Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/2547

Title: Minimizers of a functional of the gradient, which are stable with respect to affine boundary data
Authors: Goncharov, Vladimir
Keywords: scalar variational problem
nonconvex lagrangian
Baire category theorem
continuous selection
Lipschitz selection
density
Issue Date: 2006
Publisher: Allerton Press, Inc.
Abstract: We study the family of minimizers of an integral functional of the gradient over all Sobolev functions, which have a constant gradient v on the boundary, and give some results (including a category theorem) on continuous dependence of such minimizers on the vector v with respect to the uniform topology.
URI: http://hdl.handle.net/10174/2547
Type: article
Appears in Collections:CIMA - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
Gonch(SibAdv).PDFDocumento principal216.7 kBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois