|
Please use this identifier to cite or link to this item:
http://hdl.handle.net/10174/18297
|
Title: | A generalized estimating equations approach to capture-recapture closed population models: methods |
Authors: | Akanda, Md. Abdus Salam |
Advisors: | Jara, Russel Gerardo Alpizar |
Keywords: | Capture-recapture experiment Correlation structure Generalized estimating equations Generalized linear mixed models Heterogeneity Population size estimation Quasi-likelihood information criterion Captura-recaptura experiência Estrutura de correlação Equações de estimação generalizadas Modelos lineares generalzados mistos Heterogeneidade Estimativa de tamanho da população Critério de informação quasi-verossimilhança |
Issue Date: | 2014 |
Publisher: | Universidade de Évora |
Abstract: | ABSTRACT; Wildlife population parameters, such as capture or detection probabilities, and density or population size, can be estimated from capture-recapture data. These estimates are of particular interest to ecologists and biologists who rely on ac- curate inferences for management and conservation of the population of interest. However, there are many challenges to researchers for making accurate inferences on population parameters. For instance, capture-recapture data can be considered as binary longitudinal observations since repeated measurements are collected on the same individuals across successive points in times, and these observations are often correlated over time. If these correlations are not taken into account when estimating capture probabilities, then parameter estimates will be biased, possibly producing misleading results. Also, an estimator of population size is generally biased under the presence of heterogeneity in capture probabilities. The use of covariates (or auxiliary variables), when available, has been proposed as an alternative way to cope with the problem of heterogeneous capture probabilities. In this dissertation, we are interested in tackling these two main problems, (i) when capture probabilities are dependent among capture occasions in closed population capture-recapture models, and (ii) when capture probabilities are heterogeneous among individuals. Hence, the capture-recapture literature can be improved, if we could propose an approach to jointly account for these problems. In summary, this dissertation proposes: (i) a generalized estimating equations (GEE) approach to model possible effects in capture-recapture closed population studies due to correlation over time and individual heterogeneity; (ii) the corresponding estimating equations for each closed population capture-recapture model; (iii) a comprehensive analysis on various real capture-recapture data sets using classical, GEE and generalized linear mixed models (GLMM); (iv) an evaluation of the effect of ac- counting for correlation structures on capture-recapture model selection based on the ‘Quasi-likelihood Information Criterion (QIC)’; (v) a comparison of the performance of population size estimators using GEE and GLMM approaches in the analysis of capture-recapture data. The performance of these approaches is evaluated by Monte Carlo (MC) simulation studies resembling real capture-recapture data. The proposed GEE approach provides a useful inference procedure for estimating population parameters, particularly when a large proportion of individuals are captured. For a low capture proportion, it is difficult to obtain reliable estimates for all approaches, but the GEE approach outperforms the other methods. Simulation results show that quasi-likelihood GEE provide lower standard error than partial likelihood based on generalized linear modelling (GLM) and GLMM approaches. The estimated population sizes vary on the nature of the existing correlation among capture occasions; RESUMO: Parâmetros populacionais em espécies de vida selvagens, como probabilidade captura ou deteção, e abundância ou densidade da população, podem ser estimados a partir de dados de captura-recaptura. Estas estimativas são de particular interesse para ecologistas e biólogos que dependem de inferências precisas a gestão e conservação das populações. No entanto, há muitos desafios par investigadores fazer inferências precisas de parâmetros populacionais. Por exemplo, os dados de captura-recaptura podem ser considerados como observa longitudinais binárias uma vez que são medições repetidas coletadas nos mesmos indivíduos em pontos sucessivos no tempo, e muitas vezes correlacionadas. Essas correlações não são levadas em conta ao estimar as probabilidades de tura, as estimativas dos parâmetros serão tendenciosas e possivelmente produz resultados enganosos. Também, um estimador do tamanho de uma população geralmente enviesado na presença de heterogeneidade das probabilidades de captura. A utilização de co-variáveis (ou variáveis auxiliares), quando disponível tem sido proposta como uma forma de lidar com o problema de probabilidade captura heterogéneas. Nesta dissertação, estamos interessados em abordar problemas principais em mode1os de captura-recapturar para população fecha (i) quando as probabilidades de captura são dependentes entre ocasiões de captura e (ii) quando as probabilidades de captura são heterogéneas entre os indivíduos Assim, a literatura de captura-recaptura pode ser melhorada, se pudéssemos por uma abordagem conjunta para estes problemas. Em resumo, nesta dissertação propõe-se: (i) uma abordagem de estimação de equações generalizadas (GEE) para modelar possíveis efeitos de correlação temporal e heterogeneidade individual nas probabilidades de captura; (ii) as correspondentes equações de estimação generalizadas para cada modelo de captura-recaptura em população fechadas; (iii) uma análise sobre vários conjuntos de dados reais de captura-recaptura usando a abordagem clássica, GEE e modelos linear generalizados misto (GLMM); (iv) uma avaliação do efeito das estruturas de correlação na seleção de modelos de captura-recaptura com base no ‘critério de informação da Quasi-verossimilhança (QIC); (v) uma comparação da performance das estimativas do tamanho da população usando GEE e GLMM. O desempenho destas abordagens ´e avaliado usando simulações Monte Carlo (MC) que se assemelham a dados de captura- recapture reais. A abordagem GEE proposto ´e um procedimento de inferência útil para estimar parâmetros populacionais, especialmente quando uma grande proporção de indivíduos ´e capturada. Para uma proporção baixa de capturas, ´e difícil obter estimativas fiáveis para todas as abordagens aplicadas, mas GEE supera os outros métodos. Os resultados das simulações mostram que o método da quase-verossimilhança do GEE fornece estimativas do erro padrão menor do que o método da verossimilhança parcial dos modelos lineares generalizados (GLM) e GLMM. As estimativas do tamanho da população variam de acordo com a natureza da correlação existente entre as ocasiões de captura. |
URI: | http://hdl.handle.net/10174/18297 |
Type: | doctoralThesis |
Appears in Collections: | BIB - Formação Avançada - Teses de Doutoramento
|
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
|