Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/20007

Full metadata record

DC FieldValueLanguage
dc.contributor.authorAlbuquerque, Rui-
dc.date.accessioned2017-01-24T15:08:38Z-
dc.date.available2017-01-24T15:08:38Z-
dc.date.issued2014-01-29-
dc.identifier.citationAlbuquerque, R. J. Geom. (2014) 105: 327--342.por
dc.identifier.urihttp://arxiv.org/abs/1012.4135-
dc.identifier.urihttp://hdl.handle.net/10174/20007-
dc.description.abstractWe prove a Theorem on homotheties between two given tangent sphere bundles SrM of a Riemannian manifold (M,g) of dim ≥ 3, assuming different variable radius functions r and weighted Sasaki metrics induced by the conformal class of g. New examples are shown of manifolds with constant positive or with constant negative scalar curvature which are not Einstein. Recalling results on the associated almost complex structure I^G and symplectic structure ω^G on the manifold TM , generalizing the well-known structure of Sasaki by admitting weights and connections with torsion, we compute the Chern and the Stiefel-Whitney characteristic classes of the manifolds TM and SrM.por
dc.language.isoporpor
dc.publisherSpringerpor
dc.rightsopenAccesspor
dc.subjecttangent sphere bundlepor
dc.subjecthomothetypor
dc.subjectcharacteristic classpor
dc.titleHomotheties and topology of tangent sphere bundlespor
dc.typearticlepor
dc.identifier.authoremailrpa@uevora.pt-
dc.peerreviewednopor
dc.identifier.scientificarea337por
dc.identifier.doi10.1007/s00022-014-0210-xpor
Appears in Collections:CIMA - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
1012.4135v3.pdf194.27 kBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois