Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/39506

Title: Jordan type of an Artinian algebra, a survey
Authors: Altafi, Nasrin
Iarrobino, Anthony
Macias Marques, Pedro
Editors: Nagel, Uwe
Adiprasito, Karim
Di Gennaro, Roberta
Faridi, Sara
Murai, Satoshi
Issue Date: 2024
Publisher: Springer
Citation: Jordan type of an Artinian algebra, a survey Altafi, Nasrin; Iarrobino, Anthony; Macias Marques, Pedro Springer INdAM Ser., 59 Springer, Singapore, 2024, 1–27. ISBN: 978-981-97-3885-4; 978-981-97-3886-1
Abstract: We consider Artinian algebras A over a field k, both graded and local algebras. The Lefschetz properties of graded Artinian algebras have been long studied, but more recently the Jordan type invariant of a pair (l, A) where l is an element of the maximal ideal of A, has been introduced. The Jordan type gives the sizes of the Jordan blocks for multiplication by l on A, and it is a finer invariant than the pair (l, A) being strong or weak Lefschetz. The Jordan degree type for a graded Artinian algebra adds to the Jordan type the initial degree of “strings” in the decomposition of A as a k[l] module. We here give a brief survey of Jordan type for Artinian algebras, Jordan degree type for graded Artinian algebras, and related invariants for local Artinian algebras, with a focus on recent work and open problems.
URI: https://doi.org/10.1007/978-981-97-3886-1_1
http://hdl.handle.net/10174/39506
Type: bookPart
Appears in Collections:MAT - Publicações - Capítulos de Livros

Files in This Item:

File Description SizeFormat
2024SpringerIndamAltafiIarrobinoMaciasMarques.pdf905.88 kBAdobe PDFView/OpenRestrict Access. You can Request a copy!
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois