty sampling for classification (Fedorov, 2013; Cressie, 2015).

3.3 Baseline Specification

Active learning aims to reduce the cost of building a predictive solution by enabling the
learner to determine which examples should be labeled for training. Most active learning
recent studies, however, have presumed that the cost of obtaining labels is the same in all
cases. A decline in the amount of labeled data does not always imply a reduction in cost
in domains where labeling costs vary (Settles et al., 2008).

We presented a detailed empirical research of baseline specification that are required while
using active learning irrespective of the application such as, initial training sample; batch
mode and size; training label and computing costs; selection diversity.

3.3.1 Initial Training Sample Selection

Active learning performance can be increased by carefully selecting the initial training sam-
ples. Using a fuzzy-c clustering approach (Bezdek, 2013), proposed Yuan et al. (2011) three
initial training data selection processes: center-based, border-based and hybrid. Center-
based selection chooses samples with a high degree of membership in each cluster; border-
based selection selects samples from the clusters’ edges; hybrid selection combines center-
based and border-based selection. According to their findings, the hybrid selection is able
to significantly improve the effectiveness of active learning when compared to randomly
selected initial training samples.

The number of queries creating irrelevant labels might be reduced if the labeled set is
properly initialized, improving the performance of the classifiers learnt at the start of the
learning process. Selecting a suitably labeled set seeks to early understand the distri-
bution of the data to categorize, allowing valuable queries to be selected in subsequent
cycles (Motta et al., 2009). However, this is a work that must be completed in the absence
of any previous evidence on the notion to be learned. In the literature, there are several



48 CHAPTER 3. ACTIVE LEARNING

approaches relying on randomness alone or leveraging the existing dataset.

The use of a collection of examples already labeled by some standard or stochastic sample
is a frequent technique to initialize the initial training set (Sun and Hardoon, 2010). The
most typical strategy is to start the labeled set by randomly picking training cases from
each class (Warmuth et al., 2003; Xu et al., 2003; Schütze et al., 2006). The initial locations
of the dividing hyperplanes are computed in a linear discriminant manner, which does not
require any real data, since they roughly bisect the space of all potential data points.
Individual committee members are randomly started with different hyperplanes so that
they reflect various initial hypotheses, which is how Liere and Tadepalli (1997) employ
QBC.

On the other hand, Random sampling, can be time-consuming, especially when dealing
with a substantially skewed dataset. This is one of the key concerns of initialization tech-
niques based on the input space’s density that discard redundant instances in densely
populated portions of the feature space while maintaining instances from sparse regions
available for querying. Dima and Hebert (2005) assumed that instances from densely pop-
ulated regions are, with a high likelihood, indicative of the same class and that repeated
searches on these regions would overlook under-represented classes while increasing the
number of unnecessary queries.

To determine the sample selection, Cebron and Berthold (2007) examined the prospective
measure of the density of the input space in a predetermined neighbourhood around the
sample. Any instance in dense input space has a significant impact on the potential of being
an instance in query. Seed inquiries have the highest potential score, such as those located
in heavily inhabited areas. Rare or outlier samples, on the other hand, are not considered
as part of the selection process since they are uncommon and hence less beneficial to the
classifier.

Clustering is another frequent method for the initialization step that aims to discover the
working set’s internal structure. Using K-means clustering, Kang et al. (2004) suggest a
technique that splits unlabeled examples into groups and then picks medoids from each
cluster supposedly to be the most representative instances from each cluster. When working
with high-dimensional input spaces, such as text corpora, the centroid itself may be difficult
to classify because it is most certainly a synthetic instance. However, because the cluster
synthetic centroids will be assigned the same label as the representative instance, they
may be utilized as training instances without incurring any additional labeling costs. The
centroids in this situation are referred to as model examples (Kaufman and Rousseeuw,
2009). Experiments on diverse text datasets have demonstrated that if the initial training
set is picked using this strategy, the active learner achieves greater accuracy sooner than
when random sampling is used (Nguyen and Smeulders, 2004; Li and Anand, 2007).

3.3.2 Myopic vs. Batch Mode

In most active learning studies, inquiries are chosen in sequential order, one at a time.
However, in other cases, such as with large ensemble approaches and numerous structured
prediction tasks, the time necessary to induce a model is sluggish or expensive. Consider
the possibility of a distributed, parallel labeling environment, such as numerous annotators
operating on various labeling workstations over a network at the same time. Selecting
queries in serial may be inefficient in these circumstances. Batch-mode active learning, on
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the other hand, allows the learner to query examples in groups, making it more suitable
for parallel labeling settings or models with sluggish training methods.

In Myopic Active Learning (MAL) a single instance is queried at a time, whereas in Batch
Mode Active Learning (BMAL) a batch of samples is picked and labeled concurrently. Sin-
gle instance selection techniques require retraining the classifier for each classified instance,
whereas BMAL offers the benefit of not requiring the model to be retrained numerous times
throughout the selection phase (Gui et al., 2021). On the other hand, BMAL faces various
barriers (Yang et al., 2021): choosing E samples from a pool of U instances might cause
computing issues since the number of possible batches CU

E can be rather high, depend-
ing on the values of U and E; additionally, designing an appropriate method to measure
the overall information carried by a batch of samples can be quite challenging; finally for
each iteration, one needs to ensure low information redundancy within a batch of chosen
instances. Gu et al. (2014) discussed sample selection with the highest density and least
redundancy. For example, dense regions are supposed to be representative and informa-
tive, whereas the chosen instances from dense region could be not benefitial because of the
redundancy among them (i.e. instances may include similar information). Some recent
research uses a clustering step after selecting the top E to diversify and select only Ê
samples (Citovsky et al., 2021).

The most difficult aspect of batch-mode active learning is assembling the optimum query
collection. Because it ignores the duplication of information content across the ‘best’
samples, myopically querying fails in choosing the ‘best’ query collection based on some
instance-level query technique. To tackle this, a few batch-mode active learning approaches
have been proposed. Xu et al. (2007) and Brinker (2003) examinied a method for SVMs that
explicitly accounts for variance among batch in-stances; they are specifically interested in
the centroids of clusters of instances nearest to the decision boundary. Although Hoi et al.
(2006a) used the features of sub-modular functions to create batches that are guaranteed
to be near-optimal, most of these techniques apply greedy heuristics to ensure that cases
in the batch are both varied and informative. Guo and Schuurmans (2007), on the other
hand, used batch formation for logistic regression as a discriminative optimization issue,
attempting to directly design the most informative batch. These methods, for the most
part, outperform random batch sampling, which is typically superior to basic ‘best’ batch
construction (Hoi et al., 2006b).

3.3.3 Batch Size

Active learning seeks to find the most effective technique to query unlabeled data and
construct a learner with the least amount of human supervision. There are two kinds of
learning methods, Sequential and Multiple Instance (also known as batch) (Settles et al.,
2007).

Sequential active learning methods, have several drawbacks when used in association with
complex and costly models like neural networks. Training deep networks takes a long time
and updating the model after each label is costly in terms of both manual labeling time and
computing resources. Furthermore, due to the local optimization approaches used to train
neural networks, a single point is unlikely to have a substantial influence on performance.

Batch active learning is typically advantageous in practical applications because the cost
of collecting a chunk of labels for training is often substantially lower than the cost of
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gathering the same number of consecutive single label queries (Chakraborty et al., 2014).
When the time taken to update the model and choose the next example is excessively long,
this is true. However, there is an inherent trade-off between efficiency and performance
when labeling budget limits exist, since greater batches result in fewer model updates and
higher prediction errors (Smith et al., 2017).

According to Citovsky et al. (2021), when datasets expand in size to contain hundreds of
thousands or even millions of labeled samples, the active learning batch size should grow as
well. The problem with very high batch sizes is twofold: first, the risks of lower adaptivity
increase, and second, the batch sampling technique must scale effectively with the batch
size and not constitute a computing bottleneck itself (Deng et al., 2009; Kuznetsova et al.,
2020; Van Horn et al., 2018). The batch size, according to Chakraborty et al. (2014), should
be determined by the quality and complexity of the samples in the unlabeled stream, as
well as the present classifier’s level of confidence on the unlabeled data instances.

Under the heading of information extraction and natural language understanding, Bach
and Badaskar (2007) attempted to combine the batch size and instance selection problems
into a single optimization function that maximizes diversity, uncertainty, and redundancy
while also including a batch size-dependent penalty term.

According to the Shao et al. (2019), when more samples are chosen at the beginning of
the training process, fewer samples may be used in later phases to exploit data recommen-
dations; if more samples were allocated to later iterations, the model would have higher
variation in the early iterations but a better chance of biasing samples for active learning
in the later rounds. Lourentzou et al. (2018), on the other hand, states that the optimal
batch size is determined by the dataset and machine learning application to be addressed.

3.3.4 Batch Diversity

A batch mode learning approach is suitable when training expenses are high. Another
rationale for adding several inquiries to a training set at each iteration is to avoid aggra-
vating the annotator by repeatedly making the same inquiry, which might result in a little
increase in the retrained learner model that is not obvious to the user (Chen et al., 2010).

In batch mode, retraining happens after a batch of instances has been queried, rather than
after each query. This method introduces a new barrier in the form of variation within the
batch of instances to query. This needed diversity cannot be obtained merely by selecting
the most instructional instances seen by the current learner (Schohn and Cohn, 2000;
Warmuth et al., 2001).

Brinker (2003) developed a new strategy for choosing batch mode members that included
a diversity metric. This method chooses the queries having the biggest relation to already
picked samples in terms of coordinate angles and are located around the decision boundary.
To eliminate duplication among chosen examples, Hoi et al. (2006a) proposes a batch mode
strategy based on the Fisher information matrix (Papathanasiou, 1993). Li and Sethi (2006)
used conditional error to calculate diversity within chosen cases. In order to increase SVM
performance, Hoi et al. (2009) proposed a novel semi-supervised SVM batch mode with
two goals: increasing the quantity of training instances and assuring their diversity. In
semi-supervised mode, SVM trains a kernel function using labeled and unlabeled data; the
most useful and diverse instances to query are then identified using this strategy.
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If active learning algorithms take into consideration the different characteristics of examples
in the dataset, they can provide additional benefits. When trained on a dataset with
various types of samples that reflect the complete distribution, the resulting classifier will
perform effectively. Baram et al. (2004)’s Kernel Furthest-First method chooses the cases
that are the farthest away from a collection of labeled samples. Intuitively, it selects the
instance from the unlabeled set, which is the most different from the labeled instances
currently being used to train the classifier. Mitra et al. (2004a)’s probabilistic approach
uses a confidence factor to choose samples that are distant from the current boundary.
This type of information assists the active learner in selecting cases from the dataset that
are varied in nature. Nguyen and Smeulders (2004)’s active-learning system picks a diverse
set of samples because it prioritizes cluster representatives, and each cluster represents a
distinct set of data examples.

3.3.5 Labeling Cost

Although the goal of active learning is to minimize the overall cost of training an accurate
model, reducing the number of labeled instances does not always imply a reduction in
total labeling cost. In tasks like parsing or information extraction, for example, Baldridge
and Osborne (2004) and Culotta and McCallum (2005) suggested strategy for decreasing
annotation effort in active learning is to use the already trained model to aid in the labeling
of query instances by pre-labeling them. However, such solutions do not represent or
justify the expense of labeling. Instead, they try to save money by reducing the number
of annotation operations that are necessary for a query that has already been chosen.

Kapoor et al. (2007) suggested a rule-based paradigm that considers both the costs of
labeling and the costs of misclassification. If the instance is in the training set, each possi-
ble query is assessed by adding the labeling cost to the estimated future misclassification
costs. King et al. (2004b) abbreviated real labeling costs with a similar rule-based ap-
proach; they propose a ‘bot researcher’ who can perform a series of unassisted biological
experiments to reveal metabolic pathways while conserving resources.

The cost of annotating an instance is still believed to be constant and known to the learner
in all of the aforementioned situations and indeed almost everywhere in the cost-sensitive
active learning literature (Margineantu, 2005; Tomanek et al., 2007). Culotta and McCal-
lum (2005) pioneered the use of variable labeling costs in data extraction; they suggest
a novel paradigm that decreases both the number of examples to label and the difficulty
of categorizing each one. The suggested technique distinguishes between boundary and
classification annotations and quantifies the number of activities a user must make to label
a training example. Annotating boundaries is frequently more difficult than annotating
classifications (Vijayanarasimhan and Grauman, 2009).

While empirical studies show that in situations where annotation costs are variable and
unknown, such as when labeling costs are a function of elapsed annotation time, learned
cost models may be trained to estimate proper annotation durations using cost-sensitive
active learning (Haertel et al., 2008).

On the other hand, the computing cost of an algorithm is an important factor to consider.
In this part, we look at the time complexities of the active learning algorithms outlined
above when it comes to choosing the best instance for labeling. Cohn et al. (1996a)’s
active learning methods, which use a blend of Gaussians and locally weighted regression,
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outperform feedforward neural networks. Which are costly to compute variance estimates
and retrain. Training is linearly proportional to the number of data instances when using
a mixture of Gaussians, but prediction time is independent. On the other hand, there is
no training time for a memory-based model like locally weighted regression, but there are
prediction costs.

Table 3.1 presents the baseline specification review summary following an in-depth evalu-
ation of several methodologies, allowing one to choose an acceptable strategy for baseline
specification with the goal of minimizing overall training label cost. The table essentially
provides the reference, approach, and, lastly, the outcome description.

3.4 Active Learning and Application

‘Does active learning work?’ is an important question. The overwhelming empirical find-
ings in the literature imply that it does (e.g., the majority of papers in the bibliography
of this chapter). Consider how active learning technologies are rapidly being used in a
range of real-world applications by software businesses and large-scale research programs
like CiteSeer, Google, IBM, Microsoft, and Siemens (Settles, 2011). Active learning ap-
proaches appear to have progressed to the point of practical usage in many scenarios, based
on several published findings and rising industry acceptance.

Nonetheless, in the majority of published outcomes, active learning reduces the amount
of annotated samples instances required to achieve a predefined level of accuracy. Even
for basic query algorithms like uncertainty sampling, this is generally the case. According
to Tomanek and Olsson (2009), 91% of academics who used active learning in large-scale
labeling tasks were able to completely or substantially accomplish their goals. Regardless
of these findings, according to the study, 20% of respondents said they would not utilize
active learning since individuals expressed uncertainty regarding the effectiveness of active
learning within their case. Probably because when active learning is used in practice, extra
complexities emerge (performance cost). This section examines a few of the domain-specific
active learning solutions used in Remote Sensing practice (Goetz et al., 1983; Jarvis, 1983).

3.4.1 Remote Sensing

Many interesting geospatial applications employing large geographic image datasets are
becoming feasible due to the development of machine learning. Land use and land cover
classification (Castelluccio et al., 2015; Tracewski et al., 2017), identification and compre-
hension of patterns and interests in urban environments (Hu et al., 2015b; Albert et al.,
2017), geospatial pattern recognition (Zhou et al., 2014; Cordts et al., 2016), and content-
based image retrieval (Ferecatu and Boujemaa, 2007; Wan et al., 2014) are just a few of the
remote sensing challenges that can benefit from the active learning methodologies. Image
geolocalization (prediction of the geolocation of a query image) is another major research
field (Lin et al., 2013b, 2015).

It is expensive to get good annotated data in hyperspectral imaging for remote sensing
applications. Liu et al. (2016) presented the hyperspectral image classification approach
to solving this problem, in which their system picks training samples that optimize two
selection criteria i.e., representativeness and uncertainty. Their method was tested against
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Table 3.1: Baseline Specification Review Summary.

Reference Approach Outcome Description

Initial Training Sample Selection

Yuan et al. (2011) fuzzy-c clustering center, border, hybrid based

Sun and Hardoon (2010) prelabeled already labeled

Warmuth et al. (2003) random randomly from each class

Cebron and Berthold (2007) density high potential score
around dense area

Kang et al. (2004) k-means clustering representative cluster point

Batch Mode

Xu et al. (2007) SVM variance among batch

Hoi et al. (2006a) sub-modular functions varied and informative batch

Batch Size

Bach and Badaskar (2007) optimization function maximizes diversity

Chakraborty et al. (2014) quality and complexity lower adaptivity increase,
less computing bottleneck

Lourentzou et al. (2018) ML application depending upon,
dataset and problem

Batch Diversity

Brinker (2003) diversity metric high decision boundary angles

Hoi et al. (2006a) fisher information matrix eliminate duplication

Li and Sethi (2006) conditional error eliminate duplication

Hoi et al. (2009) semi-supervised SVM eliminate duplication

Baram et al. (2004) kernel furthest first farthest away samples

Nguyen and Smeulders (2004) clustering choose cluster centroid

Variable Labeling Cost

Kapoor et al. (2007) rule-based paradigm labeling and misclassification

Culotta and McCallum (2005) rule-based paradigm label and categorizing
difficulty measure
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a range of other classification algorithms that used various query methods i.e., random
sampling, maximum uncertainty sampling, and QBC, showing that, by actively selecting
training samples, the suggested algorithm was able to obtain greater accuracy with fewer
training examples (Tuia et al., 2011).

Collecting ground truth, particularly in developing and rural regions, is difficult, and man-
ually labeling a huge collection of training data is expensive (Chen and Zipf, 2017). To
address this issue, Chen and Zipf (2017) recommended using satellite imagery and Volun-
teered Geographic Information (VGI) (Coleman et al., 2009) data to categorize it. They
used a feed-forward neural network (Bishop and Nasrabadi, 2006) and two classic CNNs:
LeNet (LeCun et al., 2015) and AlexNet (Krizhevsky et al., 2012), in their strategy. When
compared to Deep-OSM (Lange et al., 2020) and MapSwipe (Herfort, 2018), their first
testing results showed that their performance in particular, F1 score and accuracy is much
higher than DeepOSM but not as excellent as the MapSwipe where three participants vote
on each image. Deep-OSM can anticipate misregistered freeways in OpenStreetMap (OSM)
data by identifying freeways and characteristics from satellite images using OSM data to
train neural networks (Mooney and Minghini, 2017); Deep-OSM’s deep learning architec-
ture is a basic one-layer CNN. MapSwipe is a smartphone technology that let participants
identify landmarks and freeways in pictures.

An excellent demonstration of applying active learning methods in remote sensing is to
select the n most ambiguous samples for segmentation of multispectral images using SVMs
for binary classification (Mitra et al., 2004b); Their query technique chooses the sample
that is closest to each binary SVM’s current separating hyperplane. Ferecatu and Boujemaa
(2007) employed an SVM classifier in their active learning approach for remote-sensing vi-
sual retrieval; Their criterion for selection was to keep the number of potential photographs
given to the user to a minimum.

Acquiring annotated data for remotely sensed image-based land cover classification is time-
intensive and expensive, especially in remote locations. As a first step toward the goal of
building classifiers with as minimal annotated training points as possible, Rajan et al.
(2008) devised an approach that effectively updates current classifiers using minimum
labeled data points; they select the unlabeled data that enhances the gain ratio between
the posterior probability density function computed from the current training set and the
(new) training set acquired by including that sample.

Rajan et al. (2008) employed pool-based active learning where the classifier adopts when
there is a significant difference in the spectral signatures between labeled and unlabeled
data, whereas the gain ratio is computed by the divergence (McCallumzy and Nigamy,
1998). Making an effective strategy for categorizing a set of spatially/temporally connected
images with different spectral characteristics.

For multi-class remote sensing image classification, Tuia et al. (2011) presented two batch-
mode active learning methods. The first approach incorporates kernel space variety into
SVM margin sampling, while the second is an entropy-based variation of the query-by-
bagging algorithm. Demir et al. (2010) also examined a range of multi-class SVM-based
batch-mode active learning algorithms for interactive remote sensing image classification,
with one result suggesting cluster-based diversity criteria for relevant query selection. Pa-
tra and Bruzzone (2010) also presented a quick cluster-assumption-based active learning
approach, but only took the uncertainty criteria into account. In follow-up work, Patra
and Bruzzone (2011) suggested a batch-mode active learning approach for handling multi-
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class classification issues using a SVM classifier with an open agent architecture (Cheyer
and Martin, 2001), which takes into account both uncertainty and diversity requirements.
The efficiency of the suggested approach was validated by their findings on two separate
datasets (hyperspectral and multispectral). The number and spectra of electromagnetic
radiation that each band provides are the key differences between hyperspectral and mul-
tispectral (Adam et al., 2010).

Annotators are asked to annotate data samples in the most active learning approaches
in the literature. In a recent example by Huijser and van Gemert (2017) annotators are
asked to annotate the decision boundary. They employ a linear classification model in
their strategy. A deep generative model (Goodfellow et al., 2014; Salimans et al., 2016)
was also employed to generate samples based on a limited number of labeled samples in the
procedure. From the machine learner’s perspective, the majority of existing active learning
research is focused on the mechanics and advantages of identifying relevant instances for
labeling (Settles, 2011). The fact that users have no influence over which instances are
labeled is a disadvantage of the query approach (Bernard et al., 2017), which may impair
the performance of an active learning model (Huang et al., 2017). User-based visually-
supported active learning procedures, suggested by Seifert and Granitzer (2010), allow the
user to pick and label examples provided by a machine learner. Their research revealed that
limiting human input to only tagging cases that the algorithm chooses is inefficient. Giving
users a more active part in visual example selection and adjusting labeling procedures on
top of customized visualization approaches can improve labeling efficiency.

Júnior et al. (2017)’s work on GPS trajectory categorization shows that active learning may
be used with human-in-the-loop (Wu et al., 2021) to assist domain experts with semantic
labeling of movement data. They pose three research questions: (1) Is there a machine
learning approach that allows for the development of a decent classifier for automatic
trajectory classification with a smaller number of human-labeled trajectories? (2) Does
active learning work well with trajectory data? (3) How can we make it easier for the
user to label trajectories? To address these research problems, they created ANALYTiC,
a web-based interactive tool that uses active learning and a simple interface to visually
help domain experts perform GPS trajectory categorization. To begin with trajectory
labeling, users may choose from six (conventional ML) classifiers (Ada_boost, decision
tree, Gaussian naive Bayes, k-nearest neighbours, logistic regression, and random forest)
and one of three query procedures (uncertainty sampling, QBC, and random sampling).
Only binary categorization is supported by their interactive interface. They also provide a
series of empirical evaluation studies using three different datasets for trajectories (animals,
fishing vessels, and GeoLife). Their examples showed how ANALYTiC interface may aid
the domain expert in the active learning process, particularly in trajectory annotation,
by providing a range of visual solutions that make the labeling work easier. They found
that by learning from sets of manually labeled data, ML systems may infer semantic labels
established by domain users from trajectories. Active learning techniques, in particular,
can minimize the number of trajectories that need to be categorized while maintaining
high-performance metrics. Their ANALYTiC application shows the annotation process for
subject specialists.

In terms of using a human-in-the-loop system to help domain experts with labeling,
PEARL (Anwar, 2022), an Artificial Intelligence accelerated platform for quick land cover
mapping, was released for experimental usage by Development Seed (Development Seed,
2022) and Microsoft AI for Earth (Microsoft, 2022a). PEARL is a novel way to quick,
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accurate land cover mapping that combines human intelligence with scalable AI. It takes
advantage of Microsoft’s Planetary Computer (Microsoft, 2022b) initiative’s capabilities
and research to drastically decrease the time and effort required to build land cover maps,
allowing scientists and researchers to focus on the most critical environmental and climatic
research problems. PEARL’s rapid model retraining is a major feature. Users may retrain
the model in the browser on the fly to generate checkpoints that can be used to progres-
sively enhance the model in the direction they choose. PEARL’s initial release includes
two fully convolutional network segmentation (Long et al., 2015) models that were trained
with nine and four land cover classes, respectively, using labeled data from the Chesapeake
Conservancy’s dataset (Conservancy, 2022). The overall F1 score for each of these begin-
ning models is around 90%. Users can enhance the model’s performance in a certain region
and even create additional Land Usage and Land Cover (LULC) classes.

Table 3.2 summarizes the literature review on the topic of active learning for remote sensing
applications. The table covers the numerous active learning query selection methodologies
and machine learning models used, goal of the work, and what sensor data was used.
Here, KRR: Kernel Ridge Regression, QBB: Query-by-Bagging, LAI: Leaf Area Index,
GPR: Gaussian Process Regression, VHGR: Variational Heteroscedastic Gaussian Regres-
sion, KNN: K-Nearest Neighbor, RBFK: Radial Basis Function Kernel, DBN: Deep Belief
Network, FFNN: Feed-forward Neural Network, and MG: Multivariate Gaussians.

Whilst, active learning has been effectively applied to a wide range of challenges in several
fields, no structured and complete assessment of active learning methodologies has been
conducted. For example, much of the research has been disjointed, with various datasets
used in different application domains and inadequate coherence to assess active learning
methodologies.
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Table 3.2: Literature Review of Active Learning and Remote Sensing Application.

Reference Goal ML algorithm Query method Sensor

Verrelst et al. (2016) LAI mapping KRR entropy QBB,
angle-based diversity

Sentinel-3
OLCI

Upreti et al. (2019) vegetation cover GPR euclidean distance-based,
cluster-based diversity Sentinel-2

Zhou et al. (2020) Chlorophy-ll mapping GPR entropy QBB,
euclidean distance diversity

Landsat-8
OLI

Verrelst et al. (2020) vegetation nitrogen VHGR entropy QBB,
euclidean distance diversity EnMAP

Ahmad et al. (2018) image scene classification SVM
fuzzy KNN

random selection,
distance to the boundary

AVIRIS,
ROSIS-03

Pasolli et al. (2013) image scene classification SVM
random selection, margin sampling,
breaking ties, distance from the
closest support vector

QuickBird

Krishnapuram et al. (2005) mine detection logistic
classifier mutual information hyper-spectral

electro-optic

Luo et al. (2005) underwater zooplankton SVM breaking ties, least certainty SIPPER II

Demir et al. (2010) image scene classification SVM with
RBFK uncertain sampling, kernel-clustering LIDAR

Liu et al. (2016) image scene classification DBN random sampling, QBC,
maximum uncertainty sampling ROSIS-3

Chen and Zipf (2017)
label images with
buildings and roads
for humanitarian aids

FFNN
LeNet
AlexNet

random sampling MapSwipe
Data

Mitra et al. (2004b) segmentation of images SVM uncertain sampling,
distance from hypersurface IRS-1A

Rajan et al. (2008) land cover classification MG posteriori probability distribution,
KL divergence

AVIRIS,
IKONOS

Tuia et al. (2011) image scene classification SVM margin sampling,
entropy-based QBC

AVIRIS,
ROSIS,
QuickBird

Patra and Bruzzone (2010) image scene classification SVM cluster-based uncertainty AISA Eagle

Patra and Bruzzone (2011) image scene classification SVM cluster-based diversity & uncertainty AISA Eagle
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3.4.2 Abbreviating Training Cost

Over the years, due to the enrichment of paired-label datasets, supervised machine learning
has become an important part of any problem-solving process. Active Learning gains
importance when, given a large amount of freely available data, there’s a lack of expert’s
manual labels. In Active Learning, the classifier ranks the unlabeled pixels based on
predefined heuristics and automatically selects those that are considered the most valuable
for improvement; the expert then manually labels the selected pixels and the process is
repeated. The system builds the optimal set of samples from a small and non-optimal
training set, achieving a predefined classification accuracy.

Traditional supervised learning, such as binary or multi-class classification, is used to
create high-predictive accuracy models from labeled training data. Labeled data, on the
other hand, isn’t cheap in terms of labeling costs, time spent, or the number of instants
consumed (Zou and Hastie, 2005). As a result, the objective of active learning is to
maximize the effective use of labeled data by allowing the learning algorithm to pick the
instances that are most informative on their own (Fu et al., 2013). In comparison to
random sampling, the goal is to get better results with the same amount of training data
or get the same results with fewer data (Vapnik, 1999).

Active Learning is an iterative process that cycles over selecting new examples and retrain-
ing models. In each iteration, the value of candidate instances is calculated in terms of a
usefulness score, and the ones with the highest scores are queried once (Yu et al., 2020) and
its corresponding label is retrieved. The instance’s value usually refers to the reduction
of uncertainty in the context of “To what extent does knowing the label of a particular
instance aids the learner reducing the ambiguity over instances that are similar?” (Fu et al.,
2014). In uncertainty sampling, one of the most common methods measures the instance’s
value in terms of predictive uncertainty (Settles, 2009), which leads the active learner to
choose the cases where its current prediction is the most ambiguous. Almost all predictions
are probabilistic, as are the measurements used to quantify the level of uncertainty, such
as entropy (Hüllermeier and Waegeman, 2021).

For many real-world learning challenges where there is a limited collection of labeled data
and a large amount of unlabeled data, pool-based active learning can be used. Here,
samples are chosen greedily from a closed (i.e., static or non-changing) pool using an
information measure such as entropy (Lewis and Gale, 1994b). Many real-world machine
learning areas have been examined using the pool-based active learning; these include (but
are not limited to) text classification (Tong and Koller, 2001; Hoi et al., 2006a), information
extraction (Settles and Craven, 2008), image classification and retrieval (Zhang and Chen,
2002), video classification and retrieval (Hauptmann et al., 2006), speech recognition (Tur
et al., 2005), and cancer detection (Liu, 2004).

On the other hand, uncertainty sampling in active learning is perhaps the most basic and
often used query framework. In this paradigm, an active learner inquires about situa-
tions for which there is the least amount of certainty of how to classify them (Wang and
Brenning, 2021). If the underlying data distribution can be completely categorized by
some hypothesis, then drawing O(1/ε) random labeled examples, where ε is the maxi-
mum desirable error rate, is enough, according to the presumably approximately accurate
(PAC) learning model (Devonport et al., 2021). According to the research (Settles, 2009;
Carbonneau et al., 2018), considering a pool-based active learning scenario where we can
get some number of unlabeled examples for free (or very cheaply) from distribution; The
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(unknown) labels of these locations on the real line are a sequence of zeros followed by
ones, and objective is to find the place (decision boundary) where the transition happens
while paying as little as possible for labels. Because all additional labels can be inferred, a
classifier with an error less than ε can be attained with just O(log1/ε) queries, leading to
an exponential decrease in the number of classified cases. Of course, this is a basic binary
toy learning challenge that is one-dimensional and noiseless.

Further exploration of Abbreviating Train Cost over particular domain application is pre-
sented in Chapter 8.

3.5 Summary

Recently, for many real-world learning situations with a small collection of labeled data
and a significant number of unlabeled data, this chapter provides an in-depth introduction
to active learning theory. Following that, various sampling and query selection approaches
are described. In addition, regardless of the domain application, extensive empirical study
on baseline specification employing active learning is outlined. Finally, the chapter presents
a comprehensive overview of current active learning approaches in remote sensing and ex-
amines their merits and drawbacks in the context of practical applications such as reducing
classifier training costs.





Chapter 4

Evidence Function Model

“Is it feasible, regardless of the Machine Learning algorithm, to create an Artificial
Intelligent system that can predict the likelihood of a new instance being incorrectly
labeled by a previous learner without the context of the true label?”

— Prof. Luís Rato

Evidence? According to the Oxford definition, evidence is the collection of findings or
materials that can be used to determine if a notion or statement is true. In philosophical
terms, it is defined as an essential understanding of a discipline or art that also encapsulates
core logical ideas. The notion of evidence is critical in the research-oriented area since it
collects all factoids available and uses it in a range of methods to determine when a claim
is true or false. Under statistical evidence, observations are analyzed using a probabilistic
model (Royall, 2004). Thus, to dismiss or confirm a claim, statisticians collect knowledge
from scientific occurrences, materials, and instruments like hypotheses, experiments, and
models with prior knowledge. For example, in the Bayesian approach, the evaluation is
based on a certain posterior probability that attempts to measure the researcher’s convic-
tion in the hypothesis testing. The more the belief in the truth of a theory, the higher the
possibility of the assumption being correct (Kruglanski, 1989).

In the last decade, the usage of distances and divergences has considerably changed from
the statistical, probability, and information theory studies into other scientific areas like
machine learning, biomedical sciences, engineering, and ecology (Lubischew, 1962; Efron,
2004; Markatou and Sofikitou, 2019). The statistical distance (or divergence) can be re-
ferred to as a distance between random variables, probability distributions, or between a
single point and a population (Wootters, 1981a). Statistical distances are used for mea-
suring the goodness of fit test, estimation, prediction or model selection (Lindsay et al.,
2014). Alternatively, statistical distances can effectively be used to construct evidence
functions (Iwamura et al., 2004) that provide an effective way of hypothesizing parametric
and semi-parametric models (Chen and Ho, 2008).

In ML, the study of “The Estimation of Prediction Error” can drive algorithms in the
same manner that it does for human cognitive behaviour (Sugrue et al., 2005). A learner
could use the goal of decreasing error response as a strategy to improve learning. In such
a strategy, while learner’s prediction may provide a false value, and the expected result
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is a true value, the learner would be retrained trying to optimize model’s score. This
method of machine learning, known as error-driven learning, aims to encourage learning
by simulating (Wigmore, 2022).

Although the use of distances and divergences in scientific areas like machine learning have
increased drastically recently, the lack of any available algorithm able to give insight into
the uncertainty prediction using the relation between the train and test sets remains our
prime motivation. In this chapter, we discuss an approach for ‘misclassification detection’
through ‘confidence estimation’ and ‘notion of evidence’ and present a brief literature
review related to its interpretation, portraying to develop a theorized idea of using distance
(between un-seen observation and train set) as uncertainty prediction.

The remainder of the chapter is organized as follows: Section 4.1 talks about what is
confidence estimation and the notion of evidence and provides a general and statistical
meaning of it with respect to ML models; Section 4.2 explains the Mahalanobis and Eu-
clidean distance; Section 4.3 details the modeling of Evidence Function Model, where a
general understanding of Mahalanobis distance and how it has been used in Evidence
Function Model is presented; Section 4.4 articulates where Evidence Function Model can
be used.

4.1 Confidence Estimation and Notion of Evidence

Confidence estimation is a well-studied area of both parametric and non-parametric statis-
tics (Vickers, 2005). In supervised learning, mainly in a classification problem, the model
should learn from known examples (label-paired data represented by attribute vectors
with corresponding labels) and predict the unknown label for a new example (Caruana
and Niculescu-Mizil, 2006). In this regard, Koriat et al. (1980) presented “Reasons for
Confidence” for answering the question “How to classify new instances but then choose
only those with the highest confidence?”. Similarly, Ferrettini et al. (2020) worked upon
calculating the confidence score in classifying the instance x for a class C; the hedged
predictions for the labels of new objects included quantitative measures of their accuracy
and reliability. These quantitative measures are probably valid under the assumption of
randomness, in machine learning (Gammerman and Vovk, 2007).

In the medical domain, the reliability associated with a given prediction is essential in
developing clinical tools. Nouretdinov et al. (2011) proposed a “Transductive Conformal
Predictor (TCP)” for MRI images; TCP generates the most likely prediction with a valid
measure of confidence and the set of all possible predictions for a given confidence level.

In statistics, while referring to the ‘confidence estimation’, there is a long literature related
to the use of distance measures. Markatou and Sofikitou (2019) created an estimator to
measure the goodness of fit for statistical models using the minimum distance principle.
However, having multi-spatial data with multivariate classes, the data distribution does
not precisely reflect the ‘clustering’ phenomenon in terms of feature space (Poggi et al.,
2017b,a); in such a situation, data needs to be transformed so that the data-space rep-
resentation forms a clustering or explanation for the prediction. Gammerman and Vovk
(2002), presented a computing model for confidence estimation to predict high-dimensional
IID (independent and identically distributed) data. Their method is based on realistic ap-
proximations of the algorithmic ‘theory of randomness’ metrics of confidence. Algorithmic
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randomness is an area of mathematics that uses computability theory to create a formal
description of randomness(Li et al., 2008; Rute, 2016). Gammerman and Vovk (2002) de-
scribe an SVM approach and sketch the fundamental concepts of algorithmic randomness
and its approximation.

On the other hand, while referring to the ‘notion of evidence’, Juutilainen and Röning
(2007) stated that “using the distance weighted k-nearest-neighbour method, the distance
reflects the expected squared prediction error when a quantitative response variable is
predicted based on the training dataset”. This leads to the observation that the distance can
be applied, for example, in assessing the uncertainty of the prediction (Tibshirani, 1996).
For example, considering a binary classification problem, SVMs work by determining a
separating hyperplane between the two classes, and for a new point P , SVM classifies it as
class A or B according to which side of the hyperplane P is in (Cortes and Vapnik, 1995).
Here, the confidence score (in terms of this distance measure) is the relative distance to
the hyperplane.

Kobayashi (2019) asserted that “evaluation of prediction at a query point by the current
prediction model, is impacted by the information given by the training dataset about a
query point”. Further, Markou and Singh (2003) adopted a threshold-based joint density
function approach in detecting the similarity between the training data and a new ob-
servation. Markatou and Sofikitou (2019) also stated that statistical distances could be
interpreted as loss functions and used as evidence functions. Alternatively, the Bayesian
decision theory (Feldman and Yakimovsky, 1974) gives a decision that minimizes the ex-
pected probability of misclassification as long as the true class distributions are given (Han
et al., 2015). In this regard, the quadratic discriminant function (Kimura et al., 1987)
and Mahalanobis distance (McLachlan, 1999), are the most popular discriminant func-
tions (Welch, 1939) derived from a multidimensional normal distribution (Lindsay et al.,
2008).

Learners’ uncertainty about the picked examples is somehow not explained by tradi-
tional/common uncertainty sampling (Yang et al., 2018). Sharma and Bilgic (2017) filled
this need by employing an evidence-based paradigm. The authors concentrated on two
forms of uncertainty for the model: conflicting-evidence uncertainty, given the existence
of considerable but inconsistent evidence for each class and insufficient evidence, given
the existence of insufficient evidence for either class. In their empirical assessments, us-
ing naive Bayes over different datasets for the binary classification tasks, they found that
conflicting-evidence uncertainty outperforms in terms of learning efficiency both traditional
and insufficient-evidence uncertainty sampling. Sampling values were selected randomly
from their posterior distributions. Further explaining, instances of uncertainty due to con-
flicting evidence has a lower density in the labeled set than insufficient evidence. This
means there is less support in the training data for the perceived conflict than for the
insufficiency of the evidence.

Referring to all the previous work and approaches in the area of ‘confidence estimation’
and ‘notion of evidence’, we propose a statistical distance-based method that estimates the
uncertainty of the expected prediction at a new query point. The general idea is that the
distance between a new observation and the training dataset distribution should reflect the
expected prediction about the new query point. This means that the proposed approach
evaluates the prediction by estimating the relative distance of the hypothesized prediction
to the data-space distribution.
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The measurement of misclassification can be a pivotal factor, especially in domains where
the reliability associated with a given prediction is essential and the measurement of un-
certainty is crucial, like in the case of the medical domain or weather forecast where the
accuracy of the model is at the highest expectancy. Additionally, knowing the prediction
uncertainty could also help further research areas like ‘Active Learning’ (Settles, 2009)
and ‘Disagreement based Active Learning’ (Hanneke, 2014). The reasoning is that given
a large amount of freely available data where labels are insufficient providing a ‘detection
of misclassification’ could help in choosing and generating labeled datasets where human
input is required for data with higher uncertainty. This creates a motivational link with
previous Chapter 3 Active Learning.

4.2 Mahalanobis Distance

A statistical distance quantifies the distance between two statistical objects, which can be
two random variables within the same distribution, multiple density estimation or sam-
ples, or the distance between independent points (Wootters, 1981b). Two commonly used
distances are Euclidean and Mahalanobis.

In Euclidean spaces, independent variables are usually represented in orthogonal axes and
the distance between any two points can be measured using the standard Euclidean dis-
tance (Bell, 1923). In statistics, however, correlated variables may have different scales with
axes no longer being orthogonal with the Euclidean distance losing its meaning. Under a
Gaussian assumption, the Mahalanobis Distance (MD) (Mahalanobis, 1936) can be used
instead. The MD can be seen as first performing a re-scaling of the variables to become
uncorrelated with normalized variance, and then using the usual Euclidean distance on the
transformed variables. The MD can also be used to measure the distance from a point to
a multivariable distribution specified by its mean vector and covariance matrix. Thus, for
any given point, the larger the MD, the further away from the centroid. Figure 4.1 shows
an example of Mahalanobis Distance, where the unit distance of Y (purple dots) is much
smaller compared to the unit distance of Y ′(yellow dots) from the center of a distribution X
(blue tiny dots). These distances would have been the same using the Euclidean Distance
as it does not consider the distribution co-relation. The lemma stating, “The Mahalanobis
Distance can be used to measure the distance from a point to a multivariable distribution
specified by its mean vector and covariance matrix” (Danielsson, 1980; Darmochwał, 1991;
Barhen and Daudin, 1995; McLachlan, 1999; De Maesschalck et al., 2000) is provided in
Appendix A.2 with proof.

The Mahalanobis Distance (∆) between point xi and a distribution with mean µ and
covariance matrix Σ is given by Equation (4.1).

∆ =

√
(xi − µ)Σ−1(xi − µ)> (4.1)

4.3 Evidence Function Model

The following scenario aims at better understanding what we mean by the Evidence Func-
tion Model (EFM):
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Figure 4.1: Example of Mahalanobis distances. A distribution of points described by 2
attributes (the X and Y axis).

Consider a multi-classification problem to distinguishing images of dogs, cats, and mouses.
Given a new input without true class, is it feasible to determine, whether the new input
is classified properly or misclassified? We are not discussing the related confidence of
the classification here, but rather a binary metric indicating whether a classification is
correct or incorrect.

Mathematically speaking, assume that the training set X = (x1, x2, ..., xn) consists of n
observations, with each xi = (ti; label), where ti is the predictor or feature vector and label
is the class.

Our goal is to build the (best-fit) approach that outputs the likelihood measure of the
classifier prediction P being misclassified based on X, using built classifiers C(X) → P ,
or, in other words, outputting the prediction uncertainty (0/1) over unseen data.

Let us first define the following high-level terminology before moving further:

1. Classification: Given M features and N labels/classes, build a classifier that predicts
a class;

2. Cross-validation: In order to fine-tune the modeling parameters, evaluate the perfor-
mance of ML models on subsets of the available input data;

3. Dataset-split: Partition the available data;

4. Feature Transformation: Transform existing feature space into a new (generalized)
feature space.

5. Distance: A distance between two points in data/feature space representation.

6. Mahalanobis Distance (∆): A distance between point and a distribution, using dis-
tribution mean µ and covariance Σ.
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Table 4.1 lists the symbol names and their meanings for convenience of explanation and
to keep the integrity of the naming standard.

Table 4.1: Notation and their explanation.

Notation Interpretation

∆ Mahalanobis Distance

D Whole dataset (Train+Test)
F Feature set
C Different classes
K Total number of classes
Te Test set
Tr Train set

p a point
N Total number of points

A a small subset of Tr
B a large subset of Tr (note: A ∩B = φ and A,B ⊂ Tr)
Bc a subset of B with only c class, where c ∈ C

∆YX A vector ∆ between all points in Y to X (µX)
µX Mean of X
ΣX Covariance of X

CalgX Classifier trained using alg Algorithm over X
PYCalgX

Prediction made over Y using CalgX model

UPY
Uncertainty of the prediction PYCalgX

(value: 0 and 1)

The generalized formulation of the problem statement is illustrated in the Figure 4.2. Here,
given a train set Tr, a classifier model C is developed that predicts P over the test set Te.
Now, “Can we leverage feature space information between train and test sets to detect the
misclassification or uncertainty of predictions made?”

Figure 4.2: Generalized problem statement.

The idea of using distance ∆ between unseen observations Te and the train set Tr and
the identification of prediction P uncertainty is explored and developed further as EFM.



4.3. EVIDENCE FUNCTION MODEL 67

The proposed approach EFM, is a binary model that detects ‘misclassification of the pre-
diction’, and to built it, the process is divided into four distinct modules; the connection
between them is shown in Figure 4.3:

Figure 4.3: EFM: main modules and data-flow.

• Train set Engineering takes the train set, Tr, as input and is responsible for four
tasks: dataset split, feature transformation, train a classifier, and make predictions,
generating four outputs: B, ∆AB, CalgB , and PACalgB

, respectively;

• Model Building takes B, PACalgB
, ∆AB as inputs from Train set Engineering mod-

ule and builds a model, outputting EFM;

• Test set Engineering takes B, CalgB from Train set Engineering module and a
test set (Te) as inputs and is responsible for two tasks: feature transformation and
make a prediction. It generates two outputs: PTeCalgB

and ∆TeB; and

• Model Applying takes the outputs of modules Model Building and Test set En-
gineering as inputs and produces the uncertainty of the prediction PTeCalgB

, UPTe

(value: 0 and 1).

Train set Engineering. As mentioned, this module is responsible for four tasks: dataset
split, feature transformation, train a classifier, and make a prediction. Therefore, we have
broken down module into 4 steps, and Figure 4.4 shows the data flow between them.

Step 1 : Given Tr, the first step divides it into two subsets A, a smaller and B, a larger.
Therefore, referred to as a dataset split task. Note: A ∩ B = φ and A,B ⊂ Tr, and Tr
consist of features F and classes C.

For example, in case of images, one image can be considered as A while the reaming as B.
In the case of other data, divide a smaller and larger subsets of the data points.

Step 2 : Given A and B from step 1, step 2 divides B into K class-wise subsets, one for
each class c ∈ C, resulting B as a

⋃K
c=1Bc.

∆ABc is calculated using Equation 4.2 for each point p in A. Where, N is a total number
of points in A, µBc is a mean of Bc, and ΣBc is a covariance of Bc.
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Figure 4.4: Train set Engineering : overall process flow, step 1 to step 4.

∆ABc =
√

(Ap− µBc)Σ
−1
Bc

(Ap− µBc)
> where, ∀p ∈ N (4.2)

At the end, for each point p in A, ∆AB = {∆AB1 ,∆AB2 , ...∆ABK
}. Therefore, referred

to as a feature transformation task.

Step 3 : Given B from step 1, any ML algorithm (for example, distance-based, tree-based,
or neural network-based) can be used to train the classifier CalgB . Therefore, referred to
as a train classifier task.

For example, if a distance-based K-Nearest Neighbor (KNN), a tree-based Extra Tree (ET),
or neural network-based Convolutional Neural Network (CNN) classifiers are used to train
over B then the resultant models would be CKNNB

, CETB
, and CCNNB

.

Step 4 : Given A from step 1, for each point p in A, a prediction PA is made using a
classifier CalgB from step 3. In short, CalgB (A) → PA is calculated. Referred as PACalgB

.
Therefore, referred to as a make predictions task.

At the end of Train set Engineering module, outputs B, PACalgB
and ∆AB are passed

to Model Building module; and outputs B and CalgB are passed to Test set Engineering
module.

Model Building. The second module is responsible for training a EFM using the inputs
B, PACalgB

and ∆AB from previous module.

The training of the EFM can be done using any ML algorithm which takes two features as
input: Mahalanobis Distance ∆AB and Prediction PACalgB

made over A using a classifier
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CalgB . Meaning, for EFM training, feature set = (∆AB, PACalgB
) and True Class Label C

will come from B.

Model Building module result EMF is passed to Model Applying module.

Test set Engineering. This module is responsible for two tasks, feature transformation
and make a prediction. It uses as inputs B, CalgB from Train set Engineering module and
test set Te. Therefore, we have broken down module into 2 steps process, and Figure 4.5
shows the data flow between them. (note: step 1 is similar to as Train set Engineering
module step 2 process. Here, instead of A, we are using here Te.)

Figure 4.5: Test set Engineering : overall process flow, step 1 and step 2.

Step 1 : Given B from step 1 and Te, the next step is to divide B into K class-wise
distribution, resulting B as a

⋃K
c=1Bc.

∆TeBc is calculated using Equation 4.3 for each point p in Te. Where, N is a total number
of points in Te, µBc is a mean of Bc, and ΣBc is a covariance of Bc.

∆TeBc =
√
(Tep − µBc)Σ

−1
Bc

(Tep − µBc)
> where, ∀p ∈ N (4.3)

At the end, for each point p in Te, ∆TeB = {∆TeB1 ,∆TeB2 , ...∆TeBK
}. Therefore,

referred to as a feature transformation task.

Step 2 : Given Te, for each point p in Te, a prediction PTe is made using a classifier CalgB

from step 3 of Train set Engineering module. In short, CalgB (Te) → PTe is calculated.
Referred as PTeCalgB

. Therefore, referred to as a make predictions task.

At the end of Test set Engineering module, results PTeCalgB
, ∆TeB are passed to Model

Applying module.

Model Applying. Finally, this module is responsible for one task: produce the Uncer-
tainty UPTe

(value: 0 and 1). This module uses the outputs of modules Model Building
and Test set Engineering as inputs.
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Given inputs, PTeCalgB
, ∆TeB, from Test set Engineering module, and the trained EFM

model from Model Building module, it generates UPTe
using the Statistical Distance relation

between the train set, Tr, and test set, Te. Therefore, referred to as an uncertainty produce
task.

When there is a mismatch between the input PTe and P ′
Te calculated by EFM, it is referred

as ‘classification prediction error’ or ‘misclassification detection’, making EFM a binary
model. When EFM predicts 1, the EFM predicted a different class based upon the feature
data space representation compared to existing feature value based predictor.

To summarize overall EFM modeling process, first of all, using a subset of train set, we
transformed train set’s feature as Mahalanobis distance and prediction. Following that,
we built an EFM model with engineered feature sets and tested it by changing the test set
feature to Mahalanobis distance and prediction. Finally, the EFM model outputs whether
or not there is ‘misclassification detected’ over test set.

4.4 Summary and Application of EFM

Recently, there has been a sharp growth in the usage of distances and divergences in scien-
tific fields like machine learning. Our primary motive, however, remained to be the absence
of a publicly accessible method that might provide information about the prediction un-
certainty utilizing the relationship between the train and test sets.

First, this chapter provides a thorough analysis of recent developments in the fields of
‘confidence estimation’ and ‘notion of evidence’, covering current techniques and strategies.
Then, we put forth a statistical distance-based evidence function model that identifies and
assesses the degree of misclassificaiotn (in 0/1) of each independent ML model’s prediction
over any new data.

The application of the proposed method is adopted in Chapter 7, where we hypothesize
that it is possible to detect the misclassification of prediction using the relationship between
the train and test sets for different ML models like KNN, ET, and CNN used for Sentinel-2
image scene classification in classifying six classes Cloud, Cirrus, Shadow, Snow, Water,
and Other.

Additionally, in Chapter 8, we contrasted EFM’s performance in “Abbreviating Labeling
Cost for Sentinel-2 Image Scene Classification via Active Learning” with entropy-based
query selection procedures, demonstrating the value of EFM.
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Experimental Datasets

“Instincts are experiments. Data is proof.”
— Alistair Croll

Supervised learning is the machine learning task of learning a function that maps an input
to an output based on example input-output pairs (Russell and Norvig, 2010). It infers a
function from labeled training data consisting of a set of training examples (Mohri et al.,
2018), thus making supervised machine learning heavily data depended. This requires
building a well-structured dataset such that the learning algorithm generalizes from the
training data to unseen instances.

Before we continue, let’s go over a few things surrounding the Sentinel-2 image: Sentinel-2
image is also known as Sentinel-2 Product; each product is a size of 100x100 km2; Level-
1C product comprises Top-of-Atmosphere (TOA) reflectances; scene is the classification of
sections of satellite images into morphological categories e.g., land, water, cloud. Note:
here on wards, we are only going to use Level-1C Sentinel-2 products.

To validate the established approaches, we employed a total of three distinct datasets. The
construction of each dataset is covered in this chapter. To be specific, Section 5.1 presents
an Image Scene dataset made up of 60 Sentinel-2 images that have been labeled into six
classes; Section 5.2 describes a Waterbody dataset made up of 49 Sentinel-2 images that
have been labeled into one class; and Section 5.3 describes two Unlabeled Sentinel-2 images.

5.1 Image Scene Dataset

Hollstein et al. (2016) used false-color RGB images to generate a dataset of manually tagged
Sentinel-2 products. Figure 5.1 and Table 5.1 demonstrate the geographical distribution of
data collection. The dataset consists of images collected globally and contains 6.6 million
points (exactly 6,628,478 points) from 60 different products.

These 60 products has a wide range of surface types and each pixel is classified into one of
the six classes shown in Table 5.2. The entire dataset is structured as product_id, latitude,
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Figure 5.1: Global distribution of scenes.

Table 5.1: Selected Products Geographical Distribution.

Continent No. of Product

Africa 14
America 12
Asia 6
Europe 22
Oceania 6

Total 60

longitude, class. The detailed product-wise number of points for each class can be found
in Appendix A.4.

Table 5.2: Surface Types and Overall Distribution of Classes.

Class Surface Types Points Distribution (%)

Cloud opaque clouds 1031819 15.57
Cirrus cirrus and vapor trails 956623 14.43
Snow snow and ice 882763 13.32
Shadow from clouds, cirrus, mountains, buildings 991393 14.96
Water lakes, rivers, seas 1071426 16.16
Other remaining: crops, mountains, urban 1694454 25.56

Total - 6628478 100.00

As mentioned, Hollstein et al. (2016) used false-color RGB images to classify images. First
of all, Level-1C products (all bands) were spatially resampled to 20m. Afterwards, bands
1, 3 and 8 were used to classify Cloud and Shadow, bands 2, 8 and 10 were used to
classify Cirrus and Water, and bands 1, 7 and 10 were used to classify Snow and Other.
Additionally, the authors used a two-step approach to minimize human error: the labeled
images were revisited to re-evaluate past decisions. Refer Subsection 2.1 to know more
about Level-1C and Level-2A products.

Knowing Level-1C product_id and coordinates for individual pixels, we added surface
reflectance information to each entry to build and assess a ML classification models and
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also added Sen2Cor scene classification class for further comparison with the Sen2Cor
algorithm. In this regard, the overall (input-label) dataset creation process is described in
Figure 5.2, which perform the following steps:

1. For each product_id in Hollstein et al. (2016) dataset, Level-1C products were down-
loaded from CREODIAS platform1;

2. For each downloaded Level-1C product, a corresponding Level-2A product was gen-
erated using Sen2Cor v2.5.5 2 at 20m. Afterwards, for each Level-2A product, Scene
Classification (SCL) was retrieved to compare it with ML models for ML-Sen2Cor
assessment; Here, SCL refers Sen2Cor class, refer Subsection 2.3.3 or Table 2.8;

3. Downloaded Level-1C products were re-sampled to 20m allowing spatial analysis and
13 bands of imagery were retrieved for the ML modeling.

Figure 5.2: Image Scene dataset generation process.

As there are eleven classes in Sen2cor scene images (refer Table 2.8) and only six classes
in Hollstein et al. (2016) dataset (refer Table 5.2) a class mapping was done as presented in
Table 5.3. Thus, the Image Scene dataset is composed of 18 attributes: product_id,
latitude, longitude, B01, B02, B03, B04, B05, B06, B07, B08, B8A, B09, B10, B11, B12,
class, SCL. Here, B refers the band; each band represents the surface reflectance (ρ) value
at a different wavelengths.

1CREODIAS platform is a cloud-based one-stop shop for all Copernicus satellite data and imagery, as
well as the Copernicus services information (https://creodias.eu/).

2Sen2Cor v2.5.5 - http://step.esa.int/main/snap-supported-plugins/sen2cor/sen2cor_v2-5-5/

https://creodias.eu/
http://step.esa.int/main/snap-supported-plugins/sen2cor/sen2cor_v2-5-5/
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Table 5.3: Image Scene dataset - Class Mapping for Sen2Cor Assessment.

Mapped Class Corresponding Sen2Cor Class

Cloud Cloud high probability
Cirrus Thin Cirrus
Snow Snow
Shadow Shadow, Cloud Shadow
Water Water

Other No Data, Defective Pixel, Vegetation, Soil,
Cloud low and medium probability

Surface reflectance is defined as the fraction of incoming solar radiation that is reflected
from Earth’s surface for a specific incident or viewing cases. So, in general, the reflectance
values range from 0.0 to 1.0 and are stored in floating-point data format. Nonetheless,
there are pixels with reflectance greater than 1.0; unlike negative reflectance, objects that
have reflectance greater than 1.0 are not unnatural. Circumstances that would lead to the
observance of reflectance greater than 1.0 are: nearby thunderstorm clouds that provide
additional illumination from reflected solar radiation; the area receiving solar radiation is
directly perpendicular to the sun; surfaces act as mirrors or lenses and reflect incoming
direct sunlight in a concentrated way rather than diffusely, such as shiny buildings, waves,
or ice crystals.

Figure 5.3 details the class-wise ρ value distribution using the violin plot. Here, we can
observe that for each class, the ρ value for each band is different, meaning that each band
has its ρ value according to a different type of surface/class. For example, for all classes,
B10 ρ value is zero, apart from the Cirrus class; this is because B10 is responsible for the
detection of thin cirrus (European Space Agency, 2020).
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Table 5.4 presents the number of points of the dataset per band and class with ρ > 1. We
can observe that the class with a higher proportion of ρ > 1 values is the Snow and Cloud.
This can be explained taking into account that snowy and cloud surfaces reflects incoming
sunlight in a concentrated way rather than diffusely acting as a mirror, producing observed
ρ > 1.

Table 5.4: Number of points with Surface Reflectance (ρ) greater than 1.0.

Bands\Class Other Water Shadow Cirrus Cloud Snow Total

B01 47 229 1076 5013 34334 259562 300261
B02 587 313 2694 5589 47265 285053 341501
B03 190 289 1232 3742 40254 256421 302128
B04 536 429 3855 6897 79380 300538 391635
B05 516 447 4300 8099 84426 305134 402922
B06 546 477 4609 8597 993355 299270 1306854
B07 576 559 4653 8858 121825 290569 427040
B08 517 424 3942 7880 96182 277403 386348
B8A 607 597 4513 8903 133901 281007 429528
B09 0 0 0 6 3730 60674 64410
B10 0 0 0 0 0 0 0
B11 597 0 1 0 10112 0 10710
B12 43 0 0 0 671 0 714

Total 4762 3764 30875 63584 1645435 2615631 4364051

5.2 Waterbody Dataset

Escobar (2020) published a single class dataset of the water-body area consisting of 2.3
million (exactly 2,355,498) water-body points from 49 different Sentinel-2 products/images
each one from a different country. By superposing band 4 (red), band 3 (green), and band
2 (blue), Escobar (2020) was able to reconstruct a true-color satellite image of the water
bodies. To create masks of the water bodies, the author used the Normalized Difference
Water Index (NDWI) (Xu, 2006). By using NDWI and a custom threshold higher than the
one, the author was able to define a mask where white represents water, and black repre-
sents everything else but water. Figure 5.4 display one of the tagged images. The Escobar
(2020) dataset is structured as waterbody name, country name, geometry. Note: here,
published geometry only contained the area with water, resulting in a single class ‘Water’.

To generate waterbody dataset for the experiments, first, waterbody shapefiles were created
using the published geometry. Then, the relevant Level-1C products were downloaded using
the SentinelAPI3. Downloaded Level-1C images were then spatially resampled to 20m (to
allow multispectral analysis) and 13 bands were retrieved. The overall process is described
in Figure 5.5.

3SentinelAPI accepts a GeoDataFrame (Mans, 2011) of bounding boxes covering the shapefile; it then
utilizes the Sentinelsat library (part of SentinelAPI (European Space Agency, 2022j)), which creates a
Python API, exploiting the Copernicus Open Access Hub (Copernicus, 2022) for direct download of the
selected Sentinel-2 Level-1C images.
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Figure 5.4: Waterbody in Kazakhstan (Escobar, 2020). Left: true color image, Right:
mask.

Thus, the Waterbody dataset is composed of 17 attributes: product_id, latitude,
longitude, B01, B02, B03, B04, B05, B06, B07, B08, B8A, B09, B10, B11, B12, class.
Here, B refers the band; each band represents the surface reflectance (ρ) value at a different
wavelengths.

Figure 5.5: Waterbody dataset generation process.
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5.3 Unlabeled Dataset

To have a better grasp of the experimental results presented in next chapters, we randomly
selected two unseen Sentinel-2 images (from a pool of unlabeled images). Here, unseen
means that these two images do not belong to any of the previously mentioned datasets.
They are from two different geographical regions: (1) Fiji, Figure 5.6 and (2) Portugal,
Figure 5.7.

Figure 5.6: Fiji RGB image between (17◦11′04′′ S , 176◦59′59′′ E) and (18◦10′26′′ S,
178◦02′16′′ E) coordinates.

Figure 5.7: Portugal RGB image between (38◦50′56′′ N , 9◦00′00′′ W) and (37◦51′10′′ N,
7◦45′07′′ W) coordinates.
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5.4 Summary

Chapter Experimental Datasets can be summarized as three datasets, Hollstein et al. (2016)
with 6.6 million points divided into six classes (Cloud, Cirrus, Shadow, Snow, Water,
Other), and Escobar (2020) with 2.3 million points with a Water class, were acquired; Image
Scene dataset was built by extending Hollstein et al. (2016) dataset, adding 13 bands and
the Sen2Cor class for each point/pixel; Waterbody dataset was built by extending Escobar
(2020) dataset, adding 13 bands for each point/pixel; a collection of two Level-1C images
as a dataset of Unlabeled Images.





Chapter 6

Image Scene Classification: Modeling
and Results

“There are no such things as applied sciences, only applications of science.”
— Louis Pasteur

As mentioned in Chapter 2, a lot of researchers in the field of remote sensing have re-
cently turned their attention to scene classification, or the segmentation of regions into
morphological categories such as land, ocean, cloud (Mohajerani et al., 2018).

Further, given the continuous increase in the global population, the food manufacturers
are advocated to either intensify the use of cropland or expand the farmland, making land
cover and land usage dynamics mapping vital in the area of remote sensing. In this regard,
identifying and classifying a high-resolution satellite imagery scene is a prime challenge.
Several approaches have been proposed either by using static rule-based thresholds with
limitation of diversity or neural network with data-dependent limitations.

Focusing on the problem of optical satellite image scene classification, this chapter proposes
and evaluates ML models. Furthermore, the proposed ML models were tested against the
Sen2Cor software used for calibrating and classifying Sentinel-2 images scenes.

Using different spectral and temporal resolutions satellite imagery, different CNN-based
models (Li et al., 2019; Mohajerani et al., 2018; Zhang et al., 2019) were proposed to
define cloud masks and land cover change. Further, Baetens et al. (2019) compared 32
reference cloud masks using Maccs-Atcor Joint Algorithm (MAJA) (Lonjou et al., 2016),
Sen2Cor (Louis et al., 2016) and Function of Mask (FMask) (Qiu et al., 2019) respectively
achieving 91%, 90%, and 84% accuracy. Apart from this, while multi spectra/temporal
based methods achieve higher performance over cloud and land cover classification, they
are complex and need multi spectra/temporal data during the learning phase, which is not
always available. Besides, none of the previous studies emphasized the problem of detecting
more than one class (Cloud, Cirrus, Shadow, Snow, Water, Other) using a single ML model.
In this chapter, an inductive approach to learning from different surface reflectance is
undertaken, which simplifies the inference stage of learning and improves the generalization
ability of models.
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The remainder of the chapter is organized as follows: Section 6.1 talks about the different
machine learning algorithms used to develop the classifier models; Section 6.2 details the
experimental setup and evaluation matrix used; Section 6.3 shows the results achieved;
Section 6.4 exhibit in-depth discussion; Section 6.5 compares the use of spectral indices vs.
Sentinel-2 raw bands for image scene classification; and finally, Section 6.6 demonstrates
the practical use of classifier model leading to summary presented in Section 6.7.

6.1 Machine Learning Modeling

In this chapter, we evaluated ensemble methods, Random Forest & Extra Tree, distance
based, K-Nearest Neighbors, and a deep learning based method, Convolutional Neural
Network using the built image scene dataset for satellite imagery scene classification. This
section introduces shortly the used classification algorithms.

Decision Tree (DT) Decision tree is an efficient inductive machine learning tech-
nique (Quinlan, 1996; Kuhn and Johnson, 2013) where the model is trained by recursively
splitting the data (Pal and Mather, 2003). The data splitting consists of a tree structure
root-nodes-branches-leaf, which successively tests features of the dataset at each node and
splits the branches with different outcomes. This process continues until a leaf or terminal
node representing a class is found. Each split is chosen according to an information cri-
terion which is maximized or minimized by one of the ‘splitters’. Each node represents a
feature in a classification category, and each subset specifies a value the node may accept.
A Decision tree structure is shown in Figure 6.1.

Figure 6.1: Decision tree structure (Charbuty and Abdulazeez, 2021).

A decision tree is sensitive to where it splits and how it splits. Generally, the bias-variance
trade-off depends on the depth of the tree: a complex decision tree (e.g. deep) has a low
bias and a high variance. Also, the tree makes almost no assumptions about the target
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function but it is highly susceptible to variance in data making decision trees prone to
overfit (Hastie et al., 2009).

Decision trees were used in many applications, including identification of land cover change
(Al-Obeidat et al., 2015), mapping of global forest change (Hansen et al., 2013) and dif-
ferentiating palustrine wetland types (Wright and Gallant, 2007).

Random Forest (RF) Random Forest (RF) is a tree ensemble algorithm (Bernard
et al., 2009), which aims to reduce the decision tree variance at the small cost of bias.
During the random forest learning process, bagging is used to minimize the variance by
learning from several trees over various sub-samples of the data and/or a subset of the
data-feature space (Belgiu and Drăguţ, 2016).

Bagging is a method of averaging several decisions, and an RF classifier may be thought
of as a collection of decision trees (Elith et al., 2008). The user needs to specify two
parameters to initialize the RF algorithm (Hastie et al., 2009). These parameters are M
and m which, respectively, represent the number of trees to be grown and the number of
variables to be utilized to divide each node. First, N bootstrap samples are obtained from
the training dataset’s (some percentage e.g. first two-thirds) and to assess the accuracy
of the predictions, the remaining of the training data (also known as out-of-bag (OOB)
data) is employed. The optimal split among the predictor variables is then determined by
growing an unpruned tree from each bootstrap sample, where each node has m predictors
randomly picked as a subset (Akar and Güngör, 2012). Unpruned trees are larger trees
with all nodes and branches present (Kwok and Carter, 1990). In the end, any observation
is classified using all the individual trees, and the final decision is averaged.

Extra Tree (ET) The Extreme Random Tree (extra tree) and Random Forest algo-
rithms are comparable because both use multiple decision trees, and as a result, both
have many of the same benefits. Using them both, high-dimensional feature data may be
handled successfully without the need for feature selection, and with high classification
accuracy (Xia et al., 2015).

According to Azpiroz et al. (2021), the main difference between a random forest and extra
tree lies in the fact that, the best splitting threshold or feature is not chosen when the
extreme random tree divides at a node; instead, the splitting node is randomly chosen.
This leads to fewer splitters and more diversified trees to evaluate when training (Geurts
et al., 2006).

K-Nearest Neighbors (KNN) The KNN method assumes that related objects are
located nearby to one another i.e. related items are close together in the data-feature
space. Every data point that is close to another one is assumed to belong to the same
class in KNN. To put it another way, it assigns a new data point a category based on
similarities. These similarity can be distance, proximity, or closeness (Kramer, 2013).

According to KNN algorithms, the nearest neighbor of the categorization-required data
point is denoted by the number k. If k is five, it will search for the five closest neighbors
to that data point.
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Convolutional Neural Networks (CNNs) CNNs are Neural Networks that receive
an input, assign importance learnable weights and biases to various aspects/objects within
the input, and are able to differentiate one input from other. Due to the sparse interac-
tions and weight sharing, Neural Networks (NN) are best suited for processing large-scale
imagery (Liu et al., 2018). When considering CNNs, the connection between the previous
layer and the next layer is referred to as sparse interaction. Whereas, in weight sharing,
layers share the same connection weights.

Recently researchers are proposing complex and deeper structures like, for example, AlexNet
(Krizhevsky et al., 2012), VGGNet (Simonyan and Zisserman, 2014), and GoogLeNet
(Szegedy et al., 2015), having depths of 8, 19, and 22, respectively (Lin et al., 2013a). In
other words, CNN exploits domain knowledge about feature invariances within its struc-
ture and they have been successfully applied to various image analysis and recognition
tasks (Abdel-Hamid et al., 2013), making it an effective technique for labeled tabular data
classification (Brownlee, 2018).

6.2 Experimental Setup

From image scene dataset, ten products (one each from Asia and Oceania, two from Africa
and America, and four from Europe) out of 60 were randomly chosen for the test set, while
the remaining 50 were used to train the proposed classifier models. The train and test set
distribution can be seen in Table 6.1.

Table 6.1: Train and Test sets: Class-wise Point Distribution (%).

Class Train set Test set Whole Dataset

Points Distribution Points Distribution Points Distribution

Cloud 897,504 86.98 134,315 13.02 1,031,819 15.57
Cirrus 780,635 81.60 175,988 18.40 956,623 14.43
Snow 728,012 82.47 154,751 17.53 882,763 13.32
Shadow 835,678 84.29 155,715 15.71 991,393 14.96
Water 954,416 89.08 117,010 10.92 1,071,426 16.16
Other 1,520,085 89.71 174,369 10.29 1,694,454 25.56

Total 5,716,330 86.24 912,148 13.76 6,628,478 100.00

To summarize, we use 50 Products (5,716,330 samples) for training, 10 Products (912,148
samples) for testing, 13 features, one band value for each sample as a feature, and six
classes, Cloud, Cirrus, Shadow, Snow, Water, Other as a label. Python and Scikit-learn
were used as programming languages and libraries, respectively.

Precision, recall and F1 score are performance measures that can be used to evaluate ML
models. Precision is defined as the ratio between the number of correct positive and all
positive results whereas, in recall all relevant samples (all samples that should have been
identified as positive) are considered instead of all positive results; F1 is the harmonic mean
of Precision and Recall. These measures are calculated per class considering one class as
positive and all the other classes as negative using Equations 6.1.
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Precision =
TP

TP + FP
, Recall =

TP

TP + FN
, F1 = 2 ?

Precision ? Recall

Precision+Recall
(6.1)

Here, TP , TN , FP , and FN stand for True Positive, True Negative, False Positive, and
False Negative. When aiming to have an unique performance value, precision, recall and F1
are averaged; this average can be calculated over the per class values (macro-average) or by
summing the true positive, false positive and false negative for all classes and calculating
the performance measures over these counts (micro-average).

To fine-tune the classification algorithms, a RandomizedSearchCV with 5 folds cross-
validation procedure over the training set was used. The assessment was done using the
micro-F1 measure over 200 iterations. Table 6.2 shows the best parameter values for Ran-
dom Forests (RF) and Extra Trees (ET) algorithms. (np.linspace1)

Table 6.2: Fine-tune Parameter values for Random Forests (RF) and Extra Trees (ET)
Algorithms.

Parameter RF ET Search Space

criterion gini gini [gini, entropy, log_loss]
max_depth 20 20 np.linspace(start = 20, stop = 100, num = 20)
min_samples_split 50 10 [2, 5, 10, 20, 50]
min_samples_leaf 1 1 [1]
max_features sqrt sqrt [auto, sqrt, log2]
n_estimators 242 279 np.linspace(start = 100, stop = 300, num = 50)
bootstrap True True [True, False]

KNN parameters were fine-tuned in the same way as described previously (a Randomized-
SearchCV with 5 folds cross-validation and assessment using the micro-F1 measure over
200 iterations) and are displayed in Table 6.3.

Table 6.3: Fine-tune Parameter values for KNN Algorithm.

Parameter KNN Search Space

n_neighbors 1 np.linspace(start = 1, stop = 10, num = 10)
leaf_size 2 np.linspace(start = 2, stop = 30, num = 10)
p 2 [1, 2]
weights uniform [uniform, distance]
algorithm auto [auto, ball_tree, kd_tree,brute]

Using the CNN architecture (LeCun et al., 1989) as a base reference and adopting CNN
architecture presented by Brownlee (2018), we proposed a CNN model consists of an input
layer, 1D convolutional layers, a dropout layer, a max-pooling layer, followed by one flatten,
two dense, and an output layer. The CNN parameter values epochs = 8, batchsize = 32,
filters = 24, and kernelsize = 4 were used during the experiment. Figure 6.2 shows the
CNN model structure.

1numpy.linspace - returns evenly spaced numbers (num) over a specified (start,stop)) interval. https:
//numpy.org/doc/stable/reference/generated/numpy.linspace.html

https://numpy.org/doc/stable/reference/generated/numpy.linspace.html
https://numpy.org/doc/stable/reference/generated/numpy.linspace.html
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Figure 6.2: Proposed Convolutional Neural Network (CNN) architecture (Raiyani et al.,
2021).

Following is a description of each layer:

• Input layer: The input representation of this layer is a matrix value of 13 bands;

• Convolutional-1D layer: This layer is used to extract features from input. Here,
from the previous layer, multiple activation feature maps are extracted by combining
the convolution kernel. In our architecture, we used a convolution kernel size of 4;

• Dropout: A random portion of the outputs for each batch is nullified to avoid strong
dependencies between portions of adjacent layers;

• Pooling layer: This layer is responsible for the reduction of dimension and abstraction
of the features by combining the feature maps. Thus, the overfitting problem is
prevented, and at the same time, computation speed is increased;

• Flatten layer: Here, the (5×24) input from the previous layer is taken and trans-
formed into a single vector giving a feature space of width 120;

• Dense layer: In this layer, each neuron receives input from all the neurons in the
previous layer, making it a densely connected neural network layer. The layer has a
weight matrix W , a bias vector b, and the activation function of the previous layer.

• Softmax activation: It is a normalized exponential function which is used in multi-
nomial logistic regression. By using the softmax activation function, the last output
vector of the CNN model is forced to be a part of the sample class (in our case,
the output vector is 6).

6.3 Classification Results

As mentioned in the previous section, the classification models were assessed over the
test set that comprises 10 products from all five continents. Table 6.4 shows precision,
recall and Table 6.5 shows micro-F1 values for Random Forests (RF), Extra Trees (ET),
K-Nearest Neighbors (KNN), Convolutional Neural Networks (CNN) along with Sen2Cor
Scene Classification (SCL).
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Table 6.4: Precision and Recall Results over the test set: Random Forest (RF), Extra Trees
(ET), K-Nearest Neighbors (KNN), Convolutional Neural Network (CNN) and Sen2Cor
(SCL).

Class Precision Recall Support
RF ET KNN CNN SCL RF ET KNN CNN SCL

Cloud 77 81 71 79 62 91 90 83 90 94 134315
Cirrus 78 82 68 78 91 67 76 56 75 10 175988
Shadow 89 91 70 91 96 77 73 67 75 54 155715
Snow 93 94 81 96 86 88 86 87 86 31 154751
Water 96 93 84 93 84 86 87 83 87 83 117010
Other 74 74 67 74 39 91 96 69 92 97 174369

Overall 83 84 73 84 59 83 84 73 84 59 912148

Table 6.5: Micro-F1 Results over the test set: Random Forest (RF), Extra Trees (ET),
K-Nearest Neighbors (KNN), Convolutional Neural Network (CNN) and Sen2Cor (SCL).

Class RF ET KNN CNN SCL Support

Cloud 83 86 76 84 75 134315
Cirrus 72 79 61 76 18 175988
Shadow 83 81 68 83 69 155715
Snow 90 90 84 91 46 154751
Water 91 90 84 90 84 117010
Other 82 83 68 82 56 174369

Overall 83 84 73 84 59 912148



88 CHAPTER 6. IMAGE SCENE CLASSIFICATION: MODELING AND RESULTS

Analysing Table 6.4 and Table 6.5, the following observations can be made:

Looking at micro-F1, CNN performs similar to Random Forest and Extra Trees. The dif-
ference in micro-F1 is small (almost zero) and we cannot state that CNN outperforms
the others. Moreover, one can state that each algorithm performs better than the oth-
ers on specific classes; for example, ET has higher micro-F1 over classes Cirrus, Cloud,
and Other, whereas RF has higher micro-F1 over Water and CNN over Snow.

Looking at precision and recall for Cirrus and Shadow classes, it is noticeable that Sen2Cor
has high precision but low recall. This means that Sen2Cor is returning very few results
of Cirrus and Shadow, although most of its predicted labels are correct.

Overall, the four Machine Learning algorithms generate models with similar performance
with differences that range from 0% to 18% between the “best” and the “worst” for specific
class. For example, Cirrus has a “best” micro-F1 of 79% with ET and a “worst” micro-F1
of 61% with KNN.

Overall, with regard to the classes, there is a great variation: precision values are above 90%
for classes Snow and Shadow and less than 75% for the Other class; for recall, the highest
values are obtained for the classes Cloud and Other (values above 80%) and the lowest for
the Cirrus and Shadow classes (values between 67% and 77%). Regarding the micro-F1
measure, (except KNN) the only class with values below 80% is the class Cirrus; classes
Snow and Water have values above 90%.

Comparing the performance of ML algorithms with Sen2Cor, especially for the Cirrus and
Snow classes, ML approaches are superior. For these classes, Sen2Cor micro-F1 values are
below 50%; these low values are due to the big difference between precision and recall, for
Cirrus precision is above 90% while recall is 10%; for Snow precision is above 85% and
recall around 30%. Considering the micro-F1 measure, the ML models present an increase
of about 25 points from 59% to 84% when compared to the Sen2Cor Scene Classification
algorithm.

To check if there is a significant difference between Sen2Cor and ML models i.e., if the
difference in micro-F1 is significant or not, the McNemar-Bowker test (McNemar, 1947;
Bowker, 1948) was performed.

The McNemar-Bowker’s test is a statistical test used on paired nominal data with k ×
k contingency tables following a dichotomous trait to determine if there is a difference
between two related groups. Here, k is the number of categories/labels, and the McNemar-
Bowker (B) value is calculated using the Equation 6.2, where, Oi,j is the count of the ith

row and jth column in the crosstab. A crosstab is a table that shows the relationship
between k × k variables.

B =
k−1∑
i=1

k∑
j=i+1

(Oi,j −Oj,i)
2

(Oi,j +Oj,i)
(6.2)

The acquired B value follows approximately a chi-square distribution (Lancaster and
Seneta, 2005), with df = (k − 1)/2 degrees of freedom. The probability density func-
tion is be calculated using Equation 6.3, where, Γ denotes the gamma function, which has
closed-form values for integer (df/2).



6.3. CLASSIFICATION RESULTS 89

f(B, df) =
Bdf/2−1e−B/2

2df/2Γ(df/2)
(6.3)

Using Equation 6.3 for comparing Sen2Cor and ML models, our null hypothesis, the dif-
ference between two groups is statistically significant was proved by obtaining a (p-value)
less-then 0.05.

We randomly picked a image, Figure 6.3 from the test set with the classifications Cloud,
Shadow, and Other, described as white, brown, and green, respectively and created clas-
sification images using the ET model, Figure 6.4 and Sen2Cor, Figure 6.5 to comprehend
the distinctions between the ML model and Sen2Cor.

Figure 6.3: RGB image of Lautoka Area, Fiji between (17◦42′58′′ E , 177◦35′46′′ S) and
(18◦03′24′′ E, 177◦54′01′′ S) coordinates.

After analysing Figure 6.3 closely, it is possible to say that for each cloud present in the
image there is an equivalent shadow. This is not true in Figure 6.5, concluding that the
ML model is classifying cloud and cloud shadow more accurately than Sen2Cor; Sen2Cor
classification is missing the majority of cloud shadows, whereas the ML model captures
them all, Figure 6.4.
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Figure 6.4: Extra Tree classified image of Lautoka Area, Fiji. Color Labels: Cloud (White),
Shadow (Brown), Other (Green).
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Figure 6.5: Sen2Cor classified image of Lautoka Area, Fiji. Color Labels: Cloud (White),
Shadow (Brown), Other (Green).
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6.4 Discussion

This section discusses specific elements of the modeled ML image scene classification algo-
rithms and equivalent assessment with Sen2Cor.

Surface Reflectance and Marginal Variation Assessment : Marginal variance, for example,
can be referred to as a bright cloud reflectance vs white sand reflectance, where the ρ value
of bands is larger due to the characteristics of the surface.

We state that a static rule-based approach, like the one used by Sen2Cor that heavily rely
on surface reflectance, it uses a sensor-specific threshold based method that tends to miss
marginal variation between two surfaces leading to misclassification. To support this claim
and to prove the general-ability of the ML model, we used a specific image, Figure 6.6 with
brighter surface reflectance values (note that this image does not belong to the dataset):
Figure 6.6a shows 3 visible parts: water, coastal area sand and land surface; Figure 6.6b
shows the generated classification images using the ET model and Figure 6.6c shows the
Sen2Cor output. After analysing Figure 6.6 closely, it is possible to say that the bright
coastal area/sand present in the Figure 6.6a is classified as Cloud by Sen2Cor represented
as a white line but, the ML algorithm classifies it as Other which is indeed is the correct
classification. This enables us to conclude that, the ML model is able to better capture
marginal variation in surface reflectance values when compared to Sen2Cor.
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(a) Coastal Area RGB Image.

(b) ML Classification.

(c) Sen2Cor Classification.
Figure 8. A Coastal Area Image (Lisbon, Portugal, between (38◦29’28" N , 8◦55’ W) and (38◦26’11" N,
8◦49’18" W)) with brighter surface reflectance. Color Labels: Water (Blue), Cloud (White), Other (Green).

Since Figure 7b shows shadows of all the clouds, we analyzed the the sensitivity of the ML361

model. For that we randomly selected (not from dataset) three separate L1C image patches shown in362

Figures 9a (Ballyhaunis, Ireland), 9b (Sukabumi. Indonesia), and 9c (Béja, Tunisia). Then we applied363

the ET classifier to check if the classifier was too "pedantic".364

From Figure 9 it can be observed that for each geometric independent region (Ballyhaunis,365

Sukabumi, and Béja), the ML model is capturing, with high precision, the shadows of the (low,366

medium, and opaque) clouds, proving the general-ability of the ML model. To this extent, we can367

say that the ML models are sensitive and can detect even minor shadows (from low and medium368

probability clouds). Moreover, the detection of shadow does not decrease the workable area as the369

classifier is generating a mask and the end-user can still use these workable areas given they might370

belong to the ’shadow’ or ’cloud’ class.371

Further, we studied the biasness of the model towards the achieved results. To do so, we selected372

59 products for training and 1 for testing. The main reason to split the dataset in this way was to make373

sure that the knowledge about a region is not essential to classify that region. This reasoning enables374

to pose the following question: ’will the system be able to classify a new, non seen product with high375

performance?’ To evaluate this, it would be interesting to pick a complete region as test while the rest376

of the points compose the training set.377

We replicated this procedure for each of the 60 products (i.e. using 1 product for test and the rest378

59 products for training). The F1avg results are presented in Table 10.379

Class DT RF ET CNN Sen2Cor Support
Other 63.29 72.3 74.16 74.43 64.96 1694454 (25.56%)
Water 63.81 73.4 76.69 73.88 80.73 1071426 (16.16%)
Shadow 53.98 63.96 61.45 64.63 50.57 991393 (14.96%)
Cirrus 47.58 56.63 42.97 51.58 24.08 956623 (14.43%)
Cloud 65.25 75.08 75.33 72.67 75.04 1031819 (15.57%)
Snow 74.67 84.90 87.00 83.43 61.40 882763 (13.32%)
F1avg 67.95 76.43 76.77 77.54 66.40 6628478 (100%)

Table 10. Scene Biasness Test Results: F1avg values of ML algorithms and Sen2Cor.

Figure 6.6: A Coastal Area Image (Lisbon, Portugal, between (38◦29′28′′ N , 8◦55′ W) and
(38◦26′11′′ N, 8◦49′18′′ W)) with brighter surface reflectance. Color Labels: Water (Blue),
Cloud (White), Other (Green)

.

Pedantic Assessment of ML Model : A pedantic model in machine learning is one that is
highly sensitive to a smallest feature changes; it is overscrupulous (Raiyani et al., 2021).
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Since Figure 6.4 shows shadows of all the clouds, we analyzed the sensitivity of the ML
model. For that we randomly selected (not from dataset) three separate L1C image patches
and applied the ET classifier to check if the classifier was too “pedantic” to the region or
not.

Figure 6.7: Ballyhaunis, Ireland, area between (54◦04′02′′ N , 8◦50′03′′ W) and (54◦01′ N,
8◦44′44′′ W) coordinates.

Figure 6.8: Sukabumi, Indonesia, area between (6◦37′13′′ S , 106◦53′43′′ E) and (6◦38′22′′

S, 106◦55′55′′ E) coordinates.

Figure 6.9: Béja, Tunisia, area between (36◦57′45′′ N , 9◦45′21′′ E) and (36◦57′45′′ N,
9◦48′08′′ E) coordinates.

Figure 6.7 to 6.9 presents the geometric independent region, Ballyhaunis, Sukabumi,
and Béja images and the corresponding classified images. It can be observed that for
each image, the ML model is capturing, with high precision, the shadows of the (low,
medium, and opaque) clouds, proving the general-ability of the ML model. To this extent,
we can say that the ML models are sensitive and can detect even minor shadows from low
and medium probability clouds.
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Here, it’s important to point out that this test of model sensitivity was limited to the
classes Cloud and Shadow.

Separate from the sensitivity analysis and observing the model behavior across all figures,
the detection of shadow does not reduce the usable area since the classifier is constructing
(near to perfect) a mask. Here, the usable area means that the classifier is not stretching
the mask to an area where classes do not exist.

ML Model Biasness Assessment : According to Mehrabi et al. (2021), machine learning
algorithms can be biased towards the data they were trained and cannot perform as sig-
nificant over new data.

Therefore, we studied the biasness of the model towards the achieved results, posing a
question, ‘will the ML model be able to classify a new, non seen product with high perfor-
mance?’

To answer above question: from image scene dataset, we selected 59 products for training
and 1 for testing. The main reason to split the dataset in this way was to make sure that
the knowledge about a region is not essential to classify that region. Meaning, it would
be interesting to pick a complete region as test while the rest of the points compose the
training set; we replicated this procedure for each of the 60 products i.e., using 1 product
for test and the rest 59 products for training; the F1avg results are presented in Table 6.6.

Table 6.6: Scene Biasness Test Results: F1avg values of ML algorithms and Sen2Cor.

Class DT RF ET CNN Sen2Cor Support

Other 63.29 72.30 74.16 74.43 64.96 1,694,454 (25.56%)
Water 63.81 73.40 76.69 73.88 80.73 1,071,426 (16.16%)
Shadow 53.98 63.96 61.45 64.63 50.57 991,393 (14.96%)
Cirrus 47.58 56.63 42.97 51.58 24.08 956,623 (14.43%)
Cloud 65.25 75.08 75.33 72.67 75.04 1,031,819 (15.57%)
Snow 74.67 84.90 87.00 83.43 61.40 882,763 (13.32%)

F1avg 67.95 76.43 76.77 77.54 66.40 6,628,478 (100%)

Equation 6.4 calculates the F1avg value over 60 products for each class where F1pk is the
F1 value of the particular class k within the product p. Np is the number of points of the
class within the product p, T is the total number of points of the class for all products,
and p ∈ (1, 60) is the number of products.

F1avg =
60∑
p=1

(F1pk ×Np)

T
with T =

60∑
p=1

Np (6.4)

When compared to the Sen2Cor, an ML algorithm achieved an overall improvement of
11%. This study ensures that the high achieved results are due to the learning done by the
algorithms, and that the proposed ML models performance is not biased to the test set.

Tree based Model : Tree methods uses information like the Gini index to define the splits
of tree (which might be a useful insight to the end-user). The Gini index is a measure
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of statistical distribution intended to represent different attribute variables influencing the
overall accuracy (Belgiu and Drăguţ, 2016). Using the Gini index, we were able to identify
that B11 and B12 have a substantial effect on the overall model accuracy.

The random forest and extra tree algorithms produce fast and accurate predictions (with
micro-F1 between 83% and 84%). Nonetheless, when using these ensemble methods, the is-
sues of overfitting, and bias/variance tradeoff should not be overlooked.

CNN Model : Regarding the neural network architecture, different CNN-based models were
proposed to classify cloud mask and land cover change using different spectral and temporal
resolutions satellite imagery (Li et al., 2019; Mohajerani et al., 2018; Zhang et al., 2019).
These studies look at different datasets and present different CNN architectures but, to the
best of our knowledge, none evaluates the CNN architecture with the dataset used in this
work making it impossible to make a comparison of the obtained results.

6.5 Image Scene Classification: Bands or Spectral Indices

It is evident from the preceding subsections that the presented machine learning models
outperform Sen2Cor. Although Sen2Cor employs spectral indices to identify some of the
classes (refer subsection 2.3.3), this presents a question, “Should spectral indices be utilized
instead of 13 bands as a feature during ML learning?” Through experimentation, we
attempted to provide a response in this section.

The integrated use of satellite and ground-based observations is widely recognized as the
most feasible approach for the measurement and long-term monitoring of terrestrial vari-
ables needed by scientific investigators and decision-makers around the world. In particular,
Earth observation applications are making use of the unique, synoptic capabilities of an
ever-increasing number of satellite remote sensing imaging systems. A key challenge is to
ensure that such measurements yield self-consistent and accurate geophysical and biophys-
ical data over time and space, even though the measurements are made with a variety of
different sensors under different observational conditions.

According to a study by the International Centre for Integrated Mountain Development
(ICIMOD) (Bhandari, 2012), band ratios are used to remove undesirable effects on recorded
radiances (e.g. variable illumination) since topographic slope and aspect, shadows or sea-
sonal changes can cause differences in brightness values between identical surface materials.
As a result, the interpreter’s ability to correctly identify surface material in an image is
hampered. The band ratio transformations can be used to mitigate these effects. Aside
from that, the Spectral Indices such as Leaf Area and Cumulative Diversity indices have
been widely used to model, predict, and track land change processes (Roy et al., 2015).

In the last two decades (1999 to 2019), Polykretis et al. (2020) examined the impact of
various spectral indices in detecting land cover changes on the Greek island of Crete. Ac-
cording to Dixit et al. (2019), the visible, NIR, and SWIR bands are the most commonly
used reflectance and absorptive properties for developing snow/ice cover mapping; based
on these, they proposed the Snow Water Index (SWI) with an overall accuracy of 93%.
Separately, according to Zhai et al. (2018), the majority of existing cloud/shadow detec-
tion methods are based on visible and infrared spectral band configurations with working
mechanisms relatively complex and computationally complicated; as such, they proposed
an unified cloud/shadow detection algorithm based on spectral indices with a cloud detec-
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tion accuracy of 98% and a cloud shadow detection accuracy of 84%.

Referring to all the previous work and approaches, this section reports simulation study
and encapsulating a result between ‘Classification using surface-specific spectral indices
and Sentinel-2 raw bands’.

Spectral indices are functions (usually, ratios) of the pixel values from two or more spectral
bands in a multispectral image. Spectral indices are designed to highlight pixels showing
the relative abundance or lack of a land-cover type of interest in an image. From the indices
presented in the literature, a subset was chosen specifically to identify each of the specific
six classes. These are enlisted in Table 6.7 and Appendix A.1 presents the individual
spectral indices formulas.

Table 6.7: Classes and Used Spectral Indices.

Class Spectral Indices

Water Normalized Difference Water Index (NDWI)
Sentinel-2 Water Index (SWI)

Shadow Shadow Enhancement Index (SEI)
Saturation Value Different Index (SVDI)

Cloud Cloud Index (CI)
Brightness Index (BI)

Cirrus Sentinel-2 Band 10

Snow

Normalized Difference Snow Index (NDSI)
Normalized Difference Snow Ice Index (NDSII)
S3
Snow Water Index (SWI)

Other Bare Soil Index (BSI)

We use the same experimental setup and matrix from Section 6.2 while conducting experi-
ments. We also used micro-F1 as an evaluation metric; 50 products for training and 10 for
testing; and spectral indices presented in Table 6.7 as features rather than the 13 bands.

Table 6.8 presents the classification results using only the spectral indices and together
with the 13 bands. All the 3 ML models give similar results, having higher F1 values
for Water (90%) and lower F1 values for Shadow (75%). Adding the 13 bands values to
the spectral indices does not seem to improve the results. Moreover, by comparing these
results with the ones obtained using the 13 Bands, it is possible to conclude that the use
of indices does not improve the classifier.

The highest difference in model performance (in percentage) across any two classes is 15,
13, and 21 for RF, ET, and DT, respectively, when looking at individual F1 values (from
13 Bands + Spectral Indices findings). For instance, in RF, Water has a ‘best’ micro-
F1 of 89%, while Cirrus has a ‘worst’ micro-F1 of 74%, resulting in a maximum model
performance differential of 15%.

By analyzing the indices presented in Table 6.7, one notices that the spectral indices only
use information from 10 bands (not included bands: 6/7/8A) of the available 13 bands of
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Table 6.8: micro-F1 with Spectral Indices and 13 Bands.

Spectral Indices 13 Bands + Spectral Indices

Class RF ET DT RF ET DT

Water 90 90 82 89 89 81
Shadow 75 75 62 76 76 66
Cloud 81 82 70 80 81 71
Cirrus 78 79 63 74 76 62
Snow 87 87 81 88 87 83
Other 79 80 66 81 81 71

micro-F1 81 82 70 81 81 72

Sentinel-2. Having this in mind, classifiers were built using raw information from those
10 bands only. The obtained results are presented in Table 6.9 and show that there is no
significant difference on classifiers performance (1% more for Random Forest and Extra
Tress when compared to the results of Table 6.8). Thus, we can definitively conclude that
there is no need to calculate and use spectral indices instead of raw bands for Sentinel-2
Image Scene Classification (at least for studied six classes: Cloud, Cirrus, Shadow, Snow,
Water, and Other.)

The highest difference in model performance (in percentage) across any two classes is 15,
15, and 20 for RF, ET, and DT, respectively, when looking at individual F1 values from
Table 6.8 findings. Additionally, for a single class ‘Water and Cirrus’, both approaches,
raw bands and Spectral Indices exhibits similar performance with a maximum F1 score of
approximately 89-90 and a minimum value of around 62-63.

Table 6.9: micro-F1 using 10 Bands (not included bands - 6/7/8A).

Class RF ET DT

Water 89 89 81
Shadow 76 76 66
Cloud 80 81 71
Cirrus 74 76 62
Snow 88 87 83
Other 81 81 71

micro-F1 81 81 72

Through our experiments, we were able to provide a experimental study that shows that
raw bands of Sentinel-2 can be used as features instead of using different Spectral Indices.
This can be verified from the results presented on Tables 6.8 and 6.9. Moreover, when ‘13
bands + spectral indices’ are used together no improvement is verified (Table 6.8) compared
to results obtained using only 13 bands (refer micro-F1 results presented in Table 6.5 of
Section 6.3).
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6.6 Atmospheric Disturbance Identification

We have demonstrated, using an image scene dataset, that the ML model performs better
than Sen2Cor for Sentinel-2 Image Scene Classification when 13 bands are used as features.
However, it would be reassuring if the same outcomes were found when the proposed ML
model is applied to a real-world issue, such as “Atmospheric Disturbance Identification”.
Atmospheric disturbance can be defined as ‘no disturbance’, image with clear-sky or ‘with
disturbance’, image with cloud, shadow, snow, and water coverage.

Agroinsider (Agroinsider, 2022), a firm that offers solutions for agricultural and environ-
mental sustainability, served as our key source of inspiration for undertaking this assign-
ment. They uses the NDVI value to determine whether an atmospheric disturbance is
present, however, we suggested using the provided ML model to get better outcomes.

To experimentally prove, with the help of Agroinsider, we acquired 170 (5 days apart)
Sentinel-2 images from 05-01-2017 to 03-08-2019 of ten corn parcels from Alentejo region,
Portugal. Figure 6.10 shows the corresponding 2D image of the ten corn parcels (referred
as parcel-1 to parcel-10 onwards).

Figure 6.10: Ten corn parcels from Alentejo Region, Portugal between (37◦56′29.13′′ N,
8◦22′21.95′′ W) and (37◦55′32.44′′ N, 8◦21′02.23′′ W) coordinates.

Figure 6.11 shows the mean NDVI value from 05-01-2017 to 03-08-2019 for parcel-12. In
it, the presence of atmospheric disturbance can be observed as sudden dips in the NDVI

2The same can be replicated to rest of parcels.
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values, supported by the fact that it is not possible to lose crop growth and regain it within
a range of 5 days (the observation cycle time).

Figure 6.11: Mean NDVI value for parcel-1 from 05-01-2017 to 03-08-2019.

Now, using the developed Extra Tree model (refer Section 6.1), the new, unseen optical
images (with 13 bands) of the ten parcels were classified as ‘no atmospheric disturbance
image’, clear-sky or ‘image with disturbance’, cloud, shadow, snow, and water coverage.
Here, each point within the parcel was classified as either 0 if point was classified as
clear sky and 1 when it was classified as atmospheric disturbance. Figure 6.12 presents
the calculated disturbance over dates 14-06-2017 to 01-12-2017, with red line for the ET
model and blue line mean NDVI. These results sync with sudden dips of the NDVI values
supporting the claim of the presence of atmospheric disturbance in the optical image.

Figure 6.12: Parcel-1: Mean NDVI and atmospheric disturbance identification by ML (over
dates 14-06-2017 to 01-12-2017).

Figure 6.12 demonstrates that although the mean NDVI ranged from 0.78 to 0.68 (a dip,
show in black circles) to 0.76 on 08, 13, and 18 Aug’17, the value of atmospheric disturbance
remained at 0.0. Leading us to make a statement that the NDVI value is not sufficient
enough to locate disturbance. In conclusion, the ML model provided in this chapter may
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be applied with success to resolve real-world problems like “Atmospheric Disturbance Iden-
tification.”

6.7 Summary

A summary of the Chapter Image Scene Classification: Modeling and Results is provided
below:

Presents modeling of four different ML algorithms namely, Random Forest, Extra Tree,
K-Nearest Neighbors, and Convolutional Neural Network for Sentinel-2 image scene classifi-
cation; the ML model benchmarking was performed against the existing Sen2Cor package,
officially developed by ESA for calibrating and classifying Sentinel-2 imagery; the ML
model sensitivity, biasness, and generalization ability were tested over geographically inde-
pendent images; experimental proof showing that during image scene classification, spectral
indices doesn’t out weight the raw 13 bands; experimental proof showing that presented
ML model can be used to resolve real-world problems like identification of Atmospheric
Disturbance.

6.7.1 Limitation

Being composed of several modules, each of them with a high level of complexity, it is
certain that our approach does face below limitations:

The proposed ML model is data dependent, and a large amount of labeled data is required
to classify more classes; even though a large amount of geometric independent data was
used during training, ML models did reach a performance bottleneck; because ML models
were trained using 20m resolution images, input images should always be rescaled to 20m;
in such cases, band information regarding a pixel may change; in terms of practical applica-
tion, because ML models are black box models, unlike Sen2Cor, learning and classification
cannot be explained.



Chapter 7

Misclassification Detection:
Modeling and Results

“In the end you should only measure and look at the numbers that drive action,
meaning that the data tells you what you should do next. The goal is to turn data into
information, and information into insight.”

— Alexander Peiniger and Carly Fiorina

Consider a multi-classification problem of determining whether an image scene is a Cloud,
Cirrus, Shadow, Snow, Water, or Other. Given a new input without true class, is it
feasible to determine, whether the new input is classified properly or misclassified? We are
not discussing the related confidence of the classification here, but rather a binary metric
indicating whether a classification is correct or incorrect.

In this chapter, we attempt to identify the misclassification for a Sentinel-2 image scene
classification model using EFM; mainly, we are going to use the results presented in Chap-
ter 6 and formulate and apply the generalized EFM presented in Chapter 4. Furthermore,
given the importance of misclassification, it is critical to examine the Chapter 6 results
in terms of detecting misclassification. The idea of using distance between unseen obser-
vations and the train set and the identification of prediction uncertainty is explored and
developed further.

When we talk about classification results from Chapter 6, misclassification can be observed
as for each class total number of misclassified points out of support points. Table 7.1
details, for each class and classifier, the percentage of misclassification and support. For
example, in the ‘Cloud’ class entry, 16.70%, 9.65%, and 11.69% out of 134315 samples were
misclassified by KNN, ET, and CNN, respectively. In this chapter, we attempted to detect
these misclassified samples using EFM.

The remainder of the chapter is organized as: Section 7.1 talks about EFM modeling
in accordance with previous Chapters 4 and 6 and a general understanding of how mis-
classification can be detected for image scene classification problem; Section 7.2 details the
experimental setup and evaluation matrix used; Section 7.3 shows the results achieved; and
finally, Section 7.4 exhibit in-depth discussion leading to summary presented in Section 7.5.

101
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Table 7.1: Sentinel-2 image scene classification misclassified points (in %).

Class Classifier Support
KNN ET CNN

Cloud 16.70 9.65 11.69 134315
Cirrus 44.24 32.06 25.53 175988
Shadow 33.21 22.09 23.63 155715
Snow 13.39 14.95 18.07 154751
Water 16.83 14.35 13.50 117010
Other 30.78 9.36 20.85 174369

7.1 EFM Modeling

Before modeling the EFM to image scene classification, let us review how the EFM model
works. EFM is framed of four modules: Train set Engineering, Model Building, Test set
Engineering, and Model Applying. Referring to Figure 4.3 of EFM, Figure 7.1 shows the
modeling steps undertaken in this section

Figure 7.1: Problem-specific EFM modeling: main modules and data-flow.

Following Figure 7.1:

Train set Engineering. As mentioned, this module is responsible for four tasks: dataset
split, feature transformation, train a classifier, and make a prediction. Therefore, we have
broken down module into 4 steps.

Step 1 : Given 50 products, Tr, the first step divides it into two subsets A, a smaller, 1
product and B, a larger, remaining 49 products. Therefore, referred to as a dataset split
task. Note: A ∩B = φ and A,B ⊂ Tr, and Tr consist of 13 bands as features F and six
classes as True_class C.

Step 2 : Given A and B from step 1, step 2 divides B into six class-wise subsets, K = 6, one
for each class c ∈ (Cloud, Cirrus, Shadow, Snow, Water, Other), resulting B as a

⋃K
c=1Bc.

Distance ∆ABc is calculated using Equation 7.1 for each point p in A. Where, N is a total
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number of points in A, µBc is a mean of Bc, and ΣBc is a covariance of Bc.

∆ABc =
√

(Ap− µBc)Σ
−1
Bc

(Ap− µBc)
> where, ∀p ∈ N (7.1)

At the end, for each point p in A, ∆AB = {∆AB1 ,∆AB2 , ...∆ABK
}. Therefore, referred

to as a feature transformation task.

As a Result, six Mahalanobis distances, ∆AB1...K
for each point in A, 1 product, from

B, 49 products, using Bc mean and covariance is generated, where c ∈ C and K = 6.

Step 3 : Given B from step 1, any ML algorithm (for example, distance-based, tree-based,
or neural network-based) can be used to train the classifier CalgB . Therefore, referred to
as a train classifier task.

We used K-Nearest Neighbor (KNN), Extra Trees (ET), and Convolutional Neural Net-
work (CNN) classifiers to train over B and the resultant models were CKNNB

, CETB
, and

CCNNB
. Note: to train these classifiers over B, we used the same experimental settings

mentioned in the Section 6.2 of Chapter 6.

Step 4 : Given A from step 1, for each point p in A, a prediction PA is made using a
classifier CalgB from step 3. In short, CalgB (A) → PA is calculated. Referred as PACalgB

.
Therefore, referred to as a make predictions task.

In here, as we trained three classifiers algorithms KNN, ET, CNN, for each point in A,
thus, we will have three predictions, PACKNNB

, PACETB
, and PACCNNB

.

At the end of step 4, for each point in A, 1 product, we have: six Mahalanobis distances,
and three predictions.

The step 1 splits the train set, 50 products, into two subsets A and B, 1 and 49 products,
can be done 50 times (i.e. 50 different combinations). Thus, step 1 to step 4 process
is repeated for each of the 50 products, resulting in a dataset consisting of 50 products
and for each point, six Mahalanobis distances, referred as ∆TrTr′ and three predictions,
referred as PTrCalgTr′

, where algorithms are KNN, ET, CNN.

At the end of Train set Engineering module, outputs Tr, PTrCalgTr′
and ∆TrTr′ are passed

to Model Building module; and outputs Tr and CalgTr
are passed to Test set Engineering

module. Note: CalgTr
is trained over all the 50 products which is passed to Test set

Engineering module.

Model Building. The second module is responsible for training a EFM model using the
inputs Tr, PTrCalgTr′

and ∆TrTr′ from previous module.

The training of the EFM can be done using any ML algorithm which takes two features
as input: Mahalanobis Distance ∆TrTr′ and Prediction PTrCalgTr′

made over Tr using a

classifier CalgTr′ . Meaning, for EFM training, feature set F as (∆TrTr′ , PTrCalgTr′
) and

True Class Label C will come from Tr. Here, algorithms are KNN, ET, CNN.

Model Building module result EMF is passed to Model Applying module.
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For any new observation, the trained Evidence Function Model takes two inputs: the
Mahalanobis distance from 50 products distribution mean using Equation 7.2 and a pre-
diction of the new observation made by the classifier trained over 50 products using some
ML algorithm, in short, CalgTr

.

Test set Engineering. This module is responsible for two tasks, feature transformation
and make a prediction. It uses as inputs Tr, CalgTr

from Train set Engineering module
and test set Te. Therefore, we have broken down module into 2 steps process. Note: step
1 is similar to as Train set Engineering module step 2 process; here, instead of A, we are
using here Te.

Step 1 : Given Tr from step 1 and Te, the next step is to divide Tr into six class-wise
subsets, K = 6, one for each class c ∈ (Cloud, Cirrus, Shadow, Snow, Water, Other),
resulting Tr as a

⋃K
c=1 Trc.

Distance ∆TeTrc is calculated using Equation 7.2 for each point p in Te. Where, N is a
total number of points in Te, µTrc is a mean of Trc, and ΣTrc is a covariance of Trc.

∆TeBc =
√

(Tep − µTrc)Σ
−1
Trc

(Tep − µTrc)
> where, ∀p ∈ N (7.2)

At the end, for each point p in Te, ∆TeTr = {∆TeTr1 ,∆TeTr2 , ...∆TeTrK}. Therefore,
referred to as a feature transformation task.

Step 2 : Given Te, for each point p in Te, a prediction PTe is made using a classifier CalgTr

from step 3 of Train set Engineering module. In short, CalgTr
(Te) → PTe is calculated.

Referred as PTeCalgTr
. Therefore, referred to as a make predictions task.

At the end of Test set Engineering module, results, six Mahalanobis distances, ∆TeTr and
three predictions, PTeCalgTr

for each point in Te, 10 product, are passed to Model Applying
module.

Model Applying. Finally, this module is responsible for one task: produce the Uncer-
tainty UPTe

(value: 0 and 1). This module uses the outputs of modules Model Building
and Test set Engineering as inputs.

Given inputs, PTeCalgB
, ∆TeB, from Test set Engineering module, and the trained EFM

model from Model Building module, it generates UPTe
using the statistical distance relation

between the train set, Tr, and test set, Te. Therefore, referred to as an uncertainty produce
task.

When there is a mismatch between the input PTe and P ′
Te calculated by EFM, it is referred

as ‘classification prediction error’ or ‘misclassification detection’, making EFM a binary
model. When EFM predicts 1, the EFM predicted a different class based upon the feature
data space representation compared to existing feature value based predictor.

If the above steps were not adequate for explaining EFM modeling, as a supplementary, the
(extremely complex yet very easy to understand version of) overall modeling process
is illustrated in Figure 7.2 (Raiyani et al., 2022b). Refer to the process flow from 1 to final
result in the Figure.
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Processes 1 to 3 are equal to Train set Engineering module; processes 4 and 5 are equal
to Test set Engineering module; process 6 is equivalent to Model Building module; and
process 7 is equivalent to Model Applying module.

Apart from that, ∆1 to ∆6 represent the six Mahalanobis distances, one from each class
distribution to a point. Class represents value belonging to a true label, i.e. Cloud, Cirrus,
Shadow, Snow, Water, Other. Original Prediction can be referred as prediction, PTe, made
on test set using trained classifier, CalgTr

, over 50 products, using algorithms KNN, ET,
CNN. In the end, when there is a mismatch between Updated Prediction, P ′

Te, and Orig-
inal Prediction, PTe, is referred to as ‘classification prediction error’ or ‘misclassification
detection’.
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Figure 7.2: Process illustration: generation of Evidence Function Model using Mahalanobis
distances between train and test sets.
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7.2 Experimental Setup

The training of the Evidence Function Model was done using the Extra Trees (ET) algo-
rithm fine-tuned using a 5 folds cross-validation procedure with micro-F1 measure as as-
sessment. Out of 1000 cross-validation fits, the best model reached a micro-F1 of 76.44%,
being this, the proposed Evidence Function Model.

Table 7.2 shows the ET parameter values of EFM model. (np.linspace1)

Table 7.2: Evidence Function Model: Fine-tune Parameter values for Extra Trees (ET)
Algorithm.

Parameter Value Search Space

criterion gini [gini, entropy, log_loss]
n_estimators 177 np.linspace(start = 100, stop = 300, num = 50)
min_samples_split 20 [2, 5, 10, 20, 50]
min_samples_leaf 1 [1]
max_features sqrt [auto, sqrt, log2]
max_depth 24 np.linspace(start = 20, stop = 100, num = 20)
bootstrap True [True, False]

The information about the experimental setup used to build the proposed solution and the
training and test times of the proposed method are presented in Table 7.3.

Table 7.3: Experimental Setup and Time Specifications.

Attribute Value

Language and Library Python and Scikit-learn
System Specification Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz
Train set Engineering 37 minutes
Model Building 4 minutes
Test set Engineering 4 minutes
Model Applying 5 minutes

Precision, recall and F1 score are performance measures that can be used to evaluate ML
models. Precision is defined as the ratio between the number of correct positive and all
positive results whereas, in recall all relevant samples (all samples that should have been
identified as positive) are considered instead of all positive results; F1 is the harmonic
mean of Precision and Recall. These measures are calculated per class (considering one
class as positive and all the other classes as negative) using Equations 7.3, and average of
F1 for all classes, micro-F1 is used.

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

, F1 = 2
Precision · Recall
Precision + Recall

(7.3)

In our experiments, we have defined True Positive, False Positive, and False Negative as
1numpy.linspace - returns evenly spaced numbers (num) over a specified (start,stop)) interval. https:

//numpy.org/doc/stable/reference/generated/numpy.linspace.html

https://numpy.org/doc/stable/reference/generated/numpy.linspace.html
https://numpy.org/doc/stable/reference/generated/numpy.linspace.html
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per Equation 7.4, where i ∈ (KNN, ET, CNN), k ∈ (Cloud, Cirrus, Shadow, Snow, Water,
Other).

TP = misclassification_detection(i,k) − misclassification_detection_error(i,k)
FP = misclassification_detection_error(i,k)
FN = misclassification(i,k) − TP

(7.4)

Using these formulas, the micro-F1 performance of EFM in detecting misclassification for
different ML models is calculated.

7.3 EFM Results

This section presents the evaluation of EFM over different datasets: the image scene (test
set), waterbody, and unlabeled Sentinel-2.

7.3.1 Image scene dataset results

EFM is used to assess three KNN, ET, and CNN Sentinel-2 image scene classifiers, as
discussed in this chapter. Thus, Tables 7.4, 7.5, and 7.6 present the misclassification vs.
misclassification detection of KNN, ET, and CNN models, respectively.

Each table is made up of columns: Misclassification, as seen for each class, as a percent-
age of total misclassified points; Overall Detection, calculated as a percentage of the
total number of misclassified points discovered; Error in Detection, seen as a proportion
of the total number of misclassified points incorrectly identified; Final Detection, seen as
for each class, percentage of misclassified points correctly recognized out of a total number
of misclassified points; Undetected, seen as for each class, percentage of misclassified
points remained undetected; Support, for each class, a total number of test set points.

Table 7.4: Misclassification vs. Misclassification Detection of KNN model.

Class Misclassification Overall
Detection

Error in
Detection

Final
Detection Undetected Support

Cloud 16.70 12.63 1.17 11.46 5.24 134315
Cirrus 44.24 30.87 3.65 27.22 17.02 175988
Shadow 33.21 24.60 6.15 18.45 14.76 155715
Snow 13.39 12.76 7.03 5.73 7.66 154751
Water 16.83 9.50 2.06 7.44 9.39 117010
Other 30.78 28.56 1.11 27.45 3.33 174369

Table 7.4 present the misclassification vs. misclassification detection of the KNN model. To
better understand the results, consider the example of the ‘Cloud’ class entry out of 134315
points: 16.70% (22430 points) were misclassified; 12.63% (16964 points) were detected
misclassified; 1.17% (1571 points as a False Positive) were wrongly detected as misclassified;
11.46% (15392 points as a True Positive) were correctly detected as misclassified; 5.24%
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(7038 points as a False Negative) were remained undetected. Resulting in 68.62% Recall,
90.74% Precision, and 78.14% F1 in misclassified detection. Figure 7.3 shows a visual
representation of the true positive, false positive, and false negative for each class.

Table 7.4 shows that undetected misclassification ranges 13.69% from a minimum of 3.33%
for ‘Other’ to a maximum of 17.02% for ‘Cirrus’; detection error ranges 5.92% from a
minimum of 1.11% for ‘Other’ to a maximum of 7.03% for ‘Snow’; final detection ranges
21.72% from a minimum of 5.73% for ‘Snow’ to a maximum of 27.45% for ‘Other’.

Figure 7.3: Misclassification Detection of KNN model.

Table 7.5: Misclassification vs. Misclassification Detection of ET model.

Class Misclassification Overall
Detection

Error in
Detection

Final
Detection Undetected Support

Cloud 9.65 1.77 0.26 1.51 8.14 134315
Cirrus 32.06 16.98 1.47 15.51 16.55 175988
Shadow 22.09 6.37 2.80 3.57 18.52 155715
Snow 14.95 4.81 1.53 3.28 11.67 154751
Water 14.35 2.62 1.02 1.60 12.75 117010
Other 9.36 5.41 0.32 5.09 4.27 174369

Table 7.5 present the misclassification vs. misclassification detection of the ET model.
To better understand the results, consider the example of the ‘Cloud’ class entry out of
134315 points: 9.65% (12961 points) were misclassified; 1.77% (2377 points) were detected
misclassified; 0.26% (349 points as a False Positive) were wrongly detected as misclassified;
1.51% (2028 points as a True Positive) were correctly detected as misclassified; 8.14%
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(10933 points as a False Negative) were remained undetected. Resulting in 15.65% Recall,
85.31% Precision, and 26.45% F1 in misclassified detection. Figure 7.4 shows a visual
representation of the true positive, false positive, and false negative for each class.

Table 7.5 shows that undetected misclassification ranges 14.25% from a minimum of 4.27%
for ‘Other’ to a maximum of 18.52% for ‘Shadow’; detection error ranges 2.54% from a
minimum of 0.26% for ‘Cloud’ to a maximum of 2.80% for ‘Shadow’; final detection ranges
14.00% from a minimum of 1.51% for ‘Cloud’ to a maximum of 15.51% for ‘Cirrus’.

Figure 7.4: Misclassification Detection of ET model.

Table 7.6: Misclassification vs. Misclassification Detection of CNN model.

Class Misclassification Overall
Detection

Error in
Detection

Final
Detection Undetected Support

Cloud 11.69 4.03 0.01 4.02 7.67 134315
Cirrus 25.53 23.19 6.12 17.07 8.46 175988
Shadow 23.63 7.93 4.24 3.69 19.94 155715
Snow 18.07 2.22 0.50 1.72 16.35 154751
Water 13.50 5.81 4.36 1.45 12.05 117010
Other 20.85 8.31 0.56 7.75 13.10 174369

Table 7.6 present the misclassification vs. misclassification detection of the CNN model.
To better understand the results, consider the example of the ‘Cloud’ class entry out of
134315 points: 11.69% (15701 points) were misclassified; 4.03% (5413 points) were detected
misclassified; 0.01% (13 points as a False Positive) were wrongly detected as misclassified;
4.02% (5400 points as a True Positive) were correctly detected as misclassified; 7.67%
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(10301 points as a False Negative) were remained undetected. Resulting in 34.39% Recall,
99.75% Precision, and 51.15% F1 in misclassified detection. Figure 7.5 shows a visual
representation of the true positive, false positive, and false negative for each class.

Table 7.6 shows that undetected misclassification ranges 12.27% from a minimum of 7.67%
for ‘Cloud’ to a maximum of 19.94% for ‘Shadow’; detection error ranges 6.11% from a
minimum of 0.01% for ‘Cloud’ to a maximum of 6.12% for ‘Cirrus’; final detection ranges
15.62% from a minimum of 1.45% for ‘Water’ to a maximum of 17.07% for ‘Cirrus’.

Figure 7.5: Misclassification Detection of CNN model.

Using Equations 7.3 and 7.4, Precision, Recall, and F1 performance of the Evidence Func-
tion Model in-detecting the misclassification of KNN, ET, and CNN model were calculated
respectively, and the results are presented in Tables 7.7 and 7.8.

Table 7.7: Precision and Recall of EFM in-detecting the misclassification of KNN, ET, and
CNN models.

Class Precision Recall Support
KNN ET CNN KNN ET CNN

Cloud 90.74 85.31 99.75 68.62 15.65 34.39 134315
Cirrus 88.18 91.34 73.61 61.53 48.38 66.86 175988
Shadow 75.00 56.04 46.53 55.56 16.16 15.62 155715
Snow 44.91 68.19 77.48 42.79 21.94 9.52 154751
Water 78.32 61.07 24.96 44.21 11.15 10.74 117010
Other 96.11 94.09 93.26 89.18 54.38 37.17 174369
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Table 7.8: F1 of EFM in-detecting the misclassification of KNN, ET, and CNN models.

Class KNN ET CNN Support

Cloud 78.14 26.45 51.15 134315
Cirrus 72.48 63.26 70.07 175988
Shadow 63.83 25.09 23.39 155715
Snow 43.82 33.20 16.96 154751
Water 56.52 18.86 15.02 117010
Other 92.52 68.92 53.15 174369

After analysing Tables 7.7 and 7.8, the following observations can be made:

In terms of Recall, for KNN, ranges 46.39% from a minimum of 42.79% for ‘Snow’ to a
maximum of 89.18% for ‘Other’; for ET, ranges 43.23% from a minimum of 11.15% for
‘Water’ to a maximum of 54.38% for ‘Other’; for CNN, ranges 46.39% from a minimum
of 57.34% for ‘Snow’ to a maximum of 66.86% for ‘Cirrus’. Overall, for all the classes,
KNN has better recall compared to ET and CNN as the mean recall is 60.32%, 27.94%,
and 29.05%, respectively.

In terms of Precision, for KNN, ranges 51.20% from a minimum of 44.91% for ‘Snow’ to
a maximum of 96.11% for ‘Other’; for ET, ranges 38.02% from a minimum of 56.04% for
‘Shadow’ to a maximum of 94.09% for ‘Other’; for CNN, ranges 74.79% from a minimum of
24.96% for ‘Water’ to a maximum of 99.75% for ‘Cloud’. Overall, for all the classes, KNN
has better precision compared to ET and CNN as the mean precision is 78.88%, 76.01%,
and 69.27%, respectively.

In terms of F1, for KNN, ranges 48.70% from a minimum of 43.82% for ‘Snow’ to a
maximum of 92.52% for ‘Other’; for ET, ranges 50.06% from a minimum of 18.86% for
‘Water’ to a maximum of 68.92% for ‘Other’; for CNN, ranges 55.05% from a minimum of
15.02% for ‘Water’ to a maximum of 70.07% for ‘Cirrus’. Overall, for all the classes, KNN
has better micro-F1 compared to ET and CNN as the mean F1 is 67.89%, 39.30%, and
38.29%, respectively.

Low recall and high precision, EFM detects very few misclassification, but most of detected
points are correct when classified points are feed. The Evidence Function Model employed
for the KNN model performs 29.60% better than ET and CNN in recognizing misclassified
points.

7.3.2 Waterbody dataset results

As mentioned previously, waterbody dataset consists only 2355498 points. Over this single
‘Water’ class dataset, Table 7.9 present the misclassification vs. misclassification detection
of KNN, ET, and CNN models, respectively. Note: the same classifier, trained in previous
chapter, is used to classify these dataset points, i.e. CalgTr

.

To better understand Table 7.9 results, consider the example of KNN model, out of 2355498
points: 39.51% (930657 points) were misclassified; 11.21% (264051 points) were detected
misclassified; 2.41% (56767 points as a False Positive) were wrongly detected as misclas-
sified; 8.80% (207283 points as a True Positive) were correctly detected as misclassified;
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Table 7.9: Misclassification vs. Misclassification Detection of KNN, ET, and CNN models.

Classifier Misclassification Overall
Detection

Error in
Detection

Final
Detection Undetected

KNN 39.51 11.21 2.41 8.80 30.71
ET 40.04 17.11 0.26 16.85 23.19
CNN 45.29 12.56 0.03 12.53 32.76

30.71% (723373 points as a False Negative) were remained undetected. Resulting in 22.27%
Recall, 78.50% Precision, and 34.70% micro-F1 in misclassified detection.

Similarly, for ET model, out of 2355498 points: 40.04% (943141 points) were misclassified;
17.11% (403025 points) were detected misclassified; 0.26% (6124 points as a False Posi-
tive) were wrongly detected as misclassified; 16.85% (396901 points as a True Positive)
were correctly detected as misclassified; 23.19% (546239 points as a False Negative) were
remained undetected. Resulting in 42.08% Recall, 98.48% Precision, and 58.96% micro-F1
in misclassified detection.

Similarly, for CNN model, out of 2355498 points: 45.29% (1066805 points) were misclas-
sified; 12.56% (295850 points) were detected misclassified; 0.03% (706 points as a False
Positive) were wrongly detected as misclassified; 12.53% (295144 points as a True Posi-
tive) were correctly detected as misclassified; 23.19% (771661 points as a False Negative)
were remained undetected. Resulting in 27.67% Recall, 99.76% Precision, and 43.32%
micro-F1 in misclassified detection.

Using Equations 7.3 and 7.4, Precision, Recall, and F1 performance of the Evidence Func-
tion Model in-detecting the misclassification of KNN, ET, and CNN model were calculated
respectively, and the results are presented in Table 7.10.

Table 7.10: Precision, Recall, and micro-F1 of EFM in-detecting the misclassification of
KNN, ET, and CNN models.

Classifier Precision Recall micro-F1

KNN 78.50 22.27 34.70
ET 98.48 42.08 58.96
CNN 99.76 27.67 43.32
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Analysing Table 7.9 and 7.10:

The undetected misclassification ranges 9.57% from a minimum of 23.19% for ET to a
maximum of 32.76% for CNN; detection error ranges 2.38% from a minimum of 0.03% for
CNN to a maximum of 2.41% for KNN; final detection ranges 8.05% from a minimum of
8.80% for KNN to a maximum of 16.85% for ET.

In terms of Recall, ranges 19.81% from a minimum of 22.27% for KNN to a maximum of
42.08% for ET; overall, ET has better recall compared to KNN and CNN.

In terms of Precision, ranges 21.26% from a minimum 78.50% for KNN to a maximum of
99.76% for CNN; overall, CNN has better precision compared to KNN and ET.

In terms of micro-F1, ranges 24.26% from a minimum 34.70% for KNN to a maximum of
58.96% for ET; overall, ET has better micro-F1 compared to KNN and ET.

Further, to visually analyze the water-body classification vs misclassification detection,
randomly 16/49 water-bodies RGB images are shown in Appendix C Figure C.1.

7.3.3 Unlabeled dataset results

As mentioned previously, two unlabeled Sentinel-2 images are chosen to have a better
grasp of the differences between the ML model classification and misclassification detection.
Note: the same classifier, trained in previous chapter, is used to classify these images, i.e.
CalgTr

.

Figure 7.6 shows the Fiji Sentinel-2 Level-1C RGB image, as well as the results of the
classification and misclassification detection. From figure, below observations are made:

• For KNN classified image, KNN has misclassified ‘Water’ as ‘Cloud’ and ‘Other’ as
‘Snow’. Out of those misclassified points, most of them are detected by EFM.

• For ET classified image, ET has misclassified ‘Other’ as ‘Cloud and Snow’. Out of
misclassified points, most of them are detected by EFM.

• For CNN classified image, CNN has misclassified ‘Water’ and ‘Other’ as ‘Shadow,
Cloud, and Snow’. Out of misclassified points, for ‘Shadow’, very few, and, for ‘Cloud
and Snow’, most of them are detected by EFM.

• In terms of the overall classification, CNN performs the worst while ET performs
the best; however, in terms of overall misclassification detection, CNN performs the
worst while KNN and ET performs the best.

Figure 7.7 shows the Portugal Sentinel-2 Level-1C RGB image, as well as the results of the
classification and misclassification detection.

From Figure 7.7, below observations are made:

• For KNN classified image, KNN has misclassified ‘Water, Shadow, and Other’ as
‘Cloud, Cirrus, Snow and Other’. Out of those misclassified points, most of them are
detected by EFM.
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(a) Fiji, Sentinel-2 RGB image.

(b) Classification vs. Misclassification Detection of KNN, ET, and CNN models.

Figure 7.6: Classification represent the output from the ML classifier (KNN, ET and
CNN), and Misclassification Detection shows the error detected over classified images.
Color labels: Water as Blue, Shadow as Brown, Cirrus as light Purple, Cloud as White,
Snow as Cyan, Other as Green, Error as Red.
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(a) Portugal, Sentinel-2 RGB image.

(b) Classification vs. Misclassification Detection of KNN, ET, and CNN models.

Figure 7.7: Classification represent the output from the ML classifier (KNN, ET and
CNN), and Misclassification Detection shows the error detected over classified images.
Color labels: Water as Blue, Shadow as Brown, Cirrus as light Purple, Cloud as White,
Snow as Cyan, Other as Green, Error as Red.
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• For ET classified image, ET has misclassified ‘Water, Shadow, and Other’ as ‘Cloud,
Cirrus, Snow and Other’. Out of misclassified points, most of them are detected by
EFM.

• For CNN classified image, CNN has misclassified ‘Shadow’ and ‘Other’ as ‘Cloud,
Cirrus, and Snow’. Out of misclassified points, most of them are detected by EFM.

• In terms of the overall classification, KNN and CNN perform the worst while ET
performs the best; however, in terms of overall misclassification detection, all three
perform equally best.
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7.4 Discussion

This section discusses specific elements of the EFM in terms of its modeling and working
principle and its output with respect to the classifiers of of Chapter 6.

EFM Results: Based on the results in Tables 7.8 and 7.9, it is clear that the KNN clas-
sifier outperforms the ET and CNN in terms of misclassification detection. Although the
proposed function for measuring classification prediction error is independent of the classi-
fication algorithm, the proposed model used over a distance-based classifier outperformed
tree-based and neural network-based classifiers. This leads to a claim that a ‘distance-
based classifier has a high correlation between true prediction vs false prediction in terms
of Mahalanobis distance measurement.’ This claim is supported by the Table 7.8 show-
ing that the Evidence Function Model with KNN performs 29.60% better for identifying
misclassified.

Error in EFM Results: Based on the findings in the preceding section, we believe that
quantifying the error made by the Evidence Function Model (as False Positive) is an
important step toward determining a model’s suitability. It also explains the experimental
data-space distribution in terms of the Mahalanobis distance. The model’s suitability is
demonstrated in Tables 7.4 to 7.6, where the total mean error in misclassification detection
is 3.53%, 1.23%, and 2.63% for the KNN, ET, and CNN models, respectively; for the
waterbody dataset, the error in misclassification detection is 2.41%, 0.26%, and 0.03% for
the KNN, ET, and CNN models, respectively.

EFM Modeling : Following EMF modeling, Train set Engineering module steps 1 and 4,
task Data Split and Prediction, input data was divided into A, 1 product and B, 49
products. During the experimental process, when different data splits were made, the
question ‘why is the classification of 1 product done using 49 products?’ was raised.
Reasoning, to take advantage of the relationship inform-of statistical-distance/data-space
from one product to 49 products for true vs predicted class. As a result, each product in
the training set generated sufficient evidence/explanation for the predicted class, allowing
us to train a machine learning EFM on the generated data.

Consider Figure 7.8 for a Parallel Coordinates (Inselberg, 1985) visualization of the six
Mahalanobis Distances from a test set to a train set for true classification vs. misclas-
sification to gain a better understanding of the relationship between statistical distance
and data-space among train test sets. (Note: in this case, classifiers were trained with 50
products and tested with 10 products.)

Different plots in Figure 7.8 depict the statistical pattern recognition (Iwamura et al., 2000)
between correct/incorrect prediction and train samples. In the KNN true classification vs.
misclassification plot for class ‘Snow’, plot six, for example, the Mahalanobis distance be-
tween train set ‘Water’ distribution and test set points is much greater than 150+ for
misclassification compared to true classification. Similarly, the Mahalanobis distance be-
tween the ’Cirrus’ distribution in the train set and the test set points ranges from 100 to
150 for true classification versus misclassification. Thus, Figure 7.8 explains the predicted
class and its relationship to a train set in terms of Mahalanobis distance and data space
representation.
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Figure 7.8: Six Mahalanobis distance based Parallel Coordinates visualization of test set
from train set: True classification vs. Misclassification for KNN, ET, and CNN classifiers.
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Mahalanobis distances as a Feature for Image Scene Classification: The image scene pixel
classifier was trained in Chapter 6 using the 13 raw bands as features. It would be inter-
esting to evaluate the performance of a classifier trained with Mahalanobis distances as
features rather than raw bands.

Referring to the Train set Engineering module of the EMF modeling section, 13 raw band
values were transformed into six Mahalanobis distances for each point in 50 products.
Table 7.11 compares the classifier trained with 13 bands to Mahalanobis distances tested
over 10 products using modified six Mahalanobis distances as a feature set. The overall
micro-F1 score for KNN and ET did not change considerably; for CNN, the micro-F1
declined by 6.00% when the Mahalanobis distances were used as features.

Table 7.11: Image Scene Classification - 13 Bands vs. Mahalanobis distances.

Class Using 13 Bands Using 6 Distances2

KNN ET CNN KNN ET CNN

Other 68 83 82 67 78 70
Water 84 90 90 77 88 87
Shadow 68 81 83 62 73 70
Cirrus 61 79 76 72 80 83
Cloud 76 86 84 80 88 75
Snow 84 90 91 84 87 89

micro-F1 73 84 84 73 82 78

Aside from our primary goal of identifying misclassification, the Mahalanobis distances
could be used as extra features when training a classifier. Following this logic, we trained
the classifiers using 13 raw bands + six Mahalanobis distances as feature space and com-
pared the obtained results with only 13 bands, Table 7.12 presents them. From the Table,
it is possible to conclude that for all three ML models, using 13 bands + 6 Mahalanobis
distances as feature increases the micro-F1 score.

Table 7.12: KNN, ET, and CNN: result comparison between model trained using 13 bands
vs. 13 bands + 6 Mahalanobis distance over test set.

Class Using 13 Bands Using 13 Bands + 6 Distances2

KNN ET CNN KNN ET CNN

Other 68 83 82 69 83 80
Water 84 90 90 78 91 89
Shadow 68 81 83 63 82 80
Cirrus 61 79 76 72 79 80
Cloud 76 86 84 81 86 89
Snow 84 90 91 84 90 88

micro-F1 73 84 84 74 85 84

According to the results in Table 7.11, six Mahalanobis distances as feature classifiers per-
formed marginally worse/less than 13 Bands, whereas having them as additional features,

2KNN and ET are trained using default values whereas CNN using Section 6.2 settings.
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performed the same/marginally better, can be seen in Table 7.12.

7.5 Summary

A summary of the Chapter Misclassification Detection: Modeling and Results is provided
below:

Using the generalized concept of EFM presented in Chapter 4, introduced modeling of
EFM for Sentinel-2 image scene classification problem; experimental demonstration prov-
ing EFM can identify misclassification for the problem of Sentinel-2 image scene classifi-
cation; generalization ability of EFM was tested across different datasets; and presented
a discussion demonstrating the use of Mahalanobis distances as a feature for image scene
classification.

7.5.1 Limitation

Being composed of several modules, each of them with a high level of complexity, it is
certain that our approach does face below limitations:

The proposed model must compute the Mahalanobis distance from the train set for each
new input, the computation complexity may be considerable if large volumes of images are
supplied; for output-sensitive applications where false negatives are critical, our model with
a low recall cannot be employed; we only addressed pixel-level scene classification in our
trials, thus we cannot comment on EFM’s performance on object-level classification tasks;
similarly, we cannot comment on the performance of the EFM model on other domain
datasets like text or audio data.





Chapter 8

Abbreviating Train Cost: Modeling
and Results

“Perhaps we should all take a minute to reflect not only on making AI more intelligent
& effective but rather on how it might assist humankind.”

— Stephen Hawking

As mentioned in Chapter 2, a lot of researchers in the field of remote sensing have re-
cently turned their attention to scene classification, or the segmentation of regions into
morphological categories such as land, ocean, cloud (Mohajerani et al., 2018).

Reiterating from Chapter 3, as paired-label datasets have been enriched throughout time,
supervised machine learning has become an essential stage in every problem-solving pro-
cess. When there aren’t enough manual labels for the massive amount of publicly available
data, on can consider an active learning approach.

For the pixel-based image scene classification case, in active learning scenario, a algorithm
rates the unlabeled pixels based on predefined criteria and automatically selects those that
are deemed to be the most valuable for labeling. The expert then manually labels the
selected pixels, and the procedure is repeated. The system generates the minimum best
collection of samples, suboptimal set, achieving a predefined classification accuracy.

In Chapter 6, we presented ML models trained using 50 labeled Sentinel-2 images and
evaluated over 10 images, and the highest F1-micro attained by Extra Tree (ET) model
was 84% for image scene classification.

Now, “Is it possible to use fewer labeled samples S (where S <<< 5.7 millions) during the
training phase and achieve the same accuracy of 84% over the test set?”.

To answer above, in this chapter, we have proposed a Generalized Sampling Algorithm and,
with experimental results, proved its working principle. Also, the goal of the presented
work here is to elaborate more broadly on the usefulness of Evidence Functions Model as
a query selection methodology, comparing EFM’s performance in active learning.

Given the importance of scene classification, this chapter presents an active learning ap-

123
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proach for reducing Sentinel-2 image scene classification training data.

The remainder of the chapter is organized as follows: Section 8.1 proposes and talks about
general understanding of proposed sampling algorithm which can work with any query
selection methods; Section 8.2 presents two selection methods and its usage with proposed
sampling algorithm is showcased in Section 8.3; Section 8.4 details the experimental setup
used; Section 8.5 shows the results achieved; and finally, Section 8.6 exhibit in-depth
discussion leading to summary presented in Section 8.7.

8.1 Sampling Algorithm

In Chapter 3, we detailed three: membership, stream, and pool based sampling methods.
We evaluated the commonly used pool-based sampling strategy in our work, in which the
most useful data samples are chosen from a pool of unlabeled data using some selection
methods or informativeness measures explained in the next section.

Table 3.2 of Chapter 3 describes different existing selection methods that encompass the
sampling methods stated above. Taking them all into account, a Generalized Sampling
Algorithm 1 is formulated. Here, micro − F1ac represents the micro-F1 score obtained
using active learning methods. (f1_score library 1.)

Algorithm 1 Generalized Sampling Algorithm
Input:

Unlabeled dataset U.
Initial train set X. Where, X <<< U
Test set T (with data-label pair).

Output:
Optimal dataset S. Where, X < S < U

1: procedure sampling_strategies(U,X, T )
2: micro-F1ac = 0
3: S = X
4: for S < U do
5: Train classifiers C1 and C2 over S.
6: Using C1 calculate Upred and using C2 Tpred.
7: micro-F1ac = f1_score(Ttrue, Tpred) . f1_score is a library from sklearn.metrics
8: if micro-F1ac > F1 then return F . F1 is a predefined micro-F1 score over

test-set
9: else

10: select E samples from U using Mi(S,U, Upred). . Here, for each class in U ,
E samples are selected. Mi is a sampling strategy

11: S = S ∪ E . Updating S with the E chosen samples
12: U = U \ E . Removing E chosen samples from U
13: end if
14: end for
15: end procedure

The algorithm takes three inputs: an unlabeled dataset U , an initial train-set set X <<<

1https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
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U , and a test set T containing a data-label pair and outputs an optimal dataset S. After
considering micro-F1ac = 0 with S = X, classifiers C1 and C2 are trained over S and
predictions over U and T are made resulting, Upred and Tpred, respectively. Ttrue and Tpred

are later used to update micro-F1ac. If micro-F1ac achieves a certain level of accuracy, the
optimal dataset S is returned; otherwise, E samples are chosen from U for labeling and
added to S. This procedure is repeated until the optimal dataset is found. Here, E is
chosen not at random but rather according to a problem-oriented heuristic that aims to
maximize the classifiers’ performance. The E points identified as the most informative are
added to S.

8.2 Selection Methods

In our experiments, two selection methods are used: Entropy based, referred to as Men

where M stands for method and en for entropy and Mahalanobis distance based, referred
as Mmd with md referring Mahalanobis distance.

8.2.1 Entropy based method

The conditional Entropy is an information-theoretic measure of a random variable uncer-
tainty (Shannon, 1948b). The entropy measurement, is the most prominent measurement
used in active learning pool-based sampling processes.

The conditional Entropy is computed using Equation 8.1, where y is the class, with
y ∈ Y = y1, y2, ..., yk and P (y|x) is the a posteriori conditional probability. H(Y |x) is
the uncertainty measurement function based on the classifier’s posterior distribution en-
tropy estimation (Roy and McCallum, 2001a). This measure, also known as traditional
uncertainty sampling (Nguyen et al., 2022), which will be the baseline for the experiments.

H(Y |x) = −
∑
y∈Y

P (y|x) logP (y|x) (8.1)

8.2.2 Mahalanobis distance based method

In Chapter 7, we conjecture that, given a train test split and different classifiers built
over the train set, it is possible to find an Evidence Function for the prediction using the
Mahalanobis distance relation between the train and the test sets.

Knowing the prediction error can be used as an additional feature in the field of ‘Disagree-
ment based Active Learning’ (Dasgupta and Langford, 2009). Here, idea is to query from
dense regions where EFM predictions P ′(X) mismatch with classifier predictions P (X).
The reasoning is that measuring the prediction error can aid in the generation of labeled
datasets, with human input required only for misclassified data (Hanneke, 2014).

The Mahalanobis Distance ∆ between a point xi and a distribution D with mean µ and
covariance matrix Σ is given by Equation 8.2.

∆ =
√
(xi − µ)Σ−1(xi − µ)> (8.2)
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8.3 Modeling Active Learning

Given the image scene dataset, Tr = 5, 716, 330 labeled training points from a set of classes
Cloud, Cirrus, Shadow, Snow, Water, Other described by a set of attributes 13 Bands and
Te = 912, 148 testing points, the formulation of active learning can be done as:

Looking at the Algorithm 1, the idea is to start by using S ⊂ Tr points for training, and
predict the rest of the U points where, U = Tr \ S and Te is the set of test points. Over
the Te points, the trained model will achieve some performance. Subsequently, among the
U predicted samples, find the E points with highest uncertainty using Entropy and EFM
methods for labeling and added to S. This process will continue until the trained model
reaches a performance higher or equal to 84% resulting in optimal S <<< Tr samples.

Entropy is computed for each prediction using Equation 8.1 in step-10 of the generalized
Algorithm 1, provided with U and Upred. Following that, a total of E samples are selected
for the highest entropy value.

The Mahalanobis distance for each point in S to U is computed using Equation 8.2 in step-
10 of the generalized Algorithm 1, provided with three inputs S, U , and Upred. Following
that, a total of E samples are selected using their probabilistic measure based on the
discovered misclassification points over U . In other words, the top E samples with high
EFM confidence are chosen.

8.4 Experimental Setup

Table 8.1 presents the experimental setup used to build the proposed solution. Here, we
have used the same EFM setup mentioned in Section 7.1; Batch Size refers to every
iteration per class, the number of samples to be added in S; Max Iteration refers to
how many maximum iterations of adding labeled samples should continue; Max. No.
of Samples Labeled refers to the maximum number of labeled samples that should be
added during the active learning process. Note: Because the active learning process is
computationally expensive, we have established a maximum limit of 20000 labeled samples
to be inserted per class in S throughout our experiments, making the maximum limit of
S = 20000∗6 as we have six classes. Thus, a combination of Batch_Size∗Max_Iteration∗6
is proposed which never exceeds 120000.

Table 8.1: Experimental setup.

Attribute Value

Language and Library Python and Scikit-learn
System Specification Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz

Evidence Function Setup Same setup as Section 7.1

[Batch Size, Max Iteration]
[E,N ]

[10, 2000], [50, 400], [100, 200], [200, 100],
and [500, 40]

Max. No. of
Samples Labeled

120,000 (initially E ∗ 6 up to 20, 000 ∗ 6)
i.e. E ∗N ∗ 6 ≤ 120000
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The fifth step of the Generalized Sampling Algorithm 1 shows the training of classifiers C1

and C2. We employed the Extra Trees technique as a classifier in this case, and Table 8.2
outlines the algorithm settings. Note that the parameters for C1 are chosen in such a way
that we may have a four-digit probability value; for C2, the same parameters as specified
in Table 6.2 are chosen as we predict the test set.

Table 8.2: Extra Trees (ET) Algorithm Parameters.

Parameter C1 C2

criterion gini gini
n_estimators 1000 177
min_samples_split 1 20
min_samples_leaf 1 1
max_features sqrt sqrt
max_depth None 24
bootstrap True True

Note that, during the initialization phase (i.e. 0th iteration), for each class, E labels are
used; following that, every iteration within Algorithm 1, adds E ∗ 6 manual labels (by
Oracle) from the Upred class. The number 6 denotes the number of classes in the dataset.
Note: These added samples do not have to be exactly E samples for each class.

8.5 Training Cost Reduction Results

Table 8.3 shows the total number of labels required to attain micro-F1ac > micro-F1 for
various batch sizes E. Note that the total number of labels added would never exceed
20, 000 ∗ 6. micro-F1ac represents the micro-F1 score obtained using active learning meth-
ods. Table also includes the computational time required to achieved micro-F1ac.

Consider the following for a better understanding of the results: for method Men, with
batch size E = 50, the micro-F1ac reached 82.75% after 400 iterations (i.e. after adding
120000 labels.); with batch size E = 100, the micro-F1ac was able to attain, the desired
micro-F1 84% after 81 iterations (i.e. after adding 48600 labels).

From Table 8.3 one can say that:

For batch sizes E = 100 and 200, Mmd outperforms Men by 79 and 9 iterations, 2 and
3 compared to 81 and 12, (i.e. 47,400 and 10,800 labels), respectively. This means that
for these batch sizes, by using Mahalanobis distance-based selection method, the required
number of training samples are reduced by 99.98% and 99.92% while achieving the same
level of accuracy as using the complete train set; for batch size E = 100 and 200, Men was
able to reduce training samples by 99.15% and 99.73%;

For a batch size E = 50, Mmd is able to achieve 84% micro-F1 in 10 iterations (i.e. 3000
labels) while Men was unable to achieve it; for batch sizes of E = 10, even after 2000
iterations, no strategy was able to achieve the same level of accuracy as the full train set;
for a batch size of E = 500 as the initial training set, the same degree of accuracy as the
whole train set was obtained, hence no further labels were added.
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Table 8.3: Total number of labels added to reach micro-F1 for different batch sizes E.

Method batch size
E

iterations
N

labels added
E ∗N ∗ 6 micro-F1ac

Computational
Time

Men

10 2000 120000 72.18 108 hours
50 400 120000 82.75 21 hours

100 81 48600 84.03 4 hours
200 12 14400 84.01 36 minutes
500 0 0 85.19 NA

Mmd

10 2000 120000 80.08 388 hours
50 10 3000 84.24 3 hours

100 2 1200 84.19 28 minutes
200 3 3600 84.65 41 minutes
500 0 0 85.19 NA

8.6 Discussion

This section discusses specific elements of the modeling sampling algorithm and equivalent
assessment of presented selection methods.

Training Label Cost : To visually analyse the results, Figures 8.1 and 8.2 illustrates the
performance obtained over the test set on each iteration for Men and Mmd methods for
different batch sizes E. (Y axes: micro-F1 over Test-set and X axes: No. of Training
Samples.)

Figure 8.1: A graphical performance of Entropy-based method (Men) based sampling
strategy for various batch sizes E.

After analysing Table 8.3, Algorithm 1 and Figures 8.1, 8.2, the following observations and
discussions are made:

Statistically (Cohn et al., 1996b), the ‘active learning result curve’ should rise as more
informative labels are added, however, this is not the case with Figures 8.1 and 8.2, micro-
F1 result curve; Compared to the Mmd, the Men approach has less variance between the
beginning and end of the iterations; A fair explanation would be that for method Mmd,
added points have a greater heterogeneity to test set, also there might be a presence of
numerous clusters containing similar information among test set data points; When Mmd

adds a new point to the train set S, which is a heterogeneous point to the test set point, all
the related points within test set are misclassified as well, resulting in a greater variance
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Figure 8.2: A graphical performance of Mahalanobis distance method(Mmd) based sam-
pling strategy for various batch sizes E.

between the beginning and end of the iteration or dropping of the active learning result
curve.

Initial Training Sample Selection: In our experiments, the initial training samples are se-
lected randomly using the train_test_split function2 of sklearn; we kept shuffle = True
and a fixed random seed for reproducibility. Also, to observe the effect of initial training
sample selection, we kept Shuffle = False, meaning the selection is not random, and the
grouped E samples from each image are considered for selection. Figure 8.3 shows the per-
formance of both randomly and grouped selection methods for different numbers of initial
samples. As can be seen, the random sample selection approach outperforms the grouped
one. Furthermore, for random selection, using 250+ samples or more the performance
obtained is always above 84%, implying that the initial training sample size does not need
to exceed 250+ using random selection for this dataset.

Figure 8.3: Initial training samples selected (random vs grouped).

Myopic vs. Batch Mode Active Learning : In our experiments, we did not evaluate whether
the picked points were information redundant or not; irrespective of the method (i.e. Men or
Mmd), the generalized sampling algorithm 1, selects the top E samples without considering
their informative relation. The drawback of choosing the top E samples is that some of
the selected samples Ê ⊂ E might provide enough information to the learner regarding
remaining samples (i.e. E \ Ê), leading to redundancy among the selected samples and
generating extra labeling. Some of the recent research (Citovsky et al., 2021) uses a
clustering step after selecting the top E to diversify and select only Ê samples.

2https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_
split.html

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
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Batch Size E: According to the Shao et al. (2019), when more samples are chosen at the
beginning of the training process, fewer samples may be used in later phases to exploit data
recommendations. If more samples were allocated to later iterations, the model would have
higher variation in the early iterations but a better chance of biasing samples for active
learning in the later rounds. Lourentzou et al. (2018), on the other hand, states that the
optimal batch size is determined by the dataset and machine learning application to be
addressed.

In our experiments, we kept, in each iteration, a batch size equal to the initial training
sample size. The “Adaptive Batch Mode Active Learning” (Chakraborty et al., 2015) was
not explored.

Computational vs. Training Label Cost : Table 8.3 show that the Men method has a lower
training label cost than Mmd. In comparison to Men, Mmd has a lower computational
cost. Depending on the nature of the dataset and actual application, one approach may
be favored over the other based on batch size E and the trade-off between computational
and training label cost.

Reasoning for High Results: In remote sensing, image classification differs from traditional
classification problems as the labeled dataset often consist of dense regions. This means
that for any given class say ‘Water’, labeled images would have ample similar (high dense)
data points representing ‘Water’ pixels. To verify our claim, Figure 8.4 presents the class-
wise surface reflectance value distribution of the image scene dataset using the violin plot.

Figure 8.4: Image scene dataset: class-wise surface reflectance value distribution over
13 Bands (Figure 5.3 from Section 5.1).

Here we can observe that for each class and feature, nearly 5.7 million points, the data
points are highly dense i.e. the surface reflectance values range with 0.1 difference. Thus,
by only selecting a few S samples from the dense region, the proposed learner was able
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to achieve the same level of performance as the complete train set. Although, depending
upon different datasets and their distribution, this might not be always true.

8.7 Summary

A summary of the Chapter Abbreviating Train Cost: Modeling and Results is provided
below:

Presents a Generalized Sampling Algorithm 1 for abbreviating training label cost; presents
and models an EFM as an query selection method; experimental findings demonstrates that
by adopting the proposed methodology, 0.02% of total training samples are required for
Sentinel-2 Image Scene Classification while still reaching the same level of accuracy reached
by complete train set; highlights the advantages of the proposed method by a comparison
with the state-of-the-art entropy based query selection method in active learning.

There are several factors to consider in active learning, including the initial training sample,
the batch mode and size, the training label and computational costs, the problem statement
and dataset. From this research, one can conclude that using active learning does reduce
the overall training label cost, especially when the dataset comprises high-density regions
such as multiple pixels in satellite images. Furthermore, the results provides an in-depth
comparison of two approaches on the above-mentioned factors, notably the initial training
sample selection and the batch size.

Moreover, this chapter expands the usage and proves the utility of Evidence Function
Model for query selection and compares its performance in active learning. Finally, for
image scene dataset and scene classification problem statement, the Evidence Function
Model outperforms the Entropy-based selection approach on reducing training label cost.

8.7.1 Limitation

Being composed of several modules, each of them with a high level of complexity, it is
certain that our approach does face below limitations:

At every iteration of the active learning, the EFM must compute the Mahalanobis distance
from the train set to remaining data points, in this case, the computation complexity may
be considerable high if a large unlabeled dataset is supplied; during experiments, as the
initial train set was chosen randomly, information redundancy within the train set might
be present; we only addressed pixel-level scene classification in our trials, thus we cannot
comment on EFM’s performance on object-level classification training cost reduction tasks.





Chapter 9

Conclusions and Future Work

“It seems that perfection is reached not when there is nothing left to add, but when
there is nothing left to take away.”

— Antoine de Saint Exupéry

This chapter highlights the key findings in relation to the goals and research questions,
as well as assesses their significance and contributions. It also examines the research
limitations and suggests topics for further research.

9.1 Conclusions

The overall focus of the doctoral study is on the domains of Active Learning, Uncertainty
Prediction, and Earth Observation and their interconnection in the task of image scene
classification, misclassification detection, and training label cost reduction.

Over the last decade, substantial advancements in remote sensing technology have enabled
us to conduct intelligent Earth Observation such as scene classification using satellite im-
ages. The absence of publicly available “big and diverse labeled datasets” of remote sensing
images greatly restricts the development of new technologies, particularly using supervised
learning methods.

We begin with a detailed analysis of recent developments in the field of remote sensing
image scene classification, including Sen2Cor and existing datasets in Chapter 2. By
assessing the limitations of these datasets, Chapter 5, presents a surface reflectance-based
image scene and waterbody datasets. Then, using the micro-F1 metric and the introduced
image scene datasets, Chapter 6 assesses three ML representative algorithms (Random
Forest, Extra Tree, and Convolution Neural Network) for the task of scene classification
reaching a performance of 84%, which is significantly higher than Sen2Cor’s 59% value.

The findings in Table 6.5 corroborate our claim that the built ML model may be used as a
tool for Sentinel-2 image scene classification. Furthermore, whereas the ML model captures
‘Cloud Shadows’, Sen2Cor misses the majority of them as seen in Figures 6.4 and 6.5.
Additionally, supporting our claim, we tested the model’s sensitivity (Figures 6.7 to 6.9)

133



134 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

and biasness (Table 6.6) across multiple L1C images. These results answers RQ1, “Can we
provide an ML model that can scene classify any new image, regardless of region, using
Sentinel-2 images?”

On the other hand, distances and divergences have recently seen a surge in use in scientific
domains such as machine learning. There is, however, a lack of publicly available methods
that may use the correlation between the train and test sets to provide insight into the
uncertainty of predictions. In light of this, Chapter 4 proposes the generalized Evidence
Function Model (EFM) after studying the notion of evidence, the research literature on
confidence estimation, and the relationship between the statistical distance and the classi-
fier’s prediction uncertainty. The use of EFM for misclassification detection and a general
understanding of how misclassification could be identified for image scene classification is
illustrated in Chapter 7: a detailed assessment of the EFM model across multiple datasets
is done to quantify classification prediction errors produced by different ML models over
Sentinel-2 image scene classification.

For the image scene dataset (Tables 7.7 and 7.8) the overall detection of misclassification
was 62.99%, 29.80%, and 31.51% for KNN, ET and CNN models, respectively, leading to a
mean micro-F1 of 67.89%, 39.30%, and 38.29% in classifying six classes; for the waterbody
dataset (Tables 7.9 and 7.10), the detection of misclassification was 22.27%, 42.08%, and
27.67%, leading to a micro-F1 of 34.70%, 58.96%, and 43.32%, for KNN, ET and CNN
models, respectively. Further, over the unseen Sentinel-2 images, the EFM approach was
able to identify most of the prediction errors. These findings corroborate our hypothesis
that the proposed EFM model may be used to detect misclassification and answer RQ2,
“Can we provide an AI model that can detect misclassification for any new data, regardless
of the classification algorithm used, without knowledge about new data?”

Chapter 3 states the factors such as the initial training sample, batch mode and size,
training label and computation costs, problem objective and dataset that must be taken
into account in active learning. According to Chapter 8 findings, active learning reduces
the overall cost of labeling particularly when the dataset comprises high-density regions
like many pixels in satellite images.

The results of Table 8.3 provide a detailed comparison of two approaches: Entropy-based
and Mahanalobis distance-based EFM, with regard to the aforementioned elements, par-
ticularly the initial training sample selection and the importance of batch size. The EFM
outperforms the Entropy-based approach for image scene classification (and the experi-
mental dataset) in terms of reducing training label cost. Moreover, EFM can be used to
identify data points that need to be labeled, answering RQ3, “Can we provide an AL model
that can reduce the data required for training classifiers and assist in the generation of new
labeled data?”

The stated findings led to the following publications:

1. Sentinel-2 Image Scene Classification: A Comparison between Sen2Cor and a Ma-
chine Learning Approach, published in 2021 in Remote Sensing 13, no. 2: 300.
(DOI: 10.3390/rs13020300). This article presents an image scene dataset made up
of 60 Sentinel-2 images where each pixel have been classified into six classes, (Sec-
tion 5.1) and assesses the built Machine Learning models for image scene classification
(Section 6.1).
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2. Mahalanobis distance based accuracy prediction models for Sentinel-2 Image Scene
Classification, published in 2022 in International Journal of Remote Sensing (DOI:
10.1080/01431161 .2021.2013575). This article introduces the Waterbody dataset
(Section 5.2), the Evidence Function Model (Chapter 4) and the prediction uncer-
tainty identification results for Sentinel-2 image scene classification (Chapter 7).

3. Sentinel-2 Image Scene Classification over Alentejo Region Farmland, presented in
RECPAD 2020, the 26th Portuguese Conference on Pattern Recognition (pages 43-
44). This paper presents a practical use of the ML Sentinel-2 image scene classifier
in the detection of ‘Atmospheric Disturbance’ over Alentejo region farmland (Sec-
tion 6.6).

4. Sentinel 2 Image Scene Classification: A Comparison Between Bands and Spectral
Indices, presented in RECPAD 2021, the 27th Portuguese Conference on Pattern
Recognition (pages 47-48). This paper presents a comparative study between the use
of Bands or Spectral Indices information for image scene classification (Section 6.5).

5. Abbreviating Labelling Cost for Sentinel-2 Image Scene Classification Through Active
Learning, presented in IbPRIA 2022, the 10th Iberian Conference on Pattern Recog-
nition and Image Analysis and published in Lecture Notes in Computer Science, vol
13256, Springer (DOI: 10.1007/978-3-031-04881-4_24). This paper presents how to
abbreviate training cost in general, specially for Sentinel-2 image scene classifiers,
and compares Entropy-based and EFM-based methods (Chapter 8).

6. A ML approach for scene classification using Sentinel-2 images, an oral presentation
made in 2022 in the 1st Copernicus National Conference1. This publication presents
the need to have an ML approach for scene classification (RQ1) and compares ML
vs Sen2Cor results (Section 6.3).

9.2 Future Work

The present research is made up of multiple, highly intricate modules; undoubtedly, our
approach could be improved and the overall performance might be increased. In addition
to strengthening the various modules, further improvements are possible, such as:

Concerning generated datasets (Chapter 5), add Sentinel-1 image bands to enhance the
observations and connect the findings as well as their effects on the detection of Wa-
ter, Shadow, Cirrus, Cloud, and Snow classes; detect and delete near-duplicates from
the datasets that do not contribute/have an influence on the classifier; add new train-
ing scenarios using current training data and image augmentation, also known as elastic
transformation Gabrani and Tretiak (1996).

Concerning the proposed Mahalanobis distance based Evidence Function Model (Chap-
ter 4), calculate the distance between the nearest and furthest point in the distribution
and compare the findings to the mean distance, as well as the influence on parallel coordi-
nates visualization; apply different weights to Mahalanobis distances based on the actual
and predicted classes.

1https://www.copernicus.eu/en/events/events/portugal-copernicus-national-conference

https://www.copernicus.eu/en/events/events/portugal-copernicus-national-conference
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Concerning the findings of the EFM model in identifying the prediction uncertainty for
Sentinel-2 image scene classification (Chapter 7), according to the results in Tables 7.8
and 7.10, one can still improve the EFM results by lowering the False Positive values. To
do so, a potential argument was raised that ‘clustering the distribution into smaller subsets
while creating different data splits could further increase the knowledge acquired by the
distance in terms of true prediction vs misclassification can help in lowering the False
Positive errors’. Further clustering and increasing the number of Mahanalobis distances
might also assist to decrease model bias by having multiple reference points as cluster
centroids.

Concerning the active learning baseline specifications (Chapter 3) and their impact on
modeling training cost reduction model (Chapter 8), investigate appropriate initial training
set size and sample selection strategy; achieve low information redundancy within a batch
of selected examples on active learning iterations; consider fixed vs. variable batches while
looking for the appropriate batch size; investigate the usage of a mix of Entropy-based
and Mahalanobis distance-based approaches using the Generalized Sampling Algorithm 1;
broaden the study and apply the trials to new datasets.
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Supporting Material

A.1 Spectral Indices

Chlorophyll Index (CI)
(GREEN: 520-600 NIR: 760-900)

CI =
NIR

GREEN
− 1 (A.1)

Effective Leaf Area Index (ELAI)
(RED: 610-680 NIR: 780-890)

ELAI = −0.441 + 0.285
NIR

RED
(A.2)

Green Normalised Difference Vegetation Index (GNDVI)
(GREEN: 557-582 NIR: 720-920)

GNDV I =
NIR−GREEN

NIR+GREEN
(A.3)

Modified Soil Adjusted Vegetation Index (MSAVI2)
(RED: 630-690 NIR: 760-860)

MSAV I2 =
2NIR+ 1−

√
(2NIR+ 1)2 − 8(NIR−RED)

2
(A.4)

Normalised Difference Infrared Index (NDII)
(NIR: 845-885 SWIR: 1650-170)

NDII =
NIR− SWIR

NIR+ SWIR
(A.5)

Normalised Difference Water Index (NDWI)
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(NIR: 841-876 SWIR: 1230-1250)

NDWI =
NIR− SWIR

NIR+ SWIR
(A.6)

Normalised Pigment Chlorophyll Ratio Index (NPCI)
(BLUE: 460 RED: 660)

NPCI =
RED −BLUE

RED +BLUE
(A.7)

Relative Reflectance Index (RRI)
(VIS: 400-700 NIR: 740-820)

RRI =
NIR/V IS

NIR/V IS
(A.8)

Short wave Infrared Water Stress Index (SIWSI)
(NIR: 841-876 SWIR: 1628-1652)

SIWSI =
SWIR−NIR

SWIR+NIR
(A.9)

Triangular Greenness Index (TGI)
(BLUE: 450-520 GREEN: 520-600)

TGI = −0.5[(RED −BLUE)(RED −GREEN)

−
(RED −GREEN)(RED −BLUE)]

(A.10)

Normalized Difference Vegetation Index (NDVI)
(NIR: 841-876 RED: 660)

NDV I =
NIR−RED

NIR+RED
(A.11)

Reflectance ratio (R)
(NIR: 841-876 GREEN: 520-600)

R =
NIR

GREEN
(A.12)

Reflectance ratio (R1)
(BLUE: 460 SWIR: 1230-1250)

R1 =
BLUE

SWIR
(A.13)

Sentinel-2 Water Index (SWI)
(VNIR: 705 SWIR: 1610)
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SWI =
V NIR− SWIR

V NIR+ SWIR
(A.14)

Normalized Difference Snow Index (NDSI)
(Green: 560 SWIR: 1610)

NDSI =
Green− SWIR

Green+ SWIR
(A.15)

Normalized Difference Snow Index 2 (NDSII)
(Red: 665 SWIR: 1610)

NDSII =
Red− SWIR

Red+ SWIR
(A.16)

S3
(Red: 665 VNIR: 842 SWIR: 1610)

S3 =
V NIR ? (Red− SWIR)

(Red+ V NIR) ? (V NIR+ SWIR)
(A.17)

Snow Water Index (SWI)
(Green: 560 VNIR: 842 SWIR: 1610)

SWI =
Green ? (V NIR− SWIR)

(Green+ V NIR) ? (V NIR+ SWIR)
(A.18)

Shadow Enhancement Index (SEI)
(Ultra Blue: 443 Green: 560 VNIR: 842 SWIR: 940)

SEI =
(UltraBlue+ SWIR)− (Green− V NIR)

(UltraBlue+ SWIR) + (Green− V NIR)
(A.19)

Normalized Saturation Value Different Index (NSVDI),
Where, V = max(Red, V NIR, SWIR) and S = (V − min(Red, V NIR, SWIR))/V .
(Red: 665 VNIR: 842 SWIR: 2190)

NSV DI =
S − V

S + V
(A.20)

Cloud Index (CI)
(Blue: 490 Green: 560 Red: 665 VNIR: 842 SWIR: 1610)

CI =
V NIR+ (2 ? SWIR)

(Blue+Green+Red)
(A.21)
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Brightness Index (BI)
(Blue: 490 Green: 560 Red: 665 VNIR: 842 SWIR: 1375 SWIR: 2190)

BI = 0.30 ? Blue+ 0.27 ? Green+ 0.47 ? Red

+ 0.55 ? V NIR+ 0.50 ? SWIR+ 0.18 ? SWIR (A.22)

Bare Soil Index (BSI)
(Blue: 490 Red: 665 VNIR: 842 SWIR: 1610)

BSI =
(Red+ SWIR)− (Blue+ V NIR)

(Red+ SWIR) + (Blue+ V NIR)
(A.23)

A.2 Lemma

Lemma A.2.1. The Mahalanobis Distance can be used to measure the distance from
a point to a multivariable distribution specified by its mean vector and covariance ma-
trix (Danielsson, 1980; Darmochwał, 1991; Barhen and Daudin, 1995; McLachlan, 1999;
De Maesschalck et al., 2000).

Proof. The Mahalanobis Distance between point xi and a distribution with mean µ and
covariance matrix Σ is given by Equation (A.24).

∆ =
√
(xi − µ)Σ−1(xi − µ)> (A.24)

To compute the MD, you must first generate the variance-covariance matrix Σx:

Σx =
1

(n− 1)
(Xc)

T (Xc) (A.25)

where X is the data matrix with n objects in the rows measured for p variables. The
column-centred data matrix (X − X) is denoted by Xc. The variance-covariance matrix
for two variables, x1 and x2, is

Σx =

[
σ2
1 ρ12 ∗ σ1 ∗ σ2

ρ12 ∗ σ1 ∗ σ2 σ2
2

]
(A.26)

where σ2
1 and σ2

2 are the variances of the values of, respectively, the first and second
variable; ρ12 ∗ σ1 ∗ σ2 is the covariance between the two variables.

Within Equation A.24, Σ−1
x can be substituted for an object xi as:

Σ−1
x =

[
σ2
1/det(Σx) −(ρ12 ∗ σ1 ∗ σ2)/det(Σx)

−(ρ12 ∗ σ1 ∗ σ2)/det(Σx) σ2
2/det(Σx)

]
(A.27)
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where det(Σx) = σ2
1 ∗ σ2

2 ∗ (1− ρ122) is the determinant of the variancecovariance matrix.

For an object xi measured in two variables, x1 and x2, Equation A.24 and A.27 can be
rewritten, since

[(x1 − x̄) ∗ (x2 − x̄)]Σ−1
x =[

(σ2
2∗(x1−x̄))−((x2−x̄)∗(ρ12∗σ1∗σ2))

det(Σx)
(σ2

1∗(x2−x̄))−((x1−x̄)∗(ρ12∗σ1∗σ2))
det(Σx)

]
[(x1 − x̄) ∗ (x2 − x̄)]Σ−1

x

[
(x1 − x̄)
(x2 − x̄)

]
=

[
(σ2

2∗(x1−x̄)2)−((x1−x̄)∗(x2−x̄)∗(ρ12∗σ1∗σ2))
det(Σx)

+
(σ2

1∗(x2−x̄)2)−((x1−x̄)∗(x2−x̄)∗(ρ12∗σ1∗σ2))
det(Σx)

]
=

[
(σ2

2∗(x1−x̄)2∗(1−ρ212))+(σ2
1∗(x2−x̄)2)−2((x1−x̄)∗(x2−x̄)∗(ρ12∗σ1∗σ2))+(σ2

2∗(x1−x̄)ρ212)

σ1∗σ2(1−ρ212)

]
=

[
(x1−x̄)2

σ2
1

+ (x2−x̄)2

σ2
2(1−ρ212)

− 2 (x1−x̄)(x2−x̄)ρ12
σ1σ2(1−ρ212)

+
ρ212(x1−x̄)2

σ2
1(1−ρ212)

]
=

(x1 − x̄)2

σ2
1

+

(
(x2−x̄)

σ2

√
1−ρ212

− ρ12(x1−x̄)

σ1

√
1−ρ212

)2

(A.28)

Leading to MDi be

MDi =

√√√√(
xi1 − x̄1

σ1

)2

+

[{(
xi2 − x̄2

σ2

)
− ρ12

(
xi1 − x̄1

σ1

)}
1√

1− ρ212

]2

(A.29)

The component of the second variable that is already explained by the first variable is
deducted in this formulation. To put it another way, the MD rectifies for data correlation by
using ρ12. Thus, Equation A.29 is simplified to the formula for the Euclidean Distance (ED)
when the independent quantities are uncorrelated (i.e. ρ12 = 0) resulting to Equation A.30.

EDi =
√
(xi1 − x̄1)2 + (xi2 − x̄2)2 (A.30)
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A.3 Sensor

Table A.1 presents the satellite sensors and their reference.

Table A.1: Sensor and Reference.

Sensor Reference

Sentinel 1 European Space Agency (2022c)
Sentinel 2 European Space Agency (2022d)
Sentinel 3 European Space Agency (2022e)
Sentinel 4 European Space Agency (2022f)
Sentinel 5 European Space Agency (2022g)
Sentinel 6 European Space Agency (2022h)
QuickBird Satellite Imaging Corporation (2022b)
CIMEL 313 Cuevas et al. (2019)
Terra ASTER NASA Terra, The EOS Flagship (2022)
MODIS NASA Modis (2022)
LI-190s and LI-220S Li-Cor (2022)
Airborne AVIRIS Johnson and Green (1995)
Landsat TM NASA Landsat Science (2013)
Landsat-8 OLI NASA Landsat Missions (2022)
EnMAP European Space Agency (2022b)
ROSIS-03 Kunkel et al. (1988)
Hyper-spectral Electro-optic Corning (2022)
SIPPER II Luo et al. (2005)
LIDAR Survey (2022)
MapSwipe MapSwipe (2022)
IRS-1A Department of Space (2022)
IKONOS Satellite Imaging Corporation (2022a)
AISA Eagle Aisa Systems (2022)

A.4 Image-wise Class Value Distribution

Table A.2 details Train set (50) and Table A.3 details Test set (10) image wise class value
Distribution.
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Table A.2: Train set (50) Products Wise Class Value Distribution.

Product ID Cloud Cirrus Shadow Snow Water Other Total

R069_V20151204T171502_20151204T171502 0 0 1369 21163 20667 8184 51383
R022_V20151211T102944_20151211T102944 41292 0 34033 0 17744 34140 127209
R010_V20160109T143825_20160109T143825 3836 0 11129 173217 54486 25447 268115
R093_V20151206T093115_20151206T093115 19740 0 35984 4668 48889 27266 136547
R108_V20160624T103721_20160624T103721 8891 0 0 9918 23773 30334 72916
R065_V20161108T102232_20161108T102232 30839 0 2975 1873 1572 30092 67351
R090_V20151206T043239_20151206T043239 7922 0 41461 42298 0 8790 100471
R105_V20151207T054131_20151207T054131 8047 5832 32057 67291 0 16544 129771
R135_V20151209T080737_20151209T080737 0 0 18318 11113 12418 15223 57072
R116_V20151228T002843_20151228T002843 22307 0 20814 0 14948 32196 90265
R013_V20160109T191435_20160109T191435 2000 6708 11863 23371 26763 13190 83895
R094_V20151216T111216_20151216T111216 15385 58309 29970 0 0 31259 134923
R110_V20151227T142837_20151227T142837 10075 0 15176 41289 29485 23575 119600
R038_V20160210T130341_20160210T130341 6563 9115 29431 77843 33476 1389 157817
R046_V20160112T025031_20160112T025031 56396 42625 35356 0 29995 34224 198596
R137_V20151209T112253_20151209T112253 11769 37276 18106 0 10482 15630 93263
R135_V20160815T074942_20160815T081315 215 0 232 0 0 52783 53230
R079_V20160831T095032_20160831T095217 12374 19592 1293 0 2783 8477 44519
R092_V20151206T080705_20151206T080705 110291 2011 18611 0 5973 30716 167602
R065_V20161029T102132_20161029T102132 681 8447 0 8371 4998 41986 64483
R122_V20160327T100012_20160327T100012 0 11988 0 1839 0 4607 18434
R127_V20151218T183704_20151218T183704 0 16406 12111 45919 0 11699 86135
R122_V20151208T101125_20151208T101125 7109 62855 37488 0 13204 32501 153157
R021_V20151211T084342_20151211T084342 13089 8880 40619 0 11901 32041 106530
R022_V20160419T101026_20160419T101026 1993 0 0 1038 2124 40659 45814
R065_V20151224T103329_20151224T103329 4051 31403 17304 0 34878 38120 125756
R053_V20160122T144141_20160122T144141 0 0 5197 42458 16383 26318 90356
R092_V20151226T080933_20151226T080933 79093 72124 23259 0 40203 35347 250026
R135_V20151209T080737_20151209T080737 0 105076 64809 0 81956 164017 415858
R137_V20160417T111159_20160417T111159 6388 135066 0 626 0 19744 161824
R044_V20160220T230557_20160220T230557 0 8761 9826 38722 19384 0 76693
R054_V20160102T161125_20160102T161125 54049 1851 31241 0 118705 78638 284484
R065_V20160422T102025_20160422T102025 7552 26263 0 2903 9099 54720 100537
R103_V20160126T023520_20160126T023520 24653 0 23285 0 22524 24878 95340
R027_V20161115T183632_20161115T183632 0 0 0 0 0 38859 38859
R103_V20160116T023225_20160116T023225 33542 23636 24978 0 14888 28985 126029
R135_V20160217T075949_20160217T075949 38719 0 16652 0 17548 28607 101526
R065_V20160323T102143_20160323T102143 17977 0 0 4686 21838 86062 130563
R137_V20151209T112253_20151209T112253 36185 40153 67931 0 70179 46701 261149
R092_V20160204T075210_20160204T075210 32877 5390 14624 1127 4139 45573 103730
R135_V20151229T081422_20151229T081422 45199 0 11514 0 23554 28435 108702
R027_V20151231T184606_20151231T184606 0 0 6633 0 26864 10815 44312
R053_V20151223T144214_20151223T144214 25493 12514 11810 25732 0 60942 136491
R030_V20160121T000856_20160121T000856 15870 9961 29524 0 33103 25148 113606
R035_V20160210T080716_20160210T080716 3333 2969 6488 49935 4861 2987 70573
R092_V20160921T073612_20160921T080338 0 0 0 0 802 21602 22404
R135_V20160207T081608_20160207T081608 75883 6530 16714 0 23600 46415 169142
R108_V20160205T103556_20160205T103556 3640 5783 3712 27263 4227 4220 48845
R065_V20161108T102232_20161108T102232 901 0 1781 1663 0 0 4345
R022_V20160310T101207_20160310T101207 1285 3111 0 1686 0 0 6082

total 897504 780635 835678 728012 954416 1520085 5716330
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Table A.3: Test set (10) Products Wise Class Value Distribution.

Product ID Cloud Cirrus Shadow Snow Water Other Total

R096_V20160105T144841_20160105T144841 31474 99669 36053 0 0 20142 187338
R022_V20160817T101032_20160817T101559 2893 8277 2092 0 1263 8414 22939
R122_V20160506T100226_20160506T100226 0 21277 0 0 2102 1345 24724
R137_V20160217T111843_20160217T111843 3671 1048 33292 68929 42214 59632 208786
R078_V20151225T083056_20151225T083056 37024 14838 13731 0 5767 22812 94172
R051_V20151203T110846_20151203T110846 8657 1841 21142 0 21545 18897 72082
R112_V20160215T171407_20160215T171407 0 7873 5874 41049 8989 0 63785
R105_V20151207T054131_20151207T054131 7884 17597 4750 5460 8531 11417 55639
R135_V20151219T080616_20151219T080616 1775 3568 3740 39313 6194 5937 60527
R072_V20160123T223141_20160123T223141 40937 0 35041 0 20405 25773 122156

134315 175988 155715 154751 117010 174369 912148



Appendix B

Sentinel-2 Image Scene Classification
Package

Through this doctoral study, the following resource is made publicly available (Raiyani
et al., 2021): a ready to use Python package (scripts) with a trained ML model to classify
Sentinel-2 L1C image. The Python package takes the L1C product path and produces
an RGB image with six classes (Cloud, Cirrus, Shadow, Snow, Water, and Other) at 20m
resolution. The working example of the developed Sentinel-2 L1C image scene classification
package is discussed further.

Figure B.1 shows the processing steps of the developed package. The path to Sentinel-2 L1C
product is passed as input, and a RGB image with six colors (each identifiying one class)
at 20m resolution is produced as output. The GDAL library (GDAL/OGR contributors,
2020) was used to read and rescale images, and during post-processing, neighbour pixels
are checked to minimize the classification error.

Figure B.2 shows the working example of the developed package where, L1C product is
classified into six classes. Figure B.2a,b respectively present the corresponding RGB image
of L1C product and classified image. Using our package the average time to produce a scene
classified RGB image is 4 min; using Sen2Cor v2.5.5 takes 18 min over system specification
detailed in Table 7.3 (it is worth mentioning that Sen2Cor performs many other operations
apart from scene classification). For the sole purpose of scene classification, our model is
4 times faster than Sen2Cor when classifying Sentinel-2 L1C images into six classes (Cloud,
Cirrus, Shadow, Snow, Water, and Other).
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Figure B.1: Package Processing Steps: Classifying Sentinel-2 L1C Product.
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(a)

(b)

Figure B.2: (a) L1C product (b) RGB Scene classified image using developed package.
Labels—Water as Blue, Shadow as Brown, Cirrus as light Purple, Cloud as White, Snow
as Cyan and Other as Green.





Appendix C

EFM Waterbody dataset results

Further, to visually analyze the waterbody misclassification vs misclassification detection,
randomly 16/49 water-bodies RGB images are shown in Figure C.1.

From the Figure, we can observe:

1. For KNN, images 1, 9, and 10 had complete misclassifications detected, images 2,
5, and 15 had partial misclassifications detected, image 14 had no misclassification
detected, making it a 100% false negative, and image 4 had no misclassification but
was identified as having a 100% (as a false positive) classification error. Images 3, 7,
8, 11, 12, 13, and 16 were perfectly identified with no false positives.

2. For ET, images 1, 4, 5, 9, and 10 had complete misclassifications detected, image 15
had partial misclassifications detected, images 2, 6 and 14 had no misclassification
detected, making it a 100% false negative. Images 3, 7, 8, 11, 12, 13, and 16 were
perfectly identified with no false positives.

3. For CNN, images 4, 11, and 14 had complete misclassifications detected, images 1, 2,
and 5 had partial misclassifications detected, images 6 and 15 had no misclassification
detected, making it a 100% false negative. Images 3, 7, 8, 9, 10, 12, 13, and 16 were
perfectly identified with no false positives.
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Figure C.1: Water Body RGB image followed by Classified and Error Detected image for
KNN, ET and, CNN. Color Labels—Other as Green, Water as Blue, Shadow as Brown,
Cirrus as light Purple, Cloud as White, Snow as Cyan and, Error as Red.
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