Please use this identifier to cite or link to this item:

Title: Micro- and nanoparticles based on alkali-earth metal hydroxides for cultural heritage conservation
Authors: Galacho, Cristina
Girginova, P.I.
Candeias, António
Mirão, José
Veiga, R
Santos, A.S.
Keywords: motars
micro- and nanolimes
Issue Date: 2017
Publisher: Programme and abracts of Technoheritage 2017, Miguel Angel Rogerio-Candelera, Maria J. Mosquera, M.L. Almoraima Gil (editors/publishers)
Abstract: Wall renders are subject of constant aging and deterioration and they therefore need repair and treatment. The polymers used in the past for consolidation show many drawbacks and often accelerate the deterioration. This implies the need of new non-toxic materials, preferably of the same composition as the original art work, compatible, with long-term efficiency, without side effect, easy for application. Different inorganic materials have been proposed. The lime-based materials are convenient but not efficient enough, so that different approaches to enhance their efficiency must be found. Nanomaterials exhibit distinct properties when compared to their bulk analogues and have been seen as a good alternative of compatible materials for long term preservation [1]. In this context our research intends to study and optimize successful preparative strategies of micro- and nanolimes, and to improve their efficiency in the inhibition of the degradation process and in the consolidation of wall renders and stone [2,3]. The work is focused on the innovation of the tradition lime materials towards long-term efficiency and compatibility with the surfaces of original works, taking into account environmental and human risk factors. In this communication we report the synthesis and characterization of micro- and nanoparticles based on alkali-earth metal hydroxides for cultural heritage conservation. We discuss synthetic strategies applied and optimum preparative conditions, such as temperature, synthesis duration, addition of surfactant and others, in order to obtain well defined functional magnesium and calcium hydroxides nanoparticles. The composition, morphology and crystallinity are analysed mainly by microscopical techniques and by X-ray powder diffraction. Additional structural and chemical data are collected with other common techniques: Energy Dispersive X-Ray Spectrometry, micro-FTIR, micro-Raman, simultaneous thermal analysis (TGA/DTA) among others, when needed. We also discuss the laboratory tests conducted to assess the efficiency of the nanolimes on mortar specimens (porosity, dynamic elastic modulus, compressive and flexural mechanical behaviour) and the feasibility of their application. References: [1] Baglioni P., Carretti E., Chelazzi D., Nature Nanotechnology 10, Apr 2015, 287-290. [2] Girginova, P.I.; Galacho, C.; Mirão, J.; Veiga, R.; Silva, A.S.; Candeias, A., Conservar património 23, 2016, 103-107. [3] Borsoi, G.; Lubellia, B.; van Hees, R.; Veiga, R.; Silva, A.S.; J. Cult Herit. 18, 2016, 242.
Type: lecture
Appears in Collections:QUI - Comunicações - Em Congressos Científicos Internacionais

Files in This Item:

File Description SizeFormat
Technoheritage 2017-Resumo Submetido_Penka.pdf15.61 kBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois