Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/41154

Title: Numerical semigroups with fixed multiplicity and concentration
Authors: J. C., Rosales
M. B., Branco
M. A., Traesel
Editors: Chapman, Scott
Keywords: Numerical Semigroups
Issue Date: 2025
Publisher: Rocky Mountain Mathematics Consortium
Citation: José Carlos Rosales, Manuel B. Branco, Marcio A. Traesel "NUMERICAL SEMIGROUPS WITH FIXED MULTIPLICITY AND CONCENTRATION," Journal of Commutative Algebra, J. Commut. Algebra 17(1), 63-74, (Spring 2025)
Abstract: We define the concentration of a numerical semigroup S as C(S)=max{nextS(s)−s∣s∈S\{0}}, where nextS(s)=min{x∈S∣s<x}. We study the class of numerical semigroups with multiplicity m and concentration at most k, denoted by Ck[m]. We give algorithms to calculate the whole set Ck[m] with given genus or Frobenius number. In addition, we prove that if S∈Ck[m] with k≤√m2, then S satisfies Wilf’s conjecture.
URI: DOI: 10.1216/jca.2025.17.63
http://hdl.handle.net/10174/41154
Type: article
Appears in Collections:CIMA - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
Numerical_semgs_Kconcentrate_márcio3.pdf335.5 kBAdobe PDFView/OpenRestrict Access. You can Request a copy!
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois