Please use this identifier to cite or link to this item:

Title: An extremal property of the inf- and sup-convolutions regarding the Strong Maximum Principle
Authors: Goncharov, Vladimir
Santos, Telma
Editors: Burenkov, V.I.
Goldman, M.I.
Laneev, E.B.
Stepanov, V.D.
Keywords: strong maximum principle
convex variational problem
gauge function
Issue Date: 2012
Citation: In V.I. Burenkov, M.I. Goldman, E.B. Laneev, V.D. Stepanov (eds) Progress in Analysis, Proc. of the 8 ISAAC Congress, August 21-26, 2011, Peoples' Friendship University of Russia, Moscow, V.2 (2012), 185-195
Abstract: In this paper we continue investigations started in [6] concerning the extension of the variational Strong Maximum Principle for lagrangeans depending on the gradient through a Minkowski gauge. We essentially enlarge the class of comparison functions, which substitute the identical zero when the lagrangean is not longer strictly convex at the origin
Type: article
Appears in Collections:CIMA - Artigos em Livros de Actas/Proceedings

Files in This Item:

File Description SizeFormat
GonchSantosConvolutions(Proc.ISAAC2011).pdf136.57 kBAdobe PDFView/OpenRestrict Access. You can Request a copy!
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois