Please use this identifier to cite or link to this item:

Title: Orbit representations from matrices
Authors: Correia Ramos, Carlos
Martins, Nuno
Pinto, Paulo,
Editors: Brualdi
Keywords: Orbit Representations
Issue Date: 15-Jul-2014
Publisher: Elsevier
Citation: Orbit representations from matrices Linear Algebra and its Applications, Volume 453, 15 July 2014, Pages 44-58 C. Correia Ramos, Nuno Martins, Paulo R. Pinto
Abstract: Each Markov interval map f naturally produces a transition 0–1 matrix of interval type (in every row, the entries equal to 1 should be consecutive). We show that any 0–1 matrix A can be transformed into an interval type matrix AI, by a careful use of the state splitting. We then prove that AI can be realized as a transition matrix of an interval map fAI ,λAI arising from the Perron–Frobenius eigenvalue λAI and eigenvector of AI . Finally, we construct orbit representations associated with A from those of AI arising from the dynamical system ([0, 1], fAI ,λAI ).
Type: article
Appears in Collections:PED - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica
CIMA - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
LAlgebra_2014_pag1.pdf136 kBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois