Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/38248

Full metadata record

DC FieldValueLanguage
dc.contributor.authorMendes, Maria Beatriz-
dc.contributor.authorFarinha, Daniela-
dc.contributor.authorOliveira, Pedro-
dc.contributor.authorMota Barroso, João-
dc.contributor.authorRato, Luís Miguel-
dc.contributor.authorSousa, Adélia-
dc.contributor.authorRato, Ana Elisa-
dc.date.accessioned2025-03-20T18:33:37Z-
dc.date.available2025-03-20T18:33:37Z-
dc.date.issued2025-02-01-
dc.identifier.citation1. Mendes, M.B., Farinha D., Oliveira, P., Barroso, J.M., Rato L.M., Sousa, A.M.O., Rato, A.E. (2025). The use of Sentinel 2 to quantify N, Ca, and K in walnut orchards. Computers and Electronics in Agriculture,V. 229, February 2025, 109763por
dc.identifier.urihttp://hdl.handle.net/10174/38248-
dc.description.abstract’Persian walnut’ (Juglans regia L.) is one of the most consumed nut species in the world, and N, K, and Ca nutrition are critical for its growth and quality. Mineral nutrition management in fruit crops over large areas is a challenging task only possible with a remote sensing data approach and using rapid analytical methods to correlate remotely sensed data with ground data. This study aims to develop and validate predictive models for quantifying N, Ca, and K levels in ’Persian walnut’ orchards using Setinel-2 satellite data (9 different spectral bands and 2 vegetation indices (NDVI and NDWI)), addressing the challenge of large-scale nutrient management. The predictive models, using multivariate regression method, to predict N, Ca and K in walnut leaves, were satisfactory, with R2 values of 0.70, 0.60 and 0.74, with RPD values of 2,2; 1,64 and 1,96 for respectively. Therefore, the results obtained indicate that remote sensing is a potential technology to assess the nutrient status in crops in a faster and simpler way than traditional plant leaf analysis procedures.por
dc.language.isoporpor
dc.publisherElsevier - Computers and Electronics in Agriculturepor
dc.rightsopenAccesspor
dc.subjectwalnutpor
dc.subjectnutrientspor
dc.subjectremote sensingpor
dc.subjectMLR analysispor
dc.titleThe use of Sentinel 2 to quantify N, Ca, and K in walnut orchardspor
dc.typearticlepor
dc.identifier.sharewithMED, DFIT, DER, DINFpor
dc.identifier.authoremailmariabeatrizpiresmendes@gmail.com-
dc.identifier.authoremaildaniela.farinha@hotmail.com-
dc.identifier.authoremailpedronsoliveira800@gmail.com-
dc.identifier.authoremailjmmb@uevora.pt-
dc.identifier.authoremaillmr@uevora.pt-
dc.identifier.authoremailasousa@uevora.pt-
dc.identifier.authoremailaerato@uevora.pt-
dc.peerreviewedyespor
dc.identifier.scientificarea208por
degois.publication.titleComputers and Electronics in Agriculturepor
dc.identifier.doihttps://doi.org/10.1016/j.compag.2024.109763por
Appears in Collections:FIT - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
artig computers.pdf125.76 kBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois