Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/24574

Title: A fundamental differential system of 3-dimensional Riemannian geometry
Authors: Albuquerque, Rui
Editors: Golze, François
Keywords: differential system
Riemannian manifold
3-manifolds
Issue Date: Mar-2018
Publisher: Elsevier
Citation: R. Albuquerque, A fundamental differential system of 3-dimensional Riemannian geometry, Bull. Sci. math. 143 (2018) 82-107.
Abstract: We briefly recall a fundamental exterior differential system of Riemannian geometry and apply it to the case of three dimensions. Here we find new global tensors and intrinsic invariants of oriented Riemannian 3-manifolds. In particular, we develop the study of ∇Ric. The exterior differential system leads to a remarkable Weingarten type equation for immersed surfaces in hyperbolic 3-space. A new independent proof for low dimensions of the structural equations gives new insight on the intrinsic exterior differential system.
URI: https://doi.org/10.1016/j.bulsci.2018.01.001
http://hdl.handle.net/10174/24574
http://arxiv.org/abs/1112.3213
Type: article
Appears in Collections:CIMA - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
Intrinsicgeometryof3manifolds.pdf377.73 kBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois