Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/27472

Title: A problem of integer partitions and numerical semigroups
Authors: Rosales, J. C.
Branco, M. B.
Editors: Professor Stuart White University of Oxford, UK
Keywords: Integer partitions
numerical semigroups
Issue Date: 2019
Publisher: RSE Scotland Foundation
Citation: J. C. Rosales and M. B. Branco: A problem of integer partitions and numerical semigroups. Proceedings of Royal Society of Edinburgh Section A: Mathematics, Volume 149, Issue 4, August 2019, pp. 969-978. DOI: 10.1017/prm.2018.65
Abstract: Let C be a set of positive integers. In this paper we obtain an algorithm for computing all subsets A of positive integers which are minimals with the condition that if x_1 +... + x_n is a partition of an element in C, then at least a summand of this partition belongs to A. We use techniques of numerical semigroups to solve this problem, because it is equivalent to give an algorithm that allows us compute all the numerical semigroups which are maximals with the condition that have empty intersection with the set C.
URI: http://hdl.handle.net/10174/27472
Type: article
Appears in Collections:MAT - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
A problem of integer partitions and numerical semigroups.pdf300.05 kBAdobe PDFView/OpenRestrict Access. You can Request a copy!
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois