Please use this identifier to cite or link to this item:
http://hdl.handle.net/10174/26893
|
Full metadata record
DC Field | Value | Language |
dc.contributor.author | Albuquerque, Rui | - |
dc.contributor.editor | Ros, Antonio | - |
dc.contributor.editor | Vega, Luis | - |
dc.contributor.editor | Cordoba, Antonio | - |
dc.contributor.editor | Martínez, Consuelo | - |
dc.date.accessioned | 2020-02-11T11:05:54Z | - |
dc.date.available | 2020-02-11T11:05:54Z | - |
dc.date.issued | 2019-12 | - |
dc.identifier.citation | Albuquerque Rui: A fundamental differential system of Riemannian geometry. Rev. Mat. Iberoam. 35 (2019), 2221-2250. doi: 10.4171/rmi/1118 | por |
dc.identifier.uri | http://hdl.handle.net/10174/26893 | - |
dc.description.abstract | We discover a fundamental exterior differential system of Riemannian geometry; indeed, an intrinsic and invariant global system of differential forms of degree n associated to any given oriented Riemannian manifold M of dimension n + 1. The framework is that of the tangent sphere bundle of M. We generalise to a Riemannian setting some results from the theory of hypersurfaces in flat Euclidean space. We give new applications and examples of the associated Euler-Lagrange differential systems. | por |
dc.language.iso | por | por |
dc.publisher | European Mathematical Society Publishing House | por |
dc.rights | openAccess | por |
dc.subject | espaço tangente | por |
dc.subject | variedade riemanniana | por |
dc.subject | sistemas diferenciais | por |
dc.subject | hipersuperfície | por |
dc.title | A fundamental differential system of Riemannian geometry | por |
dc.type | article | por |
dc.identifier.authoremail | rpa@uevora.pt | - |
dc.peerreviewed | yes | por |
dc.identifier.scientificarea | 337 | por |
dc.identifier.doi | 10.4171/rmi/1118 | por |
Appears in Collections: | CIMA - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica
|
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
|