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MINIMIZERS OF A FUNCTIONAL
OF THE GRADIENT WHICH ARE STABLE
WITH RESPECT TO AFFINE BOUNDARY DATA

V. V. Goncharov ™

Abstract

We study the family of minimizers of an integral functional of the gradient over
all Sobolev functions u(-) € (v,-) + WP(9) and give some results (including
a category theorem) on continuous dependence of such minimizers on the vector
v € R"™ with respect to the uniform topology.

Key words and phrases: scalar variational problem, nonconvex Lagrangian, Baire
category theorem, continuous selection, Lipschitz selection, density.

1. Introduction

Assume given an open bounded set 2 C R" and a lower semicontinuous
function g: R* — R U {4+o0c}. In the nineties many researchers have paid
attention to the following scalar minimization problem

min{ /Q o(Vu(e)) de : u(-) € (v, ) +wg7p(sz)} (Py)

where 1 < p < +oo,v € R"”, and (-, +) means the inner product in the space R”.
In applications to elasticity theory e.g., the integral functional in (P,) can be
the free energy of a homogeneous body undergoing antiplane shear deforma-
tions. It was shown in [5,6,12,17] that the problem (P,) may have or fail
to have solutions, depending on the position of the vector v in the geometric
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structure of the Lagrangian. In the general case the necessary and sufficient
condition of existence of a minimizer can be written as (see [17]):

either dg(v) # &,

or there exist vectors v1,...,v; such that
k (€
v €int co{vy,...,vx} and ﬂ dg(vi) # 2.
i=1

Here 0g(-) is the subdifferential of g(-) in the sense of convex analysis, “int”
and “co” stand for the interior and the convex hull, respectively.
We always assume further that g satisfies the superlinear growth (coerciv-
ity) hypothesis:
v
9tv) = +o0. (H)

ol >+o0 [v]

Together with (P,), consider the relazed variational problem

min { /Q g (Vu(z)) do : u(-) € (v, + Wé’p(Q)} (RPy)

where ¢**: R" — RU{+oc} is the bipolar function, i.e., the greatest lower semi-
continuous convex function below g(+). The hypothesis (H), in fact, is the eas-
iest way to guarantee boundedness of all proper faces of the epigraph epi (¢**).
Using the well-known geometrical fact, to each vector v with ¢**(v) < 400
we can associate a unique (nonvertical) closed face F'(v) of epi (¢g**) to whose
relative interior the point (v, g**(v)) belongs. Denoting by a (v) its projection
to R", we reduce the condition (C) to the form:

cither g(v) = ¢**(v) or int F(v) # @. (C)

On the other hand, the condition int F (v) = @ is necessary and sufficient for
uniqueness of a solution to the relaxed problem (see [5,6]). The smoothness
of the boundary 0f2 (as assumed in [5]) can be dropped here. Observe that
the affine function (v, -) is itself the trivial solution of (RP,). Furthermore,
as was shown in [5,6,12], u(:) € (v,) + Wol’p(Q) is a solution to the prob-
lem (RP,) if and only if the inclusion

Vu(z) € F (v) (1)

holds for almost every (a.e.) x € €, this property depends neither on
the smoothness of 0 nor on the growth of the Lagrangian (see [12, Lemma
3.3]). Due to the hypothesis (H) this implies the Lipschitz continuity of all
minimizers. Therefore, without loss of generality, we can always put p = 4o0.
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Notice that, by the relaxation result of [17, Lemma 2.3], every minimizer
in (Py) solves (RP,) as well whenever v € int dom (¢**), and the minimum is
1(2)g**(v). Here dom (g**) := {v € R" : g**(v) < 400}, and p is the n-di-
mensional Lebesgue measure. Moreover, the minimizers of the original (non-
convex) functional can be searched as solutions of the gradient inclusion

Vu(z) € ext F (v) (2)

with the extreme boundary on the right-hand side. In other words, each
Lipschitz continuous function wu(+), u‘aﬂ = (v, +), satisfying (2) is, necessarily,
a minimizer in the problem (P,).

The next natural question is stability in some sense of the solutions of
the problem (P,) with respect to the boundary slope v. Various approaches to
this destination were developed in 7,11, 13]. In particular, in the works [11, 13]
we have searched a solution of (P,) continuous in v € dom (¢g**) with respect to

the uniform topology on the space C(€2) of continuous functions u: Q — R.
More precisely, with each v € dom (¢**) we associate the set S(v) (respectively,
S**(v)) of all minimizers in the variational problem (P,) (respectively, (RPy)).
Notice that always (v,+) € S**(v) while the multifunction S(v) may admit
empty values. So, the problem is to find a selection s(v) € S**(v) continuous
as a mapping dom (¢**) — C(Q) and s(v) € S(v) whenever v satisfies the ex-
istence criterion (C) (or (C')). In [11] such continuous (even Lipschitz contin-
uous) selection was constructed by a series of local perturbations of the affine
function (v,-) due to a constructive version of the Vitali covering theorem.
Making these perturbations arbitrarily small, we can approximate the trivial
solution of the relaxed problem by a sequence of minimizers in the original
problem uniformly in v and keeping the continuous dependence on v. How-
ever, this approach is not appropriate in describing the family of all solutions
and approximating the relaxed minimizers other than the affine minimizer.

In this paper, following [14], we develop another, in some sense comple-
mentary, approach to studying solutions of the problems (P,) and (RP,) and
their stability with respect to v. Namely, in Section 2 we define two (Lip-
schitz) continuous functions v — s¥(v)(z) and v — s~ (v)(z) that enclose all
solutions of the relaxed problem and show existence of a continuous selection
of v — S**(v) passing through an arbitrary point of its graph. In particular,
this implies lower semicontinuity of the multifunction S**(-).

Then, in Section 3, the simple compactness argument permits us to prove
the density result: arbitrarily near to each continuous selection s(v) € S**(v)
there exists another selection §(v) € S**(v) such that 5(v) € S(v) whenever
S(v) # @. Moreover, we can choose a continuous “selection” of the multivalued
map S(-) passing through each given point (v, u”), where v € dom (¢**) (not

necessarily int F' (v0) # @) and u’(+) is a solution of (RP,). As a convenient
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tool to treat such kind of problems we use the Baire category theorem and

a Choquet function characterizing extreme points of a compact convex set.
In the last section we announce a result on well-posedness of the prob-

lem (P,) with the best Lipschitz constant and give some useful observations.

2. Properties of relaxed solutions

In what follows, we assume ) to be an open bounded set in R" with
the boundary 052, and ¢g: R* — R U {400} to be a lower semicontinuous
proper function satisfying the hypothesis (H).

Given a convex compact set A C R", we denote by o,(-) the support
function, i.e., o, (v) = Sup{(@,z) cx € A}, v € R", and by A* := {v e R :
0,(v) < 1}, the polar set.

The following functions

sT(v)(z) == xl]éléﬁ{(?), ') + o5 (v) (z —2a')}, (3)
s~ (v)(x) := ;ggg{(v, z') — aﬁ(v)(z — )} (4)

are crucial in our considerations and can be interpreted in various ways. F'irst,
they are connected with the expansion factors defined by

pt(v)(z) = sup{p >0z — p(ﬁ(u) - v)* C Q},
p(v)(x) := —sup{p >0:z+ p(ﬁ(u) - v)* C Q}
Namely, for all v € dom (¢g**) and z € Q
sH(0)(2) = (v, 2) + p*(v)(2).
Notice that in the case either z € dQ or int F (v) = @ (equivalently, v ¢

intﬁ(v)) there is no p > 0 with z + p(ﬁ (v) — ’U)* C , and we may nat-
urally put pt(v)(z) = p~(v)(z) = 0. In fact, given v € int F (v), we have
that p*(v)(+) is the minimum time function in the optimal control prob-
lem with the constant dynamics —(ﬁ (v) — v)* and the target set 002 to be
reached from inside the domain 2. Similarly, we can achieve a point x € €2
from the boundary for the maximum (negative) time p~(v)(z) (with the same
dynamics). Furthermore, the function s¥(v)(+) is the wiscosity solution to
the Hamilton—Jacobi equation

jE(U(ﬁ(u)—v)* (Vulz)) - 1) =0, ulgg = (v:)

as defined in [9] (also see [3,16]). Finally, we have the following result.
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Theorem 1. The functions s*(v)(+) and s~ (v)(-) are minimizers in
the relaxed problem (RP,) whenever v € dom (¢**), and for each minimizer
u(+) € S**(v) the inequalities

s”(v)(x) S ulz) < sT(v)(2), z€Q, (5)

hold. Moreover, the mappings v — s (v)(+) and v — s~ (v)(+) are Lipschitz
continuous:
5% (v1) = 5% (v2)]| o, < NIQl01 — 22

whenever vy, vy € dom (g**). Here ||| := max . q |z|, and || - ||oc is the norm
in C(Q).

We call the functions (3) and (4) upper and lower solutions, respectively,
taking it into account that (as we will see later) they do not, in general, mini-
mize the original functional but they can be approximated by solutions of (P,).
A complete proof of Theorem 1 can be found in [14] (see Proposition 2.1 and
Theorem 2.1 there).

Now, using a minimum time function, we find a solution of (RP,) con-
tinuous (even Lipschitz continuous) with respect to v such that with a fixed
v? € dom (¢g**) it associates some given minimizer u 0(.) € S**(Y).

This is obvious in the case int F'(1°) = @. Otherwise, putting by V :=
F (v°), consider the function

T(v) := inf o _y0)(v' = v), v e dom(g*), (6)
v'eve
where V¢ is the complement of V and V¢ is the closure of V¢. It is immediate
from (6) that the function 7T'(-) is Lipschitz continuous with the Lipschitz
constant [[(V —v9)*[| := max, ¢y _,0)« |2| and can be represented as

T(v) =sup{t >0:v+t(V -2") CV}, o€ dom(g™). (7)

Clearly, T(+°) = 1 and T(v) = 0 if v ¢ int F (v°) while for other points
0 < T(v) < 1. Define

s(v)(2) = T(v) (u’(2) = (v",2)) + (v, 2), (8)

€ Q, v € dom(g**), and, by the above properties, s(v°)(-) = u%(+) and
(v)(-) = (v,-) whenever v € dom (¢**) \ int F' (¢+°). If v € int F (¢+°) then,

)(-
y (8) and (7),
(

T e R

Vs(v)(z) = T(v)(Va'(z) = 0°) +v € v+ T () (F (%) —2") ¢ F(°) = F(v)

a.e. in §). Since s(v)(z) = ( x) for x € 09, it follows from (1) that s(v) €
S**(v) for each v € dom (g* ) Taking into account the Lipschitz continuity
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of T(+) and the inequalities (5), we can choose a Lipschitz constant L of
the mapping v — s(v)(+) that does not depend on u%(-). Namely, put

L:=Q| + HF(UO) — ’UOH ||(F (%) — ’UO)*H . n;agdistag(x) 9)
x
where dist 4(+) means the distance from a point to A. Thus, the following
theorem takes place.

Theorem 2. Given arbitrary v° € dom (¢**) and u°(-) € S*(v°) there
exists a Lipschitz continuous selection s(v) € S**(v), v € dom (¢**), with
the Lipschitz constant L defined by (9), such that s(v’) = u’. Hence,
in particular, the multivalued mapping v — S**(v) is lower semicontinuous

on dom (¢**) and is locally Lipschitz on each projection F (v9).

3. Minimizers of the original (nonconvex) functional.
A density theorem

As we have already said, the set of minimizers S(v), v € int dom (¢**), con-
tains the set S™*(v) of solutions to the extremal gradient inclusion (2) (it may
be larger if v € int F (v) and g(v) = ¢**(v) simultaneously). Denoting by &
(respectively, &** or G®t) the set of all continuous selections s: dom (g**) —
C(Q) of the multivalued mapping v +— S(v) (respectively, v — S$**(v) or
v — S®™*(v)), we obtain, in particular, that G**' is a dense Gs-subset of G**
(a set of the second category) with respect to the topology of uniform conver-
gence on compact subsets in dom (¢**). Here and in the sequel, we naturally
agree that S(v) = S™(v) = {(v,-)} whenever int F (v) = @. In the same
way, we extend our mappings outside dom (¢g**). The above-announced fact
is a multidimensional continuous version of A. Cellina’s result (see [4, Theo-
rem 1]). It implies the density of the selection family & in &**, which means
that every relaxed solution stable with respect to v € dom (¢**) can be ap-
proximated by a sequence of stable minimizers in the original problem (P,)
uniformly in v. For proving this result, it is more convenient to consider G,
&**, and Gt translated by the affine selection v +— (v,-). Denote the so-
obtained sets by H, H**, and Ht.

Observe that there exists at most countable family of the different (dis-
joint) nonempty sets intﬁ(v), say Vin, m = 1,2,.... Then the set H** con-
sists clearly of all p(+) € C(R",Cy(Q)) such that p(v)(-) € Wé’oo(Q) with
v+Vp(v)(z) € Vi for a.e. x € Q whenever v € Vi, m = 1,2,..., and p(v) =0
outside of |J;,_; Vim. Here C(R™, Cy(€2)) is the space of all continuous map-
pings p: R* — C(Q), ,0(1))‘aQ = 0, with the topology of uniform convergence
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on compact sets. We can easily show that H** is closed in C(]R”,Cg(ﬁ));
hence, it is a complete metric space in the induced topology. Similarly,

H = {p() eH”™ v+ Vp)(z) €extV, forae z€Q
whenever v € Vp,,, m=1,2,.. }

Thus, the main result (see [14, Theorem 3.1]) can be formulated as
Theorem 3. The set H®™' is a dense Gs-subset of H**.
We give a more precise version of this theorem. Namely, fix a vector
v? € dom (¢**) and a function °(-) € S**(v%)—(v°, ). Then the set 7-[’(*:0790) =
{p(-) € H** : p(v’) = 6} is closed in H** (it is nonempty by Theorem 2).
Consider the family

%f;{(t),go) = {p(-) € ?50790) v+ Vp(v)(z) € extVy, fora.e. z€()
and for all v € Vi, v £ 0%, m = 1,2,...}.

ext

Notice that a continuous mapping v — (v, ) + p(v)(+), where p(-) € H{30 g0y
associates with each v € Vi,, m = 1,2,..., v # 1%, a solution of (2), with
the affine boundary datum (v, -) (hence, a minimizer in the variational problem
(Py)), passing through the point (v°, (v9,-) + 69(+)) € graph S**. The set of
such mappings is not empty as follows from the theorem below.

Theorem 4. The set ’}-[‘("Z‘S 60) is a dense Gg-subset of 7-[’(*;0 60) whenever

v? € dom (¢**) and 0°() € S**(v9) — (9, -).
Proof. Without loss of generality we may assume that int F (v°) # @; and

let m® =1,2,... be such that v* € V, .

In the next we follow the same lines as in the proof of Theorem 3.1 [14]
with slight modifications in order to satisfy the condition p(v?) = 6°.

With each compact convex set K C R"™ we associate a Choquet func-
tion I(-,K): K — R' that is concave, upper semicontinuous, bounded (0 <

l(z, K) < diam K), and such that
l(z,K) =0 if and only if = € ext K (10)

(see [2] for an example of such a function). Here diam K is the diameter of K.
Given 1 > 0 small enough, we define

Vi = {veV,o: dist gy ,(v) >, |v— 00 >}
and, form =1,2,..., m # mY,

V#l = {U € Vi : distavm(v) > 77}-
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Using the compactness of V,, m = 1,2, ..., and the convergence result of [10,
p.49], we can easily prove (see [14, Lemma 3.2]) upper semicontinuity of
the functional £7,: H** — R*,

L1 (p) := sup / l(v+ Vp(v)(z), Vi) da.
veEV JQ

Hence, the sublevel set (localized at the point (v°,6%) if necessary)
= {n(") € H{Jo goy : Th(p) <}

is open in ’HZ‘:O 60) (1n the induced topology); and, by (10), we have

1/k
it g0y = ﬂ Ay
m, k=1
Therefore ‘E;‘g 6) is a Gg-subset of ( * )" In order to prove density, it suffices
(by the Baire category theorem) to prove density of each ?—[7(71’)70”90), m=1,2,...,

n > 0.
Let m = m°, and fix n > 0, p(-) € E‘;‘O g0y € > 0. First, applying

some type of polynon’ual approximations as in [14, Section 4], we find a func-
tion p(+) € H** such that for every v € V, 0

p(v)(x) #0 fora.e. z €, (11)

p(v) = p(v) whenever v ¢ Vi, and Hﬁ(v)—ﬁ(v)”oo <¢e/2,v € R". From lower
v) (see Theorem 2) it follows [1, p. 44|

—~

semicontinuity of the mapping v +— S**
that the multifunction §: R* — Co(Q

~—

b

v) = {0(-) € 87 (v) = (v,+) |0 = B(v)[|oc < 2/2},

is also lower semicontinuous. Then, by Michael’s classical theorem (e.g. see |1,
p.82]), taking into account the convexity of S**(v), we can choose a contin-
uous selection of the mapping v — F(v) (the closure in the space C(())
which admits the value % at the point v* and equals p(v) for all v € V.
Therefore, this selection (denote it by p(v) as well) satisfies the inequal-
ity ||p(v) — ﬁ(v)Hoo < ¢/2, v € R", and belongs to the set ’HZ‘;‘O’GO), and
the property (11) holds for all v € V:,o- Combining (11) with compactness of
the set VWZO’ we can choose 0 < § < £/2 such that

u{x € Q: |pv)(z)] < 5} <7/Dpo forall ve V", (12)
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where D,,0 is the diameter of V0. For details we refer to Lemma 5.1 of [14].
Now, consider the compact subsets 't C Vo x €2,

Ti={(v,2) e VI, x Q: p(v)(z) > b},
“i={(v,2) € Vi x Q: p(v)(z) < -3},

which can be covered by some finite families of the open sets

Ut (z) = {(v,y) € Vo x Q2 p(0)(x) > 6/2, |z — y| < £/ (8D,0),
yex— (pv)(x) —0/2)int (V0 — v)* C Q}

U= (z) = {(v,y) € Vo x Q: p(v)(x) < —0/2, |& —y| < &/ (8D0),
y€x— (p(v) (@) +6/2) int (Vo — v)* C Q}

+ — —
Ty and 27,..., 1

respectively, z € (). Namely, there exist points a:f, e Ly N-

in  such that
N
*c U U*(z). (13)

The continuous functions f*: Vo — C(Q) defined by

) (@) = lgg]§+{p J(@) —oy (@ —2),0/2}; (14)
() (z) = 1<rln<1%_{,0 )+0Vm0_v(:ﬁ—xi—),—5/2}, (15)

v € V.o, v € Q, are suitable approximations of the positive and neg-
ative parts of p(v)(x) in the sense that v + VfE(v)(z) € extV,,o0 for all
v € V' and a.e. x € Q with p(v)(z) > 6 (p(v)(z) < —0, respectively)
while v + Vf¥(v)(z) € Vo for the others (v,z) € V o x Q provided
existence of the gradients (see [15, p.50]); moreover, f*(v)(-) remains in
a || + ||so-neighborhood of the function p*(v)(-) whenever v € V', Here
pt(v)(z) :== max{p(v)(z),0} and 5~ (v)(x) := min{p(v)(z),0}. See [14, Sec-
tion 5] for a detailed discussion.
It follows from (14), (15), and (13) that the function

f@)(@) = fT() (@) + f(0)(2), veE Vo, z€Q, (16)

is well defined in the sense that it is never equal to the sum of two nonconstant
terms. Hence, always Vf(v)(z) € V,0 —v and v + Vf(v)(x) € ext V0 for
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all v € V', and a.e. z € Q such that either p(v)(z) > d or p(v)(z) < 4.

By the choice of § > 0 (see (12)), this implies Szlo(f) < 7. Furthermore, as is
easy to see,

[f(v) = 5(v)]| , <e/2 (17)
for all v € V:,o- Choosing an open set W C R” such that V:LO C W CV,o,
v? ¢ W, and (17) holds for all v € W, we can find a continuous function
¢: R" — [0,1] such that ¢(v) = 1 for v € V; and ¢)(v) = 0 for v ¢ W. Then
the function p(-),

p()(@) = () f(v)(2) + (1 = ¥(v))p(v)(z), (18)

v € R, x € Q, belongs obviously to #**; p(v°) = p(v") = 6°; and the inequal-

0
ity £7(7) < 7 holds. Thus, we have 7 (-) € Hi'yo and |5(v) = 5(0)] < e

0
for all v € R™, which proves the density of ?—L?U’Bneo) in ’HZ‘;‘O §0)"

In the case m # mY, the proof is exactly the same except for the condition
p(Y) =46 O

4. Final remarks

Theorem 1 shows that not only the affine function (v, +) but also the up-
per and lower solutions s¥(v)(+) of the relaxed problem (RP,) are Lipschitz
continuous with respect to v with the constant ||Q||. Furthermore, the func-
tion (v,-) + f(v)(-) in the proof of Theorem 4 (see (16)) is also Lipschitz
continuous with respect to v with the same constant and is “almost” a min-
imizer of the original nonconvex functional. However, we loose the Lipschitz
property after extension of this function outside Vnzo (see (18)). But there is
no necessity in such extension whenever the relaxed minimizer p(v)(+) admits
always either nonnegative or nonpositive values. Taking into account these
observations, we might wonder whether the original problem (P,) should also
admit Lipschitz continuous (with respect to v) solutions approximating some
of the relaxed minimizers with the same property.

In order to formulate a density result, denote by %I*I;ZII the set of all

mappings p(-) € H** such that v — (v,+) + p(v)(+) is Lipschitz continuous
with Lipschitz constant ||Q| (further, called simply ||2||-Lipschitz continuous).
Let also C* and C™ be the positive and negative cones in C(]R”, Co(ﬁ)), ie.,

ct = {p(-) € C(R",Co(Q)) : p(v)(x) >0, veER" z € ﬁ}

= {p(-) € C(R",Co(Q)) : p(v)(z) <0, veER" z € ﬁ}
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Theorem 5. The set HE* mHIIQII NC* is a dense Gg-subset of ”Q” NC*.

In particular, the variational problem (P,) admits a minimizer s (v)(+), defined
on the set of those v where the minimum exists, which is ||Q||-Lipschitz con-
tinuous with respect to v; and this minimizer can be chosen arbitrarily near to
every ||Q||-Lipschitz continuous solution s(v)(+) of the relaxed problem (RP.)
which always remains above (respectively, below) the affine function.

It follows from this theorem that the affine function itself can be uni-
formly approximated by a sequence of ||2||-Lipschitz continuous (with respect
to v) solutions of the problem (P,). This improves the result of [11] where
the Lipschitz property was established with a larger Lipschitz constant. It is
clear that ||Q2]| is the best possible Lipschitz constant.

In such a form Theorem 5 is proved in [14, Section 6], but, using Theo-
rem 2, we can also find a Lipschitz continuous selection of v +— S(v) passing
through an arbitrary point (v%,u?) € graph S**. However, the Lipschitz con-
stant here may be different (it depends on the choice of 09, see (9))

In conclusion, we observe that the upper and lower solutions s ( )(+) de-
fined by (3) and (4) always satisfy the inclusions Vs*(v)(z) € 9F (v) (the
boundary of ﬁ(u)) for a.e. z € Q (see [8, Theorem 3.1]) but, in general,
they are not solutions of the original problem (P,) (equivalently, of the inclu-
sion (2)). We illustrate this fact by the following simple example.

Example 1. Let n=2, Q:= {:E = (21, 22) : max(|z1|, |z2]) < 1}, and

0 if |vi|=1Ava] =1;
g(v) = .
+o00 otherwise.

Then the unique proper face of epi(g**) with nonempty interior (in R?) is
F = Q, and the variational problem (RP,) is equivalent to the differential
inclusion Vu(z) € F, “‘aQ — (v,-), for v € int F while, for v € OF , the unique
solution is the affine function x — (v, z). By (3) and (4), we find

st(v)(x) = 14 min{viz1 — |22 — v2|, voxa — |21 — V1] },

s~ (v)(x) = =1 4+ max{viz1 + |z2 + va|, vowa + |1 + V1] },

where z = (z1,73) € © and v = (v, v3) € F'; hence, Vst (v)(z), Vs~ (v)(x) E
{(v1,£1), (£1,v9)} for a.e. z € Q, i.e., the “extremal” solutions s (v)() an
s~ (v)(+) do not satisfy the extremal inclusion.

Acknowledgement. The author is indebted to the referee for his attention
to the article and kind suggestions.
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