Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/1887

Title: Bootstrap bias-adjusted GMM estimators
Authors: Ramalho, Joaquim
Keywords: GMM
bootstrap
empirical likelihood
instrumental variables
Monte Carlo
Issue Date: 2006
Publisher: Elsevier
Abstract: The ability of four alternative bootstrap methods to reduce the bias of GMM parameter estimates is examined in an instrumental variable framework using Monte Carlo analysis. Promising results were found for the two bootstrap estimators suggested in the paper.
URI: http://hdl.handle.net/10174/1887
Type: article
Appears in Collections:CEFAGE - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica
ECN - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
2006-EconomicsLetters.pdf110.56 kBAdobe PDFView/OpenRestrict Access. You can Request a copy!
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois