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Abstract

We briefly recall a fundamental exterior differential system of Riemannian
geometry and apply it to the case of three dimensions. Here we find new global
tensors and intrinsic invariants of oriented Riemaniann 3-manifolds. In parti-
cular, we develop the study of ∇Ric . The exterior differential system leads to
a remarkable Weingarten type equation for immersed surfaces in hyperbolic 3-
space. A new independent proof for low dimensions of the structural equations
gives new insight on the intrinsic exterior differential system.
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1 A fundamental differential system

This article presents the fundamental exterior differential system of Riemannian geo-
metry introduced in [7], now developed on the 3-dimensional case.

The intrinsic structure found in [7] consists, in general, of a natural set of differential
n-forms α0, . . . , αn existing on the total space S of the unit tangent sphere bundle
SM −→M of any given oriented Riemannian n+1-manifold M . It is well-known that
S is a contact Riemannian manifold with the Sasaki metric.

The theory applied to Riemannian surfaces is classical, as we shall recall next,
considering the case n = 1. Indeed, the famous structural equations due to Cartan
give a global coframing on S, the total space of the tangent circle bundle over a surface
M , with contact 1-form θ and two 1-forms α0 and α1. Denoting by c the Gauss
curvature of M , we find the following equations e.g. in [22, pp. 168–169]:

dθ = α1 ∧ α0,

dα0 = θ ∧ α1 dα1 = c α0 ∧ θ.
(1)
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Certainly c is a constant along the S1-fibres of S and no more than that in general.
Now let us see the case n = 2 and hence assume S is the total space of the unit

tangent sphere bundle of an oriented Riemannian 3-dimensional manifold M . Then on
S we have again a contact 1-form θ and four pairwise orthogonal 2-forms α0, α1, α2

and dθ, satisfying:

∗θ = α0 ∧ α2 = −1

2
α1 ∧ α1 = −1

2
dθ ∧ dθ,

dα0 = θ ∧ α1, dα2 = Rξα2,

dα1 = 2 θ ∧ α2 − r θ ∧ α0.

(2)

The function r = r(u) = Ric (u, u), u ∈ S, and the 3-form Rξα2 are curvature
dependent tensors. E.g. for constant sectional curvature c, we have r = 2c and
Rξα2 = −c θ ∧ α1.

The differential system in general dimension interacts with various Euler-Lagrange
systems of hypersurface equations of M , when we consider the theory in parallel with
the Euclidean case described in [14]. In dimension 3 the equations satisfy a coincidence
that the αi are 2-forms like dθ, and so a natural SU(2) structure in the sense of [16] is
discovered. The interplay with CR-equations establishes what could be called a twistor
space. Every non-constant sectional curvature metric implies the particular existence
of four 1-forms

ρ, ρ1, ρ2, ρ3, (3)

closely related to the Ricci tensor, which develop into a new set of questions.
We start by recalling the differential geometry of S in any dimension in order to

establish an original structure Theorem. Next we present the general theory of a
fundamental differential system of Riemannian geometry, introduced in [7], which is
required but not essential. The Section following is devoted to the case of Riemannian
manifolds of dimension 3 and it brings a plethora of new intrinsic objects and their
related questions. In the last Section, again, useful general results are established, even
though its main achievement is a new proof of (2).

As one may care to notice, many classical textbooks on Differential Geometry con-
tain a section which is devoted to the intrinsic Riemannian geometry of surfaces , and
frequently such a section ends the book. The theory develops further, in any di-
mension, with the celebrated structural equations of Cartan, which depart from Lie
algebra-valued 1-forms. We hope our approach to three dimensions inspires new stud-
ies supported on the natural exterior differential system of fundamental 2-forms. This
represents another perspective on the intrinsic Riemannian geometry of 3-manifolds.

The author acknowledges Prof. Luigi Rodino, Università di Torino, for some helpful
suggestions.

1.1 Tangent manifold, orientation, metric and structure group

Let M denote any oriented n+1-dimensional smooth manifold. The total space of TM ,
denoted TM , is well-known to be a manifold of dimension 2n+ 2, with a differentiable
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structure arising from the vector bundle structure associated to the manifoldM through
the fibration π : TM −→ M , i.e. the local trivializations as Cartesian products of
neighbourhoods of M with the vector space Rn+1 and their transition maps linear
within the fibres.

WhenM is endowed with a linear connection∇ : Γ(M ;TM) −→ Γ(M ;T ∗M⊗TM),
there exists a canonical decomposition of TTM as TTM = H ⊕ V . Let us recall its
definition and main properties in very quick steps. We have the vertical distribution
V = ker dπ ' π?TM , a natural isomorphism, and then the horizontal distribution H
depending on ∇. Clearly, H is also isomorphic to π∗TM through the map dπ. Then
we may define an endomorphism, indeed a tensor, transforming horizontal into vertical
directions, via dπ, and vanishing on verticals. It is enough to see it with lifts (y ∈ TM):

B : TTM −→ TTM , Byh = yv, Byv = 0. (4)

The manifold TM has two canonical vector fields. Namely, the tautological vertical
vector field ξ, defined as ξu = u, ∀u ∈ TM , and its mirror on the horizontal distribution,
formally Btξ, known as the geodesic-spray ([21]). The term mirror means the image
through B is ξ. Indices ·h and ·v refer to the obvious canonical projections. We have
that H = ker(π?∇·ξ) and, ∀y ∈ TTM ,

π?∇yξ = yv. (5)

TM inherits a linear connection, denoted ∇∗ or ∇?, preserving the canonical decom-
position:

∇∗ = ∇? = π∗∇⊕ π?∇. (6)

The mirror endomorphism B is parallel for such ∇∗ by construction. The torsion
of ∇∗ is given by π∗T∇(v, w) ⊕ Rξ(v, w), ∀v, w ∈ TTM , where the vertical part is
Rξ(v, w) = Rπ?∇(v, w)ξ = π?R∇(v, w)ξ.

Any given frame in H followed by its mirror in V clearly determines a unique
orientation on the manifold TM . We convention the order ‘first H, then V ’, which is
an issue when dimM is odd.

Let us now assume the n+1-dimensional manifold M is also Riemannian. Then we
may consider the Sasaki metric on TM and quite immediately conclude the manifolds
TM and TM\(zero section) have structural group SO(k) × SO(k) where, respectively,
k = n+1 and n. Also we assume ∇ is a metric connection, ∇〈·, ·〉 = 0. Then the larger
structure is of course always parallel for ∇∗, whereas the smaller is never, because ξ is
not parallel. The vector bundle isomorphism B| : H → V , always parallel, becomes a
metric-preserving map.

Finally we recall the map J = B − Bt gives the Sasaki almost complex structure.
Further, the GL(n + 1,C) structure on TM is integrable if and only if T∇ = 0 and
R∇ = 0 (cf. [1] and the references therein).
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1.2 The tangent sphere bundle

Let ∇ be the Levi-Civita connection and consider the constant radius s tangent sphere
bundle

SsM := {u ∈ TM : ‖u‖ = s} −→M. (7)

Except for the Introduction section, we shall consider any radius s tangent sphere
bundle.

Let S = Ss,M denote the total space of SsM . Differentiating 〈ξ, ξ〉 = s2, we find
that TS = ξ⊥ and hence that S is always orientable — the restriction of ξ being
an outward normal. By the Gram-Schmidt process and the orthogonal group action,
for any u0 ∈ S we may find a local horizontal orthonormal frame e0, e1, . . . , en on a
neighbourhood of u0 in S such that e0u = 1

s
Btξu ∈ Hu, ∀u in the neighborhood.

With the dual horizontal co-framing, the identity π∗vol
M

= e01···n follows1. Joining
in the vertical 1-forms ξ[, en+1, . . . , e2n, such that

en+i ◦B = ei, ∀1 ≤ i ≤ n (8)

and giving also a dual frame satisfying en+i(ej) = ei(ej+n) = 0, en+i(ej+n) = ei(ej) =
δij, ∀i, j, we find the volume-form of TM :

e012···n ∧ 1

s
ξ[ ∧ e(n+1)···(2n) = (−1)n+1 1

s
ξ[ ∧ vol ∧ αn . (9)

We use vol := π∗vol
M

and the n-form αn on TM which is defined as the interior product
of ξ/s with the vertical lift of the volume-form of M . Hence, choosing appropriate ±ξ as
outward normal direction, the canonical orientation of the Riemannian submanifold S,
i.e. with the induced metric, agrees with vol ∧ αn = e01···(2n). The direct orthonormal
frame e0, e1, . . . , en,

1
s
ξ, en+1, . . . , e2n is said to be adapted. Without farther referring

the principal bundle of adapted frames, we summarize the unique structure of TM as
follows.

Theorem 1.1. The tangent manifold TM has structural group SO(n+ 1), through the
diagonal action on Rn+1 ⊕ Rn+1, and the induced connection ∇∗ is reducible.

The submanifolds TM\(zero section) and S have both structural group SO(n). In
dimension n + 1 ≥ 2, the restricted connection ∇∗, in the first case, and its canonical
TS-valued connection, in the second, are both not reducible.

Proof. On both manifolds, if the connections were reducible, we would have ∇∗y(Btξ) =
Btyv multiple of Btξ, ∀y tangent. Such is not the case if n ≥ 1. �

Remark. The reduction of the structural group of SsM from SO(2n + 1) to the
middle subgroup U(n) ⊇ SO(n) induces an integrable structure on S under certain
conditions. Namely, the total space S is a Sasakian manifold if and only if the base
M has constant sectional curvature 1

s2
([7, 17]). In a heuristic interpretation, this

1We adopt the usual notation ea ∧ eb ∧ · · · ∧ ec = eab···c. Also we shall use J...K later-on to denote
the linear R-span of that which appears between the brackets.
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may be seen as follows. The quotient distribution TS/Re0 agrees infinitesimally with
the tangent space to a Kähler quotient if and only if the horizontal n-plane H ∩ e⊥0
is tangent to a submanifold which agrees infinitesimally, through J , with the sphere
Sns , lying perpendicularly, as the standard fibre of SsM . The integrability result says
that M must be locally a sphere Sn+1

s . The simplyconnected case is that of a Stiefel
manifold S = Vn+2,2.

1.3 Recalling the fundamental differential system

We denote by θ the 1-form on S defined by

θ = 〈ξ, B · 〉 = s e0. (10)

It is well-known that θ defines a metric contact structure on S. With our coordinate-
free instruments we immediately find the known result dθ = e(1+n)1 + · · · + e(2n)n,
cf. Section 3. Using ∇∗ one also computes directly dθ(v, w) = 〈v,Bw〉 − 〈w,Bv〉,
∀v, w ∈ TS, confirming the independence of s.

After the above definitions and necessary digression on the geometry of S, we
are ready to recall the natural global n-forms α0, α1, . . . , αn associated to the given
oriented Riemannian manifold. Together, θ and the αi form the exterior differential
system discovered in [7].

We first write π?vol
M

for the vertical lift of the volume-form of M (this is not the
pull-back form; always shall a π? denote a vertical lift). We have already mentioned

αn =
1

s
ξy(π?vol

M
). (11)

Now for each 0 ≤ i ≤ n we define, ∀v1, . . . , vn ∈ TS,

αi(v1, . . . , vn) =
1

i!(n− i)!
∑

σ∈Sym(n)

sg(σ)αn(Bvσ1 , . . . , Bvσn−i
, vσn−i+1

, . . . , vσn). (12)

For convenience we also define α−1 = αn+1 = 0.
By uniqueness of the Levi-Civita connection, ∇ is invariant for every isometry of

M and hence all the αi are invariant by isometry.
We shall use the notation

Rlkij = 〈R∇(ei, ej)ek, el〉 = 〈∇ei∇ejek −∇ej∇eiek −∇[ei,ej ]ek, el〉. (13)

Theorem 1.2 (1st-order structure equations, [7, Theorem 2.1]). We have

dαi =
1

s2
(i+ 1) θ ∧ αi+1 +Rξαi (14)

where

Rξαi =
∑

0≤j<q≤n

n∑
p=1

sRp0jq e
jq ∧ ep+nyαi. (15)
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Defining r = 1
s2
π?Ric (ξ, ξ) =

∑n
j=1Rj0j0, a smooth function on S determined

by the Ricci curvature of M , a few computations in [7] show that Rξα0 = 0 and
Rξα1 = −r θ ∧ α0. This is

dα0 =
1

s2
θ ∧ α1, dα1 =

2

s2
θ ∧ α2 − sr vol. (16)

Moreover, the differential forms θ, αn and αn−1 are always coclosed (cf. [7, Proposition
2.3] or (18) below). In every degree we have αi ∧ dθ = 0 and hence

d(Rξαi) =
1

s2
(i+ 1) θ ∧Rξαi+1, dθ ∧Rξαi = 0. (17)

We remark once again there are no further assumptions on M . It is just an ori-
ented n+ 1-dimensional Riemannian manifold, from which the associated fundamental
exterior differential system is defined as the ideal {θ, α0, . . . , αn}Ω∗S .

1.4 Applications to special Riemannian structures

The author has developed in [7] some applications of the differential system. One
missing detail is a simple verification of the formulae, e.g. through charts, for the case
n = 1. In [22] we find a proof of this already non-trivial case. One of the purposes of
this article is to give a new further enlightening proof of equations (14,15). We obtain
it, in a quite independent Section 3, for n = 1, 2.

In the study of the differential system we are challenged to find the associated
calibration p-forms. For example, a G2 structure is found on S for any oriented 4-
manifold M in [2, 5, 9, 10]; which is cocalibrated if and only if M is Einstein.

For any 0 ≤ i ≤ n we have:

∗ (dθ)i =
(−1)

n(n+1)
2 i!

s(n− i)!
θ ∧ (dθ)n−i

∗αi =
(−1)n−i

s
θ ∧ αn−i.

(18)

It is important to have in mind that αi ∧ dθ = 0 and αi ∧ αj = 0, ∀j 6= n − i. The
Hodge star-operator ∗ on S satisfies ∗∗ = 1Λ∗ .

We recall a first result involving αn−2 and a 1-form playing a central role: ρ =
1
s
ξyπ?Ric . It is thus defined through the vertical lift of the Ricci tensor and by

restricting to S. With an adapted frame, we deduce

ρ =
n∑

a,b=1

Ra0ab e
b+n. (19)

One sees that expressions such as (19) are independent of the choice of adapted frame.
The tangent vector s e0 is the horizontal tautological lift of the point u ∈ S in question,
just as ξ is the vertical. Recall also these two vectors are fixed in the adapted frame.

Let us denote the co-differential by δ = − ∗ d∗.
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Theorem 1.3 ([7, Theorem 2.3]). In any dimension we have d ∗ αn−2 = ρ ∧ θ ∧ α0.
Henceforth, the metric on M is Einstein if and only if δαn−2 = 0.

We have also, quite easily,

dr =
n∑
i=0

(∇iRic 00)ei +
2

s
ρ. (20)

We shall prove a further identity in Section 3.1, Proposition 3.1:

dρ =
1

s

n∑
i=0

ei ∧ ξy∇?
iRic . (21)

Let us recall the interesting case of constant sectional curvature c. Since we have
Rqpij = c(δiqδjp − δipδjq), one finds Rξαi = −c(n− i+ 1) θ ∧ αi−1. In particular all the
∗αi are closed n+ 1-forms.

2 The 3-dimensional differential system

We now consider any oriented Riemannian 3-manifold M , together with the 5-di-
mensional Riemannian manifold S given by the total space of the tangent sphere bundle
SM,s −→M equipped with Sasaki metric and canonical orientation.

2.1 Representation spaces

On S we have the contact 1-form, θ = s e0, which is clearly invariant for the action
of SO(2) on R1+2+2, cf. Theorem 1.1. This is the trivial action on the 1-dimensional
summand and the diagonal action on the orthogonal complement.

From the definition we find the four global invariant 2-forms, frame choice indepen-
dent,

α0 = e12, α1 = e14 − e23, α2 = e34, dθ = e31 + e42. (22)

We also see
α0 ∧ α1 = α2 ∧ α1 = αi ∧ dθ = 0, ∀i = 0, 1, 2, (23)

1

s
∗ θ = α0 ∧ α2 = −1

2
α1 ∧ α1 = −1

2
(dθ)2 (24)

and

∗ dθ = −1

s
θ ∧ dθ, ∗α0 =

1

s
θ ∧ α2, ∗α1 = −1

s
θ ∧ α1, ∗α2 =

1

s
θ ∧ α0. (25)

Proposition 2.1. The representation under SO(2) above, induced on the vector bundle
Λ2T ∗S, corresponds with the decomposition

Λ2R5 = 4R1 ⊕W1 ⊕W2 ⊕W3 (26)
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where we have the four 1-dimensional invariants from (22) and three irreducible or-
thogonal subspaces Wi defined by

W1 = Je01, e02K, W2 = Je03, e04K (27)

and
W3 = Jf1, f2K (28)

where
f1 := e14 + e23, f2 := e31 − e42. (29)

(Notice the 2-forms f1, f2 are not invariantly defined.)
It is trivial to write the Wi as eigenspaces of certain endomorphisms. On the

4-dimensional side e⊥0 , we note W3 is composed of ∗4-selfdual forms. In particular,
it is orthogonal to the αi and dθ. Using the Hodge isomorphism, we deduce the
decomposition of Λ3R5 into irreducibles. Λ1R5 is an elementary case and Λ4R5 =
J∗θK ⊕W1α2 ⊕W2α0. Since the canonical epimorphism Λ1R5 ⊗ Λ2R5 −→ Λ3R5 has
a kernel of dimension 40, there are many equivalent representations in the space of
3-forms arising from (26).

Finally, the 1-form defined in (19) is an irreducible:

ρ =
1

s
ξyπ?Ric = R1012e

4 −R2012e
3. (30)

Recalling the scalar function r = 1
s2

Ric (ξ, ξ) = R1010 + R2020, we find that we may
write it using scalar and sectional curvatures as r = 1

2
scal −c({e1, e2}) = 1

2
scal −R1212.

Clearly, Ric = λ〈·, ·〉, for some constant λ, implies M has constant sectional curvature
λ/2.

2.2 Natural SU(2) structures or twistor space

There exists an almost complex structure on each sub-vector bundle H0 = H ∩ e⊥0 =
Je1, e2K and V0 = V ∩ ξ⊥ = Je3, e4K of TS. We shall denote by I+ and I− the maps
defined, according to ±, by

e0 7→ 0, e1 7→ e2 7→ −e1, e3 7→ ±e4 7→ −e3. (31)

I+, I− are invariantly defined commuting endomorphisms of TS. We choose I+ to
induce complex structures, by restriction, on the vector bundles H0 and V0. This
choice preserves orientation in the sense that on H0⊕V0 we have JI+J

t = JI+J
−1 = I+.

Notice on the other hand that J and I− anti-commute, giving an immediate proof of
the following result.

Theorem 2.1. For every oriented Riemannian 3-manifold M the 5-dimensional Rie-
mannian contact manifold S admits an SU(2) structure in the sense of Conti-Salamon,
defined by (θ, J, I−).
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This structure on S now truly recalls us of the twistor space of 4-manifolds and one
may certainly consider the use of the same term.

Regarding natural integrability questions, they shall be studied elsewhere ([8]);
there are many conditions to be verified within the classification of SU(2) structures.
Indeed, using weight coefficients, the present structure admits several variations which
yield new hypo, double-hypo or Sasaki-Einstein manifolds. Hypo manifolds are the
real 5-dimensional hypersurfaces of an SU(3) manifold with the induced Conti-Salamon
SU(2) structure. The theory was started in [16] and developed in [11, 15, 18].

The complex line bundles H0 and V0 are very particular to dimension 3, due to
SO(2) = U(1). The vertical C-line bundle V0 is clearly the holomorphic tangent bundle
when restricted to each S2 fibre, with α2 restricting to the Kähler class even if dα2 6= 0
globally.

Like ρ above, we have global 1-forms defined by

ρ = R1012e
4 −R2012e

3,

ρ1 = ρB = R1012e
2 −R2012e

1,

ρ2 = ρI+B = R1012e
1 +R2012e

2,

ρ3 = ρI+ = R1012e
3 +R2012e

4.

(32)

The formulae ∗(ρ∧vol) = ρ3 and ∗(ρ3∧vol) = −ρ are helpful. As well as the following
prove to be: ∗ρ1 = 1

s
θ ∧ ρ2 ∧ α2 and ∗ρ2 = −1

s
θ ∧ ρ1 ∧ α2.

From the existence of equivalent representations in Λ3 we obtain the next result.

Proposition 2.2. The following identities hold:

ρ ∧ α0 = −ρ1 ∧ α1 = −ρ2 ∧ dθ,

ρ1 ∧ α2 = ρ3 ∧ dθ = −ρ ∧ α1,

ρ2 ∧ α1 = −ρ3 ∧ α0 = −ρ1 ∧ dθ,

ρ3 ∧ α1 = ρ ∧ dθ = −ρ2 ∧ α2.

(33)

2.3 Exterior derivatives

From the general formula in (16) we have r = R1010 +R2020 and

dα0 =
1

s2
θ ∧ α1, (34)

dα1 =
2

s2
θ ∧ α2 − r θ ∧ α0. (35)

The first derivatives are already decomposed into irreducibles, cf. Proposition 2.1.
Given any contact 2n + 1-manifold, such as (S, θ), it is known that the d-closed

ideal I generated by θ contains the whole exterior algebra above the degree n, cf.
[14, Theorem 1.1]. Each n + 1-form Π may thus be written globally as a form in I.
Moreover, any class [Π] has a unique representative congruent with 0 mod θ in the
differential cohomology Hn+1(I). Such unique representative of dΛ, given any n-form
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or Lagrangian Λ on the contact manifold, is called the Poincaré-Cartan form of Λ. It
is very important in the study of the Euler-Lagrange system {θ, dθ,Λ}, specially for
the associated variational principle, cf. [14].

We thus have immediately the Poincaré-Cartan forms of α0 and α1.

Theorem 2.2. The decomposition of dα2 is given by

dα2 = θ ∧ γ − r

2
θ ∧ α1 + s α0 ∧ ρ ∈ ∗W3 ⊕ J∗α1K⊕ ∗W2 (36)

where, by (29), the 2-form γ is defined as

γ := R1002f2 +
1

2
(R1001 −R2002)f1 ∈ W3. (37)

The Poincaré-Cartan form of α2 is

Π = θ ∧
(
γ − r

2
α1 − s dρ2

)
. (38)

Proof. The reader may easily see the 2-form γ is independent of the choice of the
orthonormal frame e1, e2 such that e0, e1, e2 is positively oriented. From Proposition
2.2, we shall need α0 ∧ ρ = −ρ2 ∧ dθ. Starting from Theorem 1.2, also cf. (77), we
obtain

dα2 = s e0
(
R1001e

14 −R2002e
23 +R1002e

24 −R2001e
13
)

+

+sR1012e
124 − sR2012e

123 (39)

= θ ∧ γ − r

2
θ ∧ α1 + s α0 ∧ ρ

= θ ∧ (γ − r

2
α1)− s ρ2 ∧ dθ

= θ ∧ (γ − r

2
α1 − s dρ2) + d(s ρ2 ∧ θ).

The first part of the result is thus immediate after the first line in the computation
above, since the representation subspaces are known. For the second part, the Poincaré-
Cartan form Π of α2 is finally Π = d(α2 − s ρ2 ∧ θ). �

Recall a new proof of the main derivatives is given in the last Section. In dimension
3 there is no place for the Weyl curvature tensor ([20]); it is trivial to see that an
Einstein metric is in fact of constant sectional curvature.

Corollary 2.1. The following assertions are equivalent on a connected 3-manifold: M
has constant sectional curvature; r is constant; ρ = 0; γ = 0; dα2 = − r

2
θ ∧ α1.

Proof (before the Theorem of Schur). The only implication which offers some doubt is
that the last statement implies the first. So differentiating dα2 again we obtain easily
from αi ∧ dθ = 0 and (35) that dr ∧ θ ∧ α1 = 0. Since dr =

∑4
l=0 dr(el)e

l, it is easy to
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see dr = dr(e0)e0. Hence r does not vary on vertical directions, nor on any horizontal
as it must then be concluded (if one prefers, every closed 1-form fθ must vanish).2 �

A relevant equation comes from differentiating (35) again, cf. (20):

(2ρ− s dr) ∧ θ ∧ α0 = 0. (40)

2.4 ∇Ric and the co-differentials

In differentiating (36) we are confronted with the exterior derivatives of γ and ρ. While
the former is a new mysterious object, the interpretation of the latter is more accessible.
We have from (21) that dρ =

∑2
i=0, j=1(∇iRic )0je

i,j+2, and hence we may apply the
representation of 2-forms (F1, F4 ∈ C∞S ):

dρ = F1α1 + F2 + F3 + F4dθ ∈ Jα1K⊕W2 ⊕W3 ⊕ JdθK. (41)

These forms suggest a classification of the 3-tensor ∇Ric ∈ Γ(M ;T ∗M ⊗ S2T ∗M)
in parallel with that found by Gray in [19] in general. Through the geometry of S
over the 3-dimensional base, we obtain 16 different cases which do not repeat the 8
representation classes under SO(3). It is a new description, one might agree. The
following conditions are invariant of the orthonormal base of e⊥0 ⊂ TM for each e0. We
say the metric is:
· Ricci type I if (∇1Ric )02 = (∇2Ric )01. Equivalently, F1 = 0.
· Ricci type II if (∇0Ric )01 = (∇0Ric )02 = 0. Equivalently, F2 = 0.
· Ricci type III if (∇1Ric )02 = −(∇2Ric )01 = 0. Equivalently, F3 = 0.
· Ricci type IV if (∇1Ric )10 + (∇2Ric )20 = 0. Equivalently, F4 = 0.
Notice Ricci type III is included in I and II is included in IV, due to symmetries.

III is also equivalent to (∇1Ric )01 = (∇2Ric )02. Also note the uniqueness of such a
decomposition is not assured, although of course each lies in a minimal SO(3) repre-
sentation space. This classification has a different meaning from that of representation
theory of the base manifold structure group. In short terms, the condition in each type
means that the equations must be satisfied ∀m ∈M , ∀e0 ∈ TmM and one orthonormal
basis e1, e2 of e⊥0 .

None of the above Ricci types seem to imply constant scalar curvature (CSC).
Following the results on Einstein-like manifolds, cf. [12, 19], we have in general from
the second Bianchi identity and an orthonormal basis:∑

i

∇uRic (ei, ei) = 2
∑
i

∇eiRic (ei, u), ∀u ∈ TM. (42)

CSC is the same as the vanishing of the left hand side. Such space is composed of two
SO(3)-irreducibles, the well-known Codazzi and Killing type tensors. The orthogonal
to CSC Ricci type is not of any specific type I to IV.

2By the well-known Theorem of Schur, we knew already that r is a constant. This classical result
is proved in any dimension ≥ 3 in [7, Proposition 2.5] with the new system. The reader may well be
defied by the 2-dimensional system (1), knowing that sectional curvature is constant in general only
on each S1 fibre.
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A particularly interesting type of metrics are those which satisfy the recurrent
condition on the Ricci tensor: ∇Ric = ω ⊗ 〈 , 〉 for some 1-form ω on M . This is an
SO(3)-reducible which clearly belongs to all four Ricci types above.

The following table details some further coincidences, easy to check.

Theorem 2.3. We have:

If dρ ∈ then Ricci type
Jα1K⊕W2 ⊕W3 ⊕ JdθK

W2 ⊕W3 ⊕ JdθK I
Jα1K⊕W3 ⊕ JdθK II
Jα1K⊕W2 ⊕ JdθK III
Jα1K⊕W2 ⊕W3 IV

W2 ⊕W3 I and IV
W3 ⊕ JdθK I and II
W2 ⊕ JdθK III
Jα1K⊕ JdθK II and III
Jα1K⊕W3 II
Jα1K⊕W2 II and III

W3 I and II
{0} ∪ JdθK ∪W2 ∪ Jα1K II and III

Having the derivative of ρ, we pass to another kind of questions.

Proposition 2.3. The following identities hold:

δdθ = − 1

s2
θ, δθ = 0,

δα0 = −s ρ3, δα1 = 0, δα2 = 0,

δρ =?, δρ1 = 2F4, δρ2 = 2F1, δρ3 = 0.

(43)

Proof. This is a simple exercise which requires several identities deduced earlier. For
instance, δρ1 = −∗d∗ρ1 = −1

s
∗d(θ∧ρ2∧α2) = 1

s
∗ d(θ∧ρ∧dθ) = −1

s
∗(θ∧F4dθ∧dθ) =

2F4. �

Moreover, α1 is co-exact. The Hodge decomposition of α0 and α2 is unknown to
the author. dθ is always an eigenform of the Laplacian ∆ = dδ + δd. In praise of this
operator we write the following result (giving more three eigenforms).

Proposition 2.4. Let M have constant sectional curvature c. Then

∆α0 =
2

s2
α0 − 2c α2, ∆α1 =

2 + 2c2s4

s2
α1, ∆α2 = −2c α0 + 2c2s2 α2. (44)
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2.5 Integration along the fibre

Besides the fibre-constant function scal , we have other interesting scalar functions
invariantly defined on S. Using any adapted frame e0, e1, e2 (recall 0 stands for the
horizontal replica of the unit direction of the point u ∈ S in question), such functions
are:

c = R1212, (45)

r = R1010 +R2020 =
1

2
scal − c, (46)

p2 = ‖ρ‖2 = R1012
2 +R2012

2 (47)

and

q2 = ‖γ‖2 = 2R1002
2 +

1

2
(R1001 −R2002)2

=
1

2
r2 − 2 detR·00·.

(48)

One also finds the relations ρ3 ∧ ρ = p2 α2 and ρ2 ∧ ρ1 = p2 α0 where p = ‖ρ‖. We note
the remaining four similar products are not irreducible. With q = ‖γ‖, we may further
write

sp4 volS = θ ∧ ρ ∧ ρ1 ∧ ρ2 ∧ ρ3, q2 α0 ∧ α2 = γ ∧ γ. (49)

Recall that d(αi ∧ αj) = 0 for all i, j = 0, 1, 2, and so, in particular, we may take the
integral over S of the following 5-form in various ways:

r θ ∧ α0 ∧ α2 = −dα1 ∧ α2 = α1 ∧ dα2 = −r
2
θ ∧ α1 ∧ α1. (50)

Integration along the fibre obtained for any form or real function f ∈ C0 on S is
also interesting:

f̌(x) =
1

s2

∫
π−1(x)

f α2 (x ∈M). (51)

Theorem 2.4. With π = 3.14... and the norm ‖R‖2 =
∑
Rabcd

2, we have:

1̌ = 4π, č =
2π

3
scal , č2 =

π

15
(2‖R‖2 + scal 2),

ř =
4π

3
scal , ř2 =

2π

15
(‖R‖2 + 6 scal 2),

p̌2 =
π

15
(3‖R‖2 − 2 scal 2), q̌2 =

2π

15
(3‖R‖2 − 2 scal 2).

(52)

Proof. The sum
∑
Rabcd

2 runs over all indices of an orthonormal frame. The result is
expected by Chern-Weyl theory, so we just give details of the common tools needed to
solve the computations of (52), of increasing complexity. Notice that all the functions
are independent of the orientation on the S2-fibres and also of the length of the ray.
In order to integrate them, we take any fixed frame i, j,k of R3, so in particular

‖R‖2 = 4(Rijij
2 +Rikik

2 +Rjkjk
2) + 8(Rijik

2 +Rijkj
2 +Rikjk

2),
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and the coordinates 0 ≤ θ < 2π, −1 < z < 1 applied in u = e0 = aw + zk ∈ S2 ⊂ R3,
where w = i cos θ + j sin θ. Of course we assume a > 0, a2 + z2 = 1. With this
choice, an adapted frame of TuS

2 is given by e1 = w̃ and e2 = −zw + ak where
w̃ = −i sin θ + j cos θ. This seems to be the easiest way to develop the functions we
wish. The area volume element is easy to find and so the result follows after a long
series of computations for each function (reminiscent of the theory of ultra-spherical
polynomials). �

The canonical push-forward of θ ∧ α2 and α0 ∧ α2 both vanish, but that of volS is
4πs2 volM . The proof is also an exercise and the result as expected.

Given any Riemannian vector bundle E over M and a section ϕ ∈ Γ(M ;T ∗M⊗E),
we then have a real function on S defined by ϕ̃(u) = ϕπ(u)(u), ∀u ∈ S. It is easy to
deduce that (ϕ̃2)∨ = 4π

3
|ϕ|2

T∗M⊗E
(Hilbert-Schmidt norm).

For any section g1 ∈ Γ(M ;⊗2T ∗M) on M , we may consider (g̃2
1)∨ = 4π

3
|g1|2T∗M⊗T∗M

or otherwise, via the diagonal map, we find directly (g2
1)∨ = 4π

3
trgg1.

2.6 Towards an intrinsic conservation law

Let (S, θ) denote any contact manifold of dimension 2n+ 1, equipped with a preferred
contact form, such as the space we have been studying. Suppose it is given a differential
ideal J ⊂ Ω∗S , where by differential it is meant that dJ ⊂ J . Then we may consider
as in [14] the exact sequence of complexes

0 −→ J −→ Ω∗S −→ Ω∗S/J −→ 0 (53)

and also the associated long exact sequence with field coefficients

· · ·Hn−1(J ) −→ Hn−1
de R(S) −→ Hn−1(Ω∗S/J ) −→ Hn(J ) −→ Hn

de R(S) · · · . (54)

In the event of the contact ideal I = {θ, dθ} being contained in J , with integral
submanifolds f : N → S of dimension n, the real vector space C = Hn−1(Ω∗S/J ) is
called the space of conservation laws (we assume the notation of the brackets referring
just to the algebraic span in the exterior algebra of S). In other words, C is the space
of classes of n − 1-forms ϕ on S such that df ∗ϕ ∈ J for all integral submanifolds
([13, 14]). The contact ideal plays a central role. The contact condition θ ∧ (dθ)n 6= 0
implies that every n+ 1-form lies in I, giving e.g. the Poincaré-Cartan form of a given
Lagrangian. For the same reason, an analogous condition holds with any other ideal
J containing the contact form θ and a non-degenerate 2-form over ker θ.

Finally we resume with the natural differential system θ, α0, α1, α2 on the tangent
sphere bundle S of radius s associated to any given oriented Riemannian 3-manifold M .
A natural question is which intrinsic properties may there arise from the Euler-Lagrange
system EΛ = {θ, dθ,Λ} when we take for the Lagrangian Λ any of the invariant 2-forms.
One may also study larger systems, including the ideal d-span of Γ(S;W ) ⊂ Ω2

S where
W = Wl, l = 1, 2, 3, from Proposition 2.1, or simply W = {e1, e2} or {e3, e4} recurring
to any adapted frame. We notice that with a principal ideal we are more likely to find
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finite dimensions in (54). Because we are interested in the SO(2)-invariant 2-forms, we
shall consider first the ideal J = {Λ} generated by an invariant Lagrangian. The term
invariant Lagrangian is reserved here for any 2-form

Λ = t0α0 + t1α1 + t2α2 + t3dθ (55)

such that t0, t1, t2, t3 ∈ R are constants. We say that an invariant Lagrangian is degen-
erate if Λ ∧ Λ = 0. There is no preferred Lagrangian and many subclasses are quite
important.

Proposition 2.5. Λ is non-degenerate if and only if t0t2 − t21 − t23 6= 0. On the
subspace ker θ we have (anti-)selfdual invariant Lagrangians, i.e. ∗4Λ = ±Λ, if and
only if t2 = ±t0, t1 = ∓t1, t3 = ∓t3.

From the structural equations (34–36), it follows that:

dΛ = θ ∧ Λ′0 + Λ′1 (56)

where

Λ′0 = −rt1 α0 +
2t0 − s2t2r

2s2
α1 +

2t1
s2

α2 + t2 γ and Λ′1 = st2α0 ∧ ρ. (57)

Notice for every form τ there is a unique decomposition τ = θ∧ τ0 + τ1 where τ1 is free
from factors of θ. Now we observe that a differential principal ideal may be defined
from a 2-form Λ such that dΛ = ψ ∧ Λ.

Theorem 2.5. Let M be any oriented Riemannian 3-manifold M and suppose Λ is
a non-degenerate invariant Lagrangian. Then dΛ = ψ ∧ Λ if and only if one of the
following conditions holds:
i) Λ ∼ dθ;
ii) M has constant sectional curvature c = t0

s2t2
and Λ = Λ1 := t0α0 + t2α2 + t3dθ is

also closed, for any t0, t2, t3 ∈ R such that t0t2 6= t23.

The proof is elementary. Let us indicate by ∼ a real direct proportionals relation.
Then with Λ ∼ α2, which is degenerate, we have also a closed solution when M is flat.
The only solution with ψ ∼ θ and ψ non-vanishing is obtained through a degenerate

Lagrangian. Precisely, it is defined on a negative constant sectional curvature c = − t20
s2

metric on M , for any non-vanishing t0 and a degenerate Lagrangian proportional to

Λ2 := t0α0 ± α1 +
1

t0
α2. (58)

This satisfies

dΛ2 = ∓2t0
s2

θ ∧ Λ2. (59)

Lemma 2.1. Let e0, . . . , e4 be an adapted frame and let β =
∑
bje

j denote any 1-form
on S. Then β ∧ Λ2 = 0 if and only if b0 = t0b3 ∓ b1 = t0b4 ∓ b2 = 0.
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Now we may study the cohomology H∗(Λ), this is, the cohomology of the ideals
spanned by the distinguished Lagrangians above. Of course H l(Λ) = H l

de R(S) for
l = 0, 1.

Proposition 2.6. We have:
i) H2(dθ) = H2(Λ1) = R;
ii) H2(α2) = {f ∈ C∞S : df ∧ α2 = 0}, in case M is flat;
iii) H2(Λ2) = {f ∈ C∞S : (df ∓ 2t0

s2
f θ) ∧ Λ2 = 0}, in the hyperbolic metric case above.

Proof. Clearly H2 = Z2 = {f ∈ C∞S : d(fΛ) = 0} for any degree 2-form. In the two
non-degenerate cases, we find df ∧ Λ, for some function f on S, vanishing if and only
if f is a constant. The remaining conditions are similar. For α2 the equation says f
does not vary horizontally. �

We notice that any non-trivial solution for case iii above should be quite interesting
in the geometry of the hyperbolic base M . Of course Lemma 2.1 is helpful but brings
little insight to what kind of functions these are.

A next step in the theory is the study of the invariant Euler-Lagrange systems, this
meaning a differential ideal generated by an invariant Lagrangian Λ and the contact
1-form:

EΛ = {θ, dθ,Λ} (60)

We shall end with an application, in extrinsic geometry, regarding the theory of
calculus of variations and Legendre surfaces, cf. [7, 14]. We must see the interesting
case of the degenerate system given by Λ2 above, (58), which has as Poincaré-Cartan
form essentially the form itself: dΛ2 ∼ θ ∧ Λ2.

Suppose M has constant sectional curvature c < 0. Recall the Gauss-Codazzi
equation for a Riemannian hypersurface f : N −→ M reads KN = c + λ1λ2, in the
present dimension, where λ1, λ2 are the principal curvatures of N and KN = RN

1212 is
the sectional curvature. Also let HN = 1

2
(λ1 + λ2) denote the mean curvature. Then

we consider the following Weingarten type functional, for t0 =
√
−c:

FΛ2(N) =

∫
N

(KN ∓ 2t0HN + 2t20) volN . (61)

Theorem 2.6. Let M be an oriented hyperbolic 3-manifold with constant sectional
curvature c. Then a compact isometric immersed surface f : N →M is stationary for
the functional FΛ2 with fixed boundary if and only if

KN ∓ 2t0HN + 2t20 = 0. (62)

In particular, FΛ2 has its stationary points in between its zeros.

Proof. Let f̂ : N −→ S1,M denote the immersion induced by a unit normal vector field
on N . Recalling [7, Proposition 3.1], we see the pull-backs of the fundamental 2-forms
α0, α1, α2 are a multiple of volN for the respective factors 1,−(λ1 + λ2), λ1λ2. Then
KN volN = f̂ ∗(c α0+α2) and another straightforward computation shows 1

t0

∫
N
f̂ ∗Λ2, cf.
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(58), corresponds indeed to the functional defined by FΛ2(N). Fundamental basics from
[14] yield that the stationary Legendre submanifolds are those which satisfy f̂ ∗Ψ = 0,
when Π = θ ∧ Ψ is the Poincaré-Cartan form of the Euler-Lagrange system. In our
case, Π = dΛ2 ∼ θ ∧ Λ2. �

3 A new proof of the differential system in low di-

mensions

The aim of this Section is to give a new proof of the fundamental differential system
in dimensions 2 and 3.

3.1 General computations

We resume with the differential geometry considerations on the manifold TM endowed
with the Sasaki metric and linear metric connection ∇∗, reducible to a SO(n + 1)
connection, for any given Riemannian manifold M of dimension n+ 1. As introduced
in Section 1.

We continue to assume ∇ is the Levi-Civita connection, so it is easy to give a
torsion-free connection D∗ over TM , cf. (6):

D∗yz = ∇∗yz −
1

2
Rξ(y, z), ∀y, z ∈ TTM . (63)

D∗ is most useful for many computations, though it is no longer a metric connection.

Remark. To find the Levi-Civita connection we must add to D∗ the tensor A given
by (cf. [1, 2, 3, 4, 6])

〈Ayz, w〉 =
1

2
(〈Rξ(y, w), z〉+ 〈Rξ(z, w), y〉). (64)

Recall Rξ is V -valued and notice A is H-valued since Rξ(y, w) = Rξ(yh, wh).

We shall work on the tangent bundle instead of its distinguished hypersurface S.
It is wiser to take restrictions only in the end. For the moment, we do not worry with
S and hence s = ‖ξ‖ is a free parameter.

We may now prove formula (21).

Proposition 3.1. On S we have dρ = 1
s

∑n
i=0 e

i ∧ ξy∇∗iπ?Ric .

Proof. This computation is somewhat standard so we skip many details. First, after
differentiation, we may disregard any factors of ξ[, such as ds = 1

s
ξ[, since these vanish

on S. We then use the torsion-free D∗. It verifies, for any tensor form L on TM ,

D∗x(ξyL) = ξy(D∗xL) + xvyL.
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We also have the expected symmetric tensor in y, z

D∗xπ
?Ric (y, z) = ∇∗xRic (y, z) +

1

2
π∗Ric (Rξ

x,y, z) +
1

2
π∗Ric (y,Rξ

x,z).

Using all the symmetries involved to develop

dρ =
1

s

2n∑
j=0

ej ∧D∗j (ξyπ?Ric ) mod ξ[,

the result follows. �

Continuing with the adapted frame introduced in Section 1, we now recall that all
the n-forms αi recur to αn and

αn =
1

s
ξy(π?vol

M
) = e(n+1)(n+2)···(2n). (65)

Theorem 1.2 is proved in [7] with the tools of connection theory as introduced above.
There, we differentiate the forms αi applying an appropriate chain rule on the general
definition (12). We now come forward with a new study, we think also enlightening,
of the αi, and we accomplish the task of finding their derivatives in dimensions 2 and
3. For higher dimensions, the new tools are still inquiring for one’s talent, within the
combinatorics required for the definitions, even knowing on the first place the expected
result. We develop those ideas for dimM = n + 1 firstly and specialize with the low
dimensions in the next subsections.

We need a lemma involving the tautological vector field ξ. For a moment, let
ξ denote just the position vector on Euclidean space. The next lemma proves the
existence of a useful moving frame somewhat related to polar coordinates. Since we
have not found it elsewhere, it is called here with the same name.

Lemma 3.1 (Polar frame). For any u0 ∈ Rn+1\{0} there exists a conical neighbourhood
U and a tangent frame X1, . . . , Xn of ξ⊥ defined on U , which on the line Ru0 it is
orthonormal and such that (∂Xj

Xi)u = −δij u
‖u‖2 , ∀1 ≤ i, j ≤ n, ∀u ∈ Ru0. Moreover,

everywhere on U , we have ∂ξXi = 0 and ∂Xi
ξ = Xi, ∀1 ≤ i ≤ n.

Proof. Clearly ∂Xξ = X for every vector X. We take a normal chart on the radius 1
n-sphere passing through u1 = u0/‖u0‖. Such a coordinate system is critical for the
Levi-Civita connection ∇σ with maximal rank at the centre u1, i.e., the Christoffel
symbols vanish at u1. Of course, we may suppose the induced frame X1, . . . , Xn to be
orthonormal at u1. Then we lift the vectors to the product manifold Sn ×R. In other
words, by Euclidean parallel translation along the ray. Immediately we have ∂ξXi = 0
and Xi ⊥ ξ on U . Now the crucial point is that at u0 we still have vanishing Christoffel
symbols. Indeed, homotheties preserve the sphere geodesics and at the centre the scale
does not change those values. Finally

0 = ∇σ
Xi
Xj = ∂Xi

Xj −
1

‖ξ‖2
〈∂Xi

Xj, ξ〉ξ = ∂Xi
Xj +

δij
‖ξ‖2

ξ

and the result follows. �
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A simple example is enough to reassure the factors are correct.

Example. In R2 we have ξ(x,y) = (x, y) and then take X(x,y) = 1
s
(−y, x) with s =√

x2 + y2. Clearly ds(X) = 0 and (∂XX)(x,y) = − 1
s2

(x, y). Also ∂ξX = 0. Notice that
while this result is global, that in the lemma is local — because normal coordinates
depend on a chosen basis for n > 1. The same is to say, in n distinct great circles.

We return to TM and its linear connections ∇∗ and D∗. The tautological vector
field verifies ∇∗ξξ = ξ by (5). Also recall ‖ξ‖ = s.

Proposition 3.2. For all non-vanishing u0 ∈ TM there is a neighbourhood U of u0

and a vertical frame en+1, . . . , e2n of V ∩ ξ⊥ defined on U , such that on the line Ru0 it
is orthonormal and such that ∇∗ej+n

ei+n = −δij ξs2 , ∀1 ≤ i, j ≤ n. Everywhere on U we
have that ∇∗ξei+n = 0 and ∇∗ei+n

ξ = ei+n, ∀1 ≤ i ≤ n.

Proof. Around any point π(u0) ∈ M there is a neighbourhood W domain of a trivial-
ization of TM and a smooth vector field û defined on W and passing through u0. Using
the lemma above and the smooth dependence on initial conditions (the vector field û)
of the normal coordinates used in the proof above, we find the desired frame on the
trivialization domain. �

In the next step we take the horizontal mirror of the vertical polar frame and thus
find on the neighbourhood U ⊂ TM an adapted polar frame: e0 = 1

s
Btξ, e1, . . . , en,

1
s
ξ, en+1, . . . , e2n. On the horizontal directions we have, for some general matrix 1-form
ω defined on U , the usual formula ∇∗eiej =

∑n
k=0 ω

k
ijek.

Proposition 3.3. At point u0 from Proposition 3.2 the resulting covariant derivatives
of the adapted frame are as follows (let i, j = 1, . . . , n):

∇∗0Btξ = 0, ∇∗0ej =
∑n

k=1 ω
k
0jek, ∇∗0ei+n =

∑n
k=1 ω

k
0iek+n, ∇∗0ξ = 0,

∇∗iBtξ = 0, ∇∗i ej =
∑n

k=1 ω
k
ijek, ∇∗i ej+n =

∑n
k=1 ω

k
ijek+n, ∇∗i ξ = 0,

∇∗i+nBtξ = ei, ∇∗i+nej = −δij e0s , ∇∗i+nej+n = −δij ξs2 , ∇∗i+nξ = ei+n,
∇∗ξBtξ = Btξ, ∇∗ξej = 0, ∇∗ξei+n = 0, ∇∗ξξ = ξ.

(66)

Moreover, ∀w ∈ TTM ,

∇∗w
1

s
ξ =

1

s
wv − 1

s3
ξ[(w)ξ, ∇∗we0 =

1

s
Btw − 1

s2
ξ[(w)e0. (67)

Proof. This is a consequence of ∇∗B = 0 and Proposition 3.2. Also notice 〈∇∗kej, e0〉 =
0, ∀k = 0, . . . , n, which explains why the four sums in (66) start at 1. For the last two
formulae we have ds = 1

s
ξ[ and hence d1

s
= − 1

s3
ξ[. The result follows very easily. �

We shall need the following formula putting the curvature in terms of horizontals.

Proposition 3.4. ∀x, y ∈ TTM ,

D∗xy
[ = (∇∗xy)[ +

s

2

n∑
k=0

〈R∇(xh, ek)e0, B
tyv〉ek. (68)
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Proof. Indeed,

(D∗xy
[)z = x(〈y, z〉)− 〈y,D∗xz〉

= 〈∇∗xy, z〉+
1

2
〈y,Rξ(x, z)〉

= 〈∇∗xy, z〉+
s

2
〈π?R∇(xh, zh)

ξ

s
, yv〉

=
(
(∇∗xy)[ +

s

2

n∑
k=0

〈R∇(xh, ek)e0, B
tyv〉ek

)
z.

�

The following is now easy to check.

Proposition 3.5. In the conditions of Proposition 3.2, we have:

D∗0e
0 = 0, D∗0e

j =
∑n

k=1 ω
k
0je

k,
D∗i e

0 = 0, D∗i e
j =

∑n
k=1 ω

k
ije

k,

D∗i+ne
0 = 1

s
ei, D∗i+ne

j = − δij
s
e0,

D∗ξe
0 = 0, D∗ξe

j = 0,

(69)

and
D∗0e

i+n =
∑n

k=1 ω
k
0ie

k+n + s
2

∑n
k=1Ri00ke

k, D∗0
1
s
ξ[ = 0,

D∗i e
j+n =

∑n
k=1 ω

k
ije

k+n + s
2

∑n
k=0Rj0ike

k, D∗i
1
s
ξ[ = 0,

D∗i+ne
j+n = − δij

s2
ξ[, D∗i+n

1
s
ξ[ = 1

s
ei+n,

D∗ξe
i+n = 0, D∗ξ

1
s
ξ[ = 0.

(70)

A simple consequence is yet another way to compute the derivative of the contact
form θ, cf. (10) and [7]. Indeed, before restriction to the tangent sphere bundle, the 1-
form s e0 is the metric parallel equivalent to the natural Liouville form of the cotangent
bundle. Using the torsion free connection, the new method yields

d(s e0) =
1

s
ξ[ ∧ e0 + s

2n∑
k=0

ek ∧D∗ke0 +
s

s2
ξ[ ∧D∗ξe0 =

1

s
ξ[ ∧ e0 +

2n∑
k=n+1

ek,k−n. (71)

Clearly, when we pull-back by the inclusion map S ↪→ TM we obtain θ and the known
formula of dθ. Interesting enough, notice d(1

s
ξ[) = dds = 0 and dξ[ = 1

2
dds2 = 0.

Now, for 1 ≤ i ≤ n, we have

dei =
2n∑
k=0

ek ∧D∗kei +
1

s2
ξ[ ∧D∗ξei

=
n∑

k,j=0

ωkjie
jk −

n∑
k=1

δki
s
e(k+n)0

=
1

s
e0(i+n) +

n∑
j,k=0

ωkjie
jk (72)
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and

dei+n =
s

2

n∑
j=1

Ri00je
0j +

n∑
j,k=0

ωkjie
j(k+n) +

s

2

n∑
j=1,k=0

Ri0jke
jk − ei+n ξ

[

s2

=
n∑
j=1

(sRi00je
0j + ωj0ie

0(j+n)) +
n∑

j,k=1

(ωkjie
j(k+n) +

s

2
Ri0jke

jk)− 1

s2
ei+nξ[. (73)

Of course these formulae are valid at any point of Ru0 ⊂ TM . On this generic line,
centre of an adapted polar frame, we have ωkij = −ωjik and ω0

ij = 0.

3.2 On Riemannian 2-manifolds

In case M has dimension 2, this is, n = 1, we have a global coframing of S with θ = s e0

and two 1-forms α0 = e1 and α1 = e2 pulled-back by the inclusion map of the circle
in the plane tangent bundle of M . Moreover, the circle bundle agrees with a principal
SO(2) frame bundle. Still over TM we have

de1 =
1

s
e02 + ω1

01e
01 + ω0

11e
10 =

1

s
e02,

de2 = sR1001e
01 + ω1

01e
02 + ω1

11e
12 − 1

s2
e2ξ[ = sR1001e

01 − 1

s2
e2ξ[.

The following formulae, where c = R1010 denotes Gauss curvature, consist of the
First and Second Cartan Structural Equations in dimension 2 using the well-known
terminology. After restriction to S, we have found:

dθ = α1 ∧ α0, dα1 = c α0 ∧ θ, dα0 =
1

s2
θ ∧ α1. (74)

Together with the general proof given in [7] and that in [22, pp. 168–169], there are
now three independent proofs of Theorem 1.2 for Riemannian 2-manifolds.

3.3 On Riemannian 3-manifolds

Back in the case n = 2 we recall α0 = e12, α1 = e14 − e23, α2 = e34. As above, these
forms are previously and invariantly defined on the tangent manifold. Then we find:

de12 = (de1)e2 − e1de2

=
1

s
e032 +

2∑
j,k=0

ωkj1e
jk2 − 1

s
e104 −

2∑
j,k=0

ωkj2e
1jk

=
1

s
e0(e14 − e23) (75)
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and

d(e14 − e23) = (de1)e4 − e1de4 − (de2)e3 + e2de3

=
1

s
e034 +

2∑
j,k=0

ωkj1e
jk4 − s

2∑
j=1

R200je
10j −

2∑
k=1

ωk02e
10(k+2)

−
2∑

j,k=1

(ωkj2e
1j(k+2) +

s

2
R20jke

1jk) +
1

s2
e14ξ[ − 1

s
e043

−
2∑

j,k=0

ωkj2e
jk3 + s

2∑
j=1

R100je
20j +

2∑
k=1

ωk01e
20(k+2)

+
2∑

j,k=1

(ωkj1e
2j(k+2) +

s

2
R10jke

2jk)− 1

s2
e23ξ[ (cont.),

noticing this time the cancellation of ‘omegas’ happens in pairs,

=
2

s
e034 + ω2

01e
024 + ω2

11e
124 − sR2002e

102

− ω1
02e

103 − ω1
22e

123 +
1

s2
(e14 − e23)ξ[ − ω1

02e
013

− ω1
22e

213 + sR1001e
201 + ω2

01e
204 + ω2

11e
214

=
2

s
e034 − s(R2020 +R1010)e012 +

1

s2
(e14 − e23)ξ[ (76)

and

de34 = (de3)e4 − e3de4

= s
2∑
j=1

R100je
0j4 +

2∑
j,k=0

ωkj1e
j(k+2)4 +

s

2

2∑
j,k=1

R10jke
jk4 − 1

s2
e3ξ[e4

−
2∑
j=1

(sR200je
30j + ωj02e

30(j+2)) +
1

s2
e34ξ[

−
2∑

j,k=1

(ωkj2e
3j(k+2) +

s

2
R20jke

3jk)

= sR1001e
014 + sR1002e

024 +
s

2
(R1012e

124 +R1021e
214) +

2

s2
e34ξ[

− s

2
(R2012e

312 +R2021e
321)− sR2001e

301 − sR2002e
302

= s e0(R1001e
14 +R1002e

24 +R2001e
31 +R2002e

32)

+ sR1012e
124 − sR2012e

123 +
2

s2
e34ξ[ (77)

The pull-back to S of the three 2-forms above and their derivatives on TM clearly have
the desired form, found, respectively, in (39), (35) and (34). Thus a new independent
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proof of Theorem 1.2 in dimension 3 is achieved.

Remark. We recall there is also a proof in [2] for flat Euclidean space in dimension
4 using a global moving frame on R4 × S3. For the interested reader we recall here
the general 3-forms for case n = 3. They are α0 = e123, α1 = e126 + e234 + e315,
α2 = e156 + e264 + e345 and α3 = e456.
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