Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/38815

Title: Assessing ECMWF Lightning Forecast in Portugal during fire seasons
Authors: Campos, Cátia
Couto, Flavio Tiago
Santos, Filippe L. M.
Rio, João
Ferreira, Teresa
Purificação, Carolina
Salgado, Rui
Issue Date: Apr-2024
Citation: Campos, C., Couto, F. T., Santos, F. L. M., Rio, J., Ferreira, T., Purificação, C., and Salgado, R.: Assessing ECMWF Lightning Forecast in Portugal during fire seasons, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6108, https://doi.org/10.5194/egusphere-egu24-6108, 2024.
Abstract: Portugal is one of the European countries that faces significant challenges with wildfires. While lightning-triggered natural fires constitute a minority compared to anthropogenic ones, accurate forecasting of lightning occurrences is crucial for effective prevention. The study assesses the ECMWF model's capability to predict lightning in Portugal over four fire seasons [2019-2022]. Observed lightning data was obtained from the national lightning detector network, aggregated into 0.5° and 1° resolutions over 3-hour periods. The evaluation employs statistical indices from a contingency table to analyze the model's performance. Results indicate an overestimation of lightning occurrences by the ECMWF model, with a Bias greater than 1. The success rate for lightning prediction was 57.7% for a horizontal resolution of 1° and 49% for 0.5°. Additionally, the temporal analysis reveals a time lag between both data, with the model starting to predict lighting before its occurrence and finishing the prediction earlier. These findings are complemented by analyzing the spatial lightning distribution, which led us to identify some weather patterns associated with lightning activity during the study period. For instance, lightning activity was associated with the Iberian thermal low development overlapped by an Upper Level Low and the passage of large-scale features, such as frontal systems. The insights gained from this study have implications for the ECMWF lightning forecast applicability in the context of forecasting natural forest fires in Portugal. The research was funded by the European Union through the CILIFO project (0753-CILIFO-5-E) and also by national funds through FCT Foundation for Science and Technology, I.P. under the PyroC.pt project (PCIF/MPG/0175/2019).
URI: http://hdl.handle.net/10174/38815
Type: lecture
Appears in Collections:FIS - Comunicações - Em Congressos Científicos Internacionais

Files in This Item:

File Description SizeFormat
Campos_etal_2024_EGU2024.pdf858.37 kBAdobe PDFView/OpenRestrict Access. You can Request a copy!
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois