Please use this identifier to cite or link to this item:
http://hdl.handle.net/10174/34634
|
Title: | Modularly equidistant numerical semigroups |
Authors: | J. Carlos, Rosales M. B., Branco Marcio, Traesel |
Editors: | TUBITAK |
Keywords: | Embedding dimension, Frobenius number, genus, multiplicity, modularly equidistant numerical semigroups, MED semigroups, numerical semigroup |
Issue Date: | Jan-2021 |
Publisher: | Turkish Journal of Mathematics |
Citation: | José Carlos ROSALES, Manuel Baptista BRANCO, Márcio André TRAESEL, Modularly equidistant numerical semigroups, Turk J Math
(2021) 45: 288 – 299. |
Abstract: | If S is a numerical semigroup and s ∈ S , we denote by nextS (s) = min {x ∈ S | s < x} . Let a be an integer greater than or equal to two. A numerical semigroup is equidistant modulo a if nextS (s) − s − 1 is a multiple of a for every s ∈ S . In this note, we give algorithms for computing the whole set of equidistant numerical semigroups modulo a with fixed multiplicity, genus, and Frobenius number. Moreover, we will study this kind of semigroups with maximal embedding dimension. |
URI: | https://journals.tubitak.gov.tr/cgi/viewcontent.cgi?article=1180&context=math http://hdl.handle.net/10174/34634 |
Type: | article |
Appears in Collections: | CIMA - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica
|
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
|