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Abstract

The Strong Maximum Principle (SMP) is a well known property, which can
be recognized as a kind of uniqueness result for solutions of Partial Dif-
ferential Equations. Through the necessary conditions of optimality it is
applicable to minimizers in some classes of variational problems as well. The
work is devoted to various versions of SMP in such variational setting, which
hold also if the respective Euler-Lagrange equations are no longer valid. We
prove variational SMP for some types of integral functionals in the tradi-
tional sense as well as obtain an extension of this principle, which can be
seen as an extremal property of a series of specific functions.
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Algumas versões do Prinćıpio do Máximo para funcionais integrais eĺıpticos

Resumo

Algumas verses do Princpio do Mximo para funcionais integrais elpticos

O Prinćıpio do Máximo Forte (PMF) é uma propriedade bem conhecida
que pode ser vista como um resultado de unicidade para soluções de Equações
Diferenciais Parciais. Através das condições necessárias de optimalidade, é
também aplicável a algumas classes de problemas variacionais. O trabalho
é dedicado a várias versões do PMF em tal contexto variacional, que se
verificam mesmo quando as respectivas equações de Euler-Lagrange não são
válidas. Provamos PMF variacionais para algum tipo de funcionais integrais
no sentido tradicional, e obtemos uma extensão deste prinćıpio, que pode ser
visto como uma propriedade extremal de uma série de funções espećıficas.
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Extended abstract

The Strong Maximum Principle (SMP) is a well-known property of some
classes of Partial Differential Equations. In the classical form it reduces to
the comparison of an arbitrary solution of the equation with the fixed one,
which is identical zero. Taking into account that the elliptic partial differ-
ential equations are often necessary conditions of optimality in variational
problems, SMP can be formulated in the variational setting. The first result
in this direction was obtained by A. Cellina, who proposed the conditions
guaranteeing the validity of this property even in the case when the respective
Euler-Lagrange equation in no longer valid.

The purpose of the Thesis is to extend the known results on SMP for el-
liptic equations and variational problems to the new classes of integral func-
tionals, as well as to the new types of comparison functions (not necessarily
identical zero). On the other hand, the comparison results appear also as
a technique for proving SMP, where the comparison function is constructed
as a solution of the variational problem with some specific properties. In
particular, in Chapters 1 and 2, this technique admits the form of a local
estimate for minimizers.

The work consists of three parts. In the first one we consider the case
of a convex langrangean depending only on the gradient, avoiding the rota-
tional symmetry assumption. Namely, we suppose dependence on the gra-
dient through an arbitrary convex compact gauge and prove the validity of
SMP under A. Cellina’s conditions (smoothness and strict convexity of the
lagrangean at the origin). We give more extensions of SMP to the case when
one of Cellina’s assumptions is dropped.

In the second part we obtain some estimates on minimizers in the case
when the lagrangean has an additive term linearly depending on the state
variable, which can be seen as a (approximate) version of SMP considered in
Chapter 1.
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In the third final part we deal with lagrangeans splitted into two parts:
one is rotationally invariant with respect to the gradient and the other is a
nonlinear function of the state variable. We prove the traditional version of
SMP adapting the comparison technique based on Leray-Schauder fixed point
theorem, which was applied earlier to elliptic partial differential equations in
the works by P. Pucci and J. Serrin.

In the Thesis we use some methods of Calculus of Variations together
with the modern technique of Convex and Nonlinear Functional Analysis. On
one hand, the results develop the known technique of the Strong Maximum
Principle and Comparison Theorems for new classes of problems, while, on
the other hand, extend our knowledge on variational problems, emphasizing
their properties, which can be treated as the general properties of convex
functions.

The results exposed in Thesis are new and some of them were presented
on various national and international meetings and seminars, such as:

1. Workshop on Variational Analysis and Applications, Universidade de
Évora, October 28, 2011, Évora, Portugal;

2. 8th ISAAC Congress, Peoples’ Friendship University of Russia, August
22-27, 2011, Moscow, Russia;

3. 51st Workshop of the International School of Mathematics Guido Stam-
pacchia ”Variational Analysis and Applications”, May 2009, Erice,
Italy;

4. Seminar of the Mathematical Department, University of Padua, by
invitation of prof. G.Colombo, October 2009, Padua, Italy;

5. Seminar for PhD students at the University of Milan-Biccoca, October
2009, Milan, Italy;

6. Mini-Symposium on Functional Optimization, May 2009, Évora - Por-
tugal;

7. Meeting CIMA-CEOC, December 2008, Aveiro, Portugal.

The first part of the work is contained in the papers
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1. V.V. Goncharov and T.J. Santos, Local estimates for minimizers of
some convex integral functional of the gradient and the Strong Max-
imum Principle, Set-Valued and Variational Analysis, Vol. 19 (2011),
179-202.

2. V.V. Goncharov and T.J. Santos, An extremal property of the inf- nd
sup- convolutions regarding the Strong Maximum Principle, 8th ISAAC
Congress, Moscow, 2011, submitted.

The work is written in 93 pages and the bibliography consists of 65 items.

Key words: Calculus of Variations; Strong Maximum Principle; compar-
ison theorems; convex functions; subdifferential; Legendre-Fenchel transform;
Leray-Schauder fixed point theorem.

Mathematical Subject classification (2000): 49J10, 49J53; 49N15.
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Algumas versões do Prinćıpio do Máximo para funcionais integrais eĺıpticos

Resumo Alargado

O Prinćıpio do Máximo Forte (PMF) é uma propriedade bem conhecida de
algumas classes de Equações Diferenciais Parciais. Na forma clássica reduz-
se à comparação de uma solução arbitrária da equação com uma fixada, que
é identicamente nula. Tendo em conta que as equações diferenciais parciais
são muitas vezes condições de optimalidade em problemas variacionais, o
PMF pode ser formulado no contexto variacional. O primeiro resultado nesta
direcção foi obtido por A. Cellina, que propôs as condições que garantem a
validade desta propriedade mesmo no caso em que a respectiva equação de
Euler-Lagrange não é válida.

O objectivo da Tese é extender os resultados conhecidos no que respeita
o PMF para equações diferenciais eĺıpticas e problemas variacionais a no-
vas classes de funcionais integrais, bem como a novos tipos de funções de
comparação (não necessariamente identicamente nulas). Por outro lado, os
resultados de comparação aparecem também como uma técnica de demon-
stração do PMF, onde que a função de comparação é constrúıda como uma
solução do problema variacional com algumas propriedades espećıficas. Em
particular, no Caṕıtulos 1 e 2, esta técnica admite a forma de uma estimativa
local para minimizantes.

O trabalho consiste em três partes. Na primeira consideramos o caso de
um lagrangeano convexo dependente apenas do gradiente, evitando a sime-
tria rotacional. Nomeadamente, supomos a dependência do gradiente através
de um calibre convexo e compacto e mostramos a validade do PMF sob as
condições de A. Cellina (suavidade e convexidade estrita na origem). Fornece-
mos ainda outras extensões do PMF para o caso em que uma das hipóteses
de A. Cellina é abandonada.

Na segunda parte obtemos algumas estimativas dos minimizantes no caso
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em que o lagrangeano tem um termo aditivo linearmente dependente da
variável estado, que podem ser vistos como uma versão (aproximada) do
PMF considerado no Caṕıtulo 1.

Na terceira e última parte lidamos com lagrangeanos que consistem em
duas partes: uma é rotacionalmente invariante com respeito ao gradiente e
a outra é uma função não linear da variável estado. Provamos uma versão
tradicional do PMF adaptando a técnica de comparação baseada no teo-
rema do ponto fixo de Leray-Schauder, que foi antes utilizada para equações
diferenciais eĺıpticas nos trabalhos de P. Pucci e J. Serrin.

Na Tese usamos alguns métodos do Cálculo das Variações com a técnica
moderna de Análise Convexa e Análise Funcional Não Linear. Por um lado,
os resultados desenvolvem a técnica conhecida do Prinćıpio do Máximo forte
e Teoremas de Comparação para novas classes de problemas, enquanto, por
outro lado, aumentamos o conhecimento sobre problemas variacionais, en-
fatizando as suas propriedades, que podem ser tratadas como propriedades
gerais de funções convexas.

Os resultados apresentados na Tese são novos e alguns deles foram ap-
resentados em vários encontros e seminários nacionais e internacionais, tais
como:

1. Workshop on Variational Analysis and Applications, Universidade de
Évora, October 28, 2011, Évora, Portugal;

2. 8th ISAAC Congress, People’s Friendship University of Russia, 22 a 27
de Agosto, 2001, Moscovo, Rússia.

3. 51st Workshop - International School of Mathematics Guido Stampac-
chia ”Variational Analysis and Applications”, Maio 2009, Erice, Itália;

4. Seminário da Departamento de Matemtica, Universidade de Padua, por
convite do prof. G.Colombo, Outubro 2009, Pádua, Itália;

5. Seminário para os alunos de Doutoramento em Matemática, na Uni-
versidade de Milão - Bicocca, Outubro de 2009, Milão, Itália;

6. Mini-Simpósio em Optimização Funcional, Maio 2009, Évora, Portugal;

7. Encontro CIMA-CEOC, Dezembro 2008, Aveiro, Portugal.
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A primeira parte do trabalho está contida nos artigos
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Introduction

The purpose of the Thesis is to study several problems from the Calculus of
Variations concerning the validity of the Strong Maximum Principle, which is
a well-known qualitative property of solutions to Partial Differential Equa-
tions and can be extended to variational context. Let us start with some
historical notes and the state of art.

Maximum Principles were first stated for harmonic functions, i.e., solu-
tions to the Laplace equation

∆u(x) = 0, x ∈ Ω, (1)

where Ω ⊂ Rn is open bounded and connected. Roughly speaking, a max-
imum principle states that the maximum of a solution of (1) is attained on
the boundary of Ω. One usually distinguishes weak and strong maximum
principles. Whereas the weak maximum principle allows the maximum of
a solution to be attained in the interior of the domain as well, the strong
one states that it is possible only in the trivial case when the solution is a
constant.

The first version of the Strong Maximum Principle (SMP) for harmonic
functions apparently belongs to C. Gauss. Afterwards it was extended by
many authors. The most general result in this direction was obtained by
E. Hopf who proved in 1927 (see [40]) SMP for elliptic partial differential
equations of the type∑

i,k

aik(x)
∂u

∂xi∂xk
+
∑
i

bi(x)
∂u

∂xi
= 0, x ∈ Ω, (2)

where aik(·), bi(·) are continuous functions such that the symmetric matrix
(aik(x))ik is positive definite for all x (the ellipticity condition on the operator
in (2)). The idea used by E. Hopf - a comparison technique - led to an
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enormous range of important applications and generalizations. A comparison
result states that an inequality between two solutions of (2) taking place on
the boundary ∂Ω remains valid also inside Ω. It has been extended to more
general partial differential equations and in variational problems by many
authors (see, e.g., [16, 14, 44, 46, 53]).

D. Gilbarg and N. Trudinger summarized around 1977 the general the-
ory of second order elliptic equations in the book [36], where the results
concerning the SMP were also included.

In 1984 J.L. Vazquez studied conditions guaranteeing the validity of SMP
for the nonlinear elliptic equation

∆u(x) = β(u(x)) + f(x), x ∈ Ω, (3)

where β : R → R is a nondecreasing function with β(0) = 0. Namely, he
proved that SMP for (3) holds if and only if the improper Riemann integral∫ δ

0

(sβ(s))−
1
2 ds

diverges for each small δ > 0. Vazquez’s result was extended to a wider class
of equations by many authors (see, e.g., [24, 54, 53]). In particular, in 1999
P. Pucci, J. Serrin and H. Zou (see [52]) considered general elliptic nonlinear
equations of the form

div(A(‖∇u‖)∇u) = β(u), (4)

where A(·) is a continuous function such that t → tA(t) is continuously
differentiable on (0,+∞), strictly increases and tends to zero as t → 0.
Denoting by

H(t) = t2A(t)−
∫ t

0

sA(s) ds,

the authors gave two conditions for the validity of the SMP:

1. lim inft→0
H(t)
t2A(t)

> 0;

2. either β(s) = 0 on [0, δ] for some δ > 0 or the improper integral∫ δ

0

ds

H−1(
∫ s

0
β(t) dt)

(5)

diverges.
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Later on they succeeded in avoiding the first technical assumption by using
the comparison technique inspired by E. Hopf (see [55]). In [54] the authors
improved their proof by choosing the comparison function as a fixed point of
some continuous operator. We refer to [36] and to [42] for more details.

P. Felmer, M. Montenegro and A. Quaas (see [25, 27, 47]) extended the
SMP to more general equations containing also a term depending on the
norm of the gradient.

The weak and strong maximum principles were also studied for parabolic
partial differential equations, starting from the work by L. Nirenberg (see
[48]). In this direction we refer also to works [2, 3, 34, 50, 51].

Let us now pass to the variational problems. In modern setting they
are formulated in terms of Sobolev spaces; so we refer to [1, 60, 61] for the
general theory of these spaces. Consider a classical problem of the Calculus
of Variations consisting in minimizing the integral functional

I(u) =

∫
Ω

L(x, u(x),∇u(x)) dx (6)

on the set of Sobolev functions u(·) ∈ u0(·)+W 1,1
0 (Ω), where u0(·) ∈ W 1,1

0 (Ω)
is fixed. The mapping (x, u, ξ) ∈ Ω × R × Rn → L(x, u, ξ) ∈ R is called
lagrangean. We say that u(·) is a minimizer of (6) if it gives a minimum
value to I(·) on the class of functions with the same boundary conditions.

As well known, when the lagrangean is sufficiently regular a necessary
condition of optimality in the problem above can be written in the form of
Euler-Lagrange equation:

div∇ξL(x, u(x),∇u(x)) = Lu(x, u(x),∇u(x)). (E − L)

In some particular cases (E − L) is also a sufficient condition. Historically
this was formulated for the first time by P. Dirichlet (the so called Dirichlet
Principle). Namely, the problem of minimizing the energy functional

I(ω) =
1

2

∫
Ω

‖∇ω‖2 dx, (7)

was considered, where Ω ⊂ Rn is an open bounded set. It was proved that
ω(·) is a minimizer of (7) if and only if ∆ω = 0 on Ω.

Indeed, the Laplace equation is nothing else than the Euler-Lagrange
equation for the functional (7). Hence, the SMP for harmonic functions
can be seen as SMP also for the minimizers of (7).
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The main task now is to formulate the SMP in the variational setting,
which would hold even if the respective Euler-Lagrange equation is not valid.
Such formulation was first given by A. Cellina in 2002 (see [16]). He con-
sidered the case of lagrangean L(·), which is a convex lower semicontinuous
function of the gradient only with L(0) = 0, and gave the following definition:
L(·) is said to satisfy the Strong Maximum Principle if for any open bounded
connected domain Ω ⊂ Rn a nonnegative continuous admissible solution ū(·)
of the problem

min

{∫
Ω

L(∇u(x)) dx : u(·) ∈ u0(·) +W 1,1
0 (Ω)

}
(P )

can be equal to zero at some point x∗ ∈ Ω only in the case ū ≡ 0 on Ω.
In rotationally invariant case, i.e., L(ξ) = f(‖ξ‖) for a lower semicontinuous
convex function f : R+ → R+ ∪ {+∞}, f(0) = 0, A. Cellina proved that
smoothness and strict convexity of f (·) at the origin are the necessary and
sufficient conditions for the validity of the SMP. Along the Thesis we gen-
eralize the symmetry assumption and establish other versions of SMP also
under the lack of one of Cellina’s hypotheses. Besides that we consider more
general lagrangeans depending also on u.

The material of the Thesis is distributed as follows. In Chapter 1 we deal
with a lagrangean of the form L(ξ) = f(ρF (ξ)), where ρF (·) is the Minkowski
functional associated to some convex gauge F . Observe that variational
problems with such type integrands were recently considered in [12], where
the authors proved a comparison theorem assuming the strict convexity of
the gauge F . They constructed a comparison function as a solution of the
associated Euler-Lagrange equation written in the classic divergence form,
essentially using for this the differentiability of the dual Minkowski functional
ρF 0(·), or, in other words, the rotundity of F itself. We do not suppose instead
the set F to be either strictly convex or smooth, or symmetric.

Based on duality arguments of Convex Analysis we obtain first some kinds
of estimates for minimizers close to their nonextremum points and show that
the assumptions of strict convexity and smoothness of f(·) at the origin are
also sufficient and necessary for the validity of the SMP.

Further in this chapter (Sections 1.4 - 1.7) we consider the case when f(·)
is not strictly convex at the origin, and, hence, the SMP in the traditional
sense is no longer valid. We enlarge this property by considering some specific
functions (called test or comparison functions) in the place of identical zero.
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These functions are themselves minimizers in (P ) and can be written through
the dual Minkowski functional ρF 0(·). However, for this enlargement we need
to assume that the boundary ∂F is smooth. In the simplest case the test
function can be chosen as

θ + aρF 0(x− x0) (8)

(or
θ − aρF 0(x0 − x)), (9)

where x0 ∈ Ω; θ is some real number, and the constant a is associated
to the lagrangean. Then a ”one-point” version of the extended SMP takes
place on the class of regions Ω, which are star-shaped with respect to the
unique minimum (maximum) point x0. We give also an example showing the
importance of the latter hypothesis.

In Section 1.5 we extend SMP to the case of various local extremum
points. To this end we consider as a test function the envelope of a finite
number of functions (8) (respectively, (9)) subject to the natural consistensy
condition.

Finally, in the last sections we generalize SMP in order to cover the case
of infinite envelopes. Namely, we take an arbitrary real function θ(·) defined
on a closed set Γ ⊂ Ω and satisfying a bounded slope condition. Then we
can consider as a test function in SMP the infimum (respectively, supremum)
convolution of θ(·) with the gauge function ρF 0 , and the SMP admits the form
of the uniqueness extremal extension principle.

In Chapter 2 we apply the technique developped in the previous chap-
ter to the lagrangeans depending not only on the gradient through a gauge
function but containing an additive term, linear with respect to u. Here
we obtain local estimates of minimizers near two kinds of points. First we
prove that close to nonextremum points a minimizer can be estimated by an
a priori solution to the same variational problem (obtained by adding the
linear term σu(x) to the lagrangean studied in Chapter 1). Furthermore, it
turns out that near points of local minimum (maximum) similar estimates
hold, which can be seen as an (approximate) version of SMP. It should be
mentioned that this property has asymmetric character unlike the situation
before. Namely, each result of Chapter 1 has the symmetric counterpart,
which is sometimes called the Strong Minimum Principle, while in the case
of linear perturbation σu validity of upper (respectively, lower) estimates
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hold whenever σ > 0 (respectively, σ < 0). Moreover, we observe also a
”cross” effect: the function, which estimates minimizers of the integral with
the perturbation σu is a solution of the variational problem with additive
term −σu. However, all of these effects disappear when σ tends to zero, and
the estimates above reduce to (local) Strong Maximum (Minimum) Principle
in usual sense.

In Chapter 3 we consider the case when the additive term depending on
u is essentially nonlinear. However, due to technical difficulties we assume
lagrangean to be rotationally invariant with respect to the gradient. Namely,
we study the functional∫

Ω

[f(‖∇u(x)‖) + g(u(x))] dx (Ig)

where f(·) and g(·) are continuous convex nonnegative functions such that
f(0) = g(0) = 0, ∂g(0) = {0}, and the derivative f ′(t) is continuous and
tends to zero as t → 0+. We see that the identical zero is a minimizer
of (Ig) among all Sobolev functions with the zero boundary data, and we
can formulate for (Ig) the SMP in the traditional sense (as in [16]). Notice
that if the functions f(·) and g(·) are more regular (in particular, g(·) is
differentiable), all the minimizers of (Ig) satisfy the Euler-Lagrange equation

div∇ξf(‖∇u(x)‖) = g′(u(x)),

which is a special case of equations studied by P. Pucci and J. Serrin (see
[53, 54]) and for which a necessary and sufficient condition of the validity of
SMP was found. By using a similar technique combined with the comparison
argument due to A. Cellina we prove that the same condition (divergence of
a kind of improper Riemann integral) is sufficient also for the validity of the
SMP in variational setting even if the respective Euler-Lagrange equation is
no longer valid.

In Conclusion we summarize the obtained results.
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Chapter 1

Lagrangeans depending on ∇u
through a gauge function

In this chapter we consider the variational problem

min

{∫
Ω

L(∇u(x)) dx : u(·) ∈ u0(·) +W 1,1
0 (Ω)

}
(P )

where L : Rn → R+∪{+∞} is a convex lower semicontinuous mapping with
L(0) = 0 and u0(·) ∈ W 1,1(Ω). In Introduction we already formulated the
Strong Maximum Principle for the problem (P ) in the following form (due
to A. Cellina [16]):

given an open bounded connected region Ω ⊂ Rn
an arbitrary admissible continuous nonnegative
solution u (·) of (P) can be equal to zero at some
point x∗ ∈ Ω only in the case u ≡ 0.

Recall that admissible solutions of (P ) are those which give finite values
to the integral. In the case of rotationally invariant lagrangeans, i.e., L(ξ) =
f(‖ξ‖) with a lower semicontinuous convex function f : R+ → R+ ∪ {+∞},
f(0) = 0, smoothness and strict convexity of the function f (·) at the origin
are necessary and sufficient conditions for the validity of SMP (see [16]).

Here we assume the lagrangean to be symmetric in a more general sense,
namely, L(ξ) = f(ρF (ξ)), where F ⊂ Rn is a compact convex set containing
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the origin in its interior, and ρF (·) means the Minkowski functional (gauge
function) associated to F ,

ρF (ξ) := inf{λ > 0 : ξ ∈ λF}. (1.1)

In Section 1.1 we give some notions and recall definitions needed through-
out the Thesis. Based on the duality arguments of Convex Analysis we ob-
tain in Section 1.2 some kind of estimates of minimizers in (P ) near points
which are distant from their local extremums, emphasizing specially the one-
dimensional case. Then, in Section 1.3, we show that the Cellina’s conditions
are necessary and sufficient for the validity of the Strong Maximum (Mini-
mum) Principle with no supplementary assumptions on F .

On the other hand, in the lack of one of the hypotheses (strict convexity
of f(·) at the origin) SMP can be extended as follows. Let us fix a continuous
function û(·) (called further test function) giving minimum to the functional∫

Ω
L(∇u(x))dx on û(·)+W 1,1

0 (Ω) for each appropriate region Ω ⊂ Rn. We say
that the lagrangean L (·) satisfies the extended Strong Minimum (Maximum)
Principle with respect to û(·) if

for any Ω ⊂ Rn(belonging to a suitable class of
regions) each solution u(·) of (P ) with u(x) ≥ û(x)
(respectively, with u(x) ≤ û(x)) for all x ∈ Ω
admitting the same local minimal (respectively,
maximal) values as û(·) at common points,
necessarily coincides with û(·).

It turns out that such generalized property holds for the lagrangean L(ξ) =
f(ρF (ξ)), where F is supposed to be smooth, and the test function is chosen
by some special way.

In Section 1.4 we set û(x) = θ+ aρF 0(x− x0) or û(x) = θ− aρF 0(x0− x)
and assume Ω to be star-shaped to respect to the unique extremal point
x0 ∈ Ω (in particular, Ω can be convex).

Further, in Section 1.5, we extend SMP to the case of a test function û(·)
having a finite number of local minimum (maximum) points, while in Section
1.6 the inf- and sup-convolutions of ρF 0(·) with some lipschitzean function
θ(·) are defined and in Section 1.7 they are considered as test functions for
the Strong Maximum Principle.
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1.1 Preliminaries

Let f : R+ → R+ ∪ {+∞} be a convex lower semicontinuous function with
f(0) = 0, but not identical zero, and F ⊂ Rn, n ∈ N, be a convex closed
bounded set with 0 ∈ intF (intF means interior of F ). Given an open
bounded region Ω ⊂ Rn, we are interested in the behaviour of continuous
solutions of the variational problem

(PF ) min

{∫
Ω

f(ρF (∇u(x))) dx : u(·) ∈ u0(·) +W 1,1
0 (Ω)

}
.

Since the function f(·) is clearly nondecreasing, the lagrangean f ◦ ρF in
(PF ) is convex. In what follows, without loss of generality, we can assume
that domf := {t : f(t) < +∞} is different from {0}, because otherwise each
solution of (PF ) is constant, and all the results below hold trivially.

Together with the Minkowski functional ρF (ξ) defined by (1.1) we intro-
duce the support function σF : Rn → R+,

σF (v) := sup{〈v, ξ〉 : ξ ∈ F},

and recall that
ρF (ξ) = σF 0(ξ), ξ ∈ Rn, (1.2)

where
F 0 := {v ∈ Rn : σF (v) ≤ 1}

is the polar set associated to F . Here 〈·, ·〉 means the inner product in Rn
(the norm is denoted by ‖ · ‖). By the hypotheses on F we have obviously
that (F 0)

0
= F , and it follows from (1.2) that

1

‖F‖
‖ξ‖ ≤ ρF (ξ) ≤ ‖F 0‖‖ξ‖, ξ ∈ Rn, (1.3)

where ‖F‖ := sup{‖ξ‖ : ξ ∈ F}.
Furthermore, for a convex lower semicontinuous function L : Rn → R+ ∪

{+∞} (in particular, for L = f ◦ ρF ) we denote by L∗ the Legendre-Fenchel
conjugate or polar of L and by ∂L(ξ) the subdifferential of L at ξ. These
operations can be applied to the function f(·) whenever we extend it to the
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whole real line by setting, e.g., f(t) := +∞ for t < 0. It is well known that
v ∈ ∂L(ξ) iff ξ ∈ ∂L∗(v), and for each ξ ∈ Rn the equality

∂ρF (ξ) = NF

(
ξ

ρF (ξ)

)
∩ ∂F 0 (1.4)

holds (see, e.g., Corollary 2.3 in [21]), where ∂F 0 is the boundary of F 0, and
NF (ξ) is the normal cone to the set F at ξ ∈ ∂F , i.e., the subdifferential of
the indicator function IF (·) (IF (x) is equal to 0 on F and to +∞ elsewhere).
For the basic facts of Convex Analysis we refer to [49] or to [57]. Let us now
recall only a pair of dual properties, which will be used later on. We say that
the set F is smooth (has smooth boundary) if for each ξ ∈ ∂F there exists a
unique v ∈ NF (ξ) with ‖v‖ = 1. By (1.4) this property is equivalent to the
differentiability of ρF (·) at each ξ 6= 0. On the other hand, we say that F
is rotund (strictly convex ) if for each x, y ∈ ∂F , x 6= y, and 0 < λ < 1 we
have (1− λ)x+ λy ∈ intF . Given r > 0 and 0 < α < β < 1 let us define the
following modulus of rotundity :

MF (r;α, β) := inf {1− ρF (ξ + λ (η − ξ)) :

ξ, η ∈ ∂F , ρF (ξ − η) ≥ r; α ≤ λ ≤ β} . (1.5)

Since in a finite-dimensional space a closed and bounded set is compact, the
set F is rotund if and only if MF (r;α, β) > 0 for all r > 0 and 0 < α < β < 1.
The rotundity can be also interpreted in terms of nonlinearity of the gauge
function ρF (·). Namely, F is rotund iff the equality ρF (x+y) = ρF (x)+ρF (y)
holds only in the case when x = λy with λ ≥ 0. It is well-known that the
polar set F 0 is rotund if and only if F is smooth.

Since f(0) = 0, f 6= 0 and domf 6= {0}, we also have f ∗(0) = 0, f ∗ 6= 0
and domf ∗ 6= {0}. Therefore, due to the elementary properties of convex
functions there exist k, a ∈ [0,+∞) and 0 < b ≤ +∞ such that

∂f(0) = [0, k];

∂f ∗(0) = {t : f(t) = 0} = [0, a]; (1.6)

domf ∗ = [0, b] (or [0, b)).

Let us define the function ϕ : [0, b)→ R+ by

ϕ(t) := sup ∂f ∗(t) < +∞. (1.7)
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It is nondecreasing by monotonicity of the subdifferential. We also introduce
the number γn,f that equals k whenever both n = 1 and f is not affine in a
neighbourhood of zero (i.e., f(t)/t 6= const near 0), and γn,f = 0 in all other
cases.

For an open bounded connected domain Ω ⊂ Rn we introduce the func-
tions

r±(x) = r±Ω(x) := sup{r > 0 : x± rF 0 ⊂ Ω}, x ∈ Ω. (1.8)

We have that
r+(x) ≤ r+(y) + ρF 0(y − x) (1.9)

for all x, y ∈ Ω. Indeed, given ε > 0 let us take r > 0 such that

r+(x) ≤ r + ε (1.10)

and x + rF 0 ⊂ Ω. Then for each y ∈ Ω due to the convexity of F 0 we
successively have

y − x+ (r − ρF 0(y − x))F 0 ⊂ ρF 0(y − x)F 0 + (r − ρF 0(y − x))F 0 ⊂ rF 0.

Consequently,

y + (r − ρF 0(y − x))F 0 ⊂ x+ rF 0 ⊂ Ω,

and, hence, r − ρF 0(y − x) ≤ r+(y). Combining this with (1.10) and taking
into account arbitrarity of ε we arrive at (1.9). Similarly,

r−(x) ≤ r−(y) + ρF 0(x− y), (1.11)

x, y ∈ Ω. The inequalities (1.9) and (1.11) imply in particular the Lipschitz
continuity of the functions r± : Ω→ R+.

Given x0 ∈ Ω the set

St(x0) = StΩ(x0) := {x : [x0, x] ⊂ Ω} (1.12)

is said to be the star in Ω associated to the point x0, where

[x0, x] := {(1− λ)x0 + λx : 0 ≤ λ ≤ 1}

is the closed segment connecting x0 and x. It follows immediately from (1.12)
that StΩ (x0) is open. The set Ω is said to be star-shaped with respect to
x0 ∈ Ω if Ω = St(x0). For instance, a convex domain Ω is star-shaped with
respect to each point x ∈ Ω. We say also that Ω is densely star-shaped with
respect to x0 if Ω ⊂ St(x0), where over bar means the closure in Rn.

21



1.2 Local estimates for minimizers

In this section we formulate a result on estimates of minimizers close to their
non extremum points. Roughly speaking, it states that if x̄ ∈ Ω is not a
point of local minimum (maximum) of a solution ū (·) to (PF ), then ū (·) is
minorized (majorized) near x̄ by a linear function associated to ρF 0 . This
function thus controls the deviation of the value ū (x) from the respective
extremal level.

Theorem 1.2.1. Let Ω ⊂ Rn be an open bounded set. Let ū(·) be a contin-
uous admissible solution of (PF ). Then the following statements hold where
the number a > 0 and the nondecreasing function ϕ(·) are taken from (1.6)
and (1.7), respectively

(i) Assume that a point x̄ ∈ Ω and numbers β > 0 and µ ∈ R are such that

ū(x) ≥ µ ∀x ∈ x̄− βF 0 ⊂ Ω (1.13)

and
ū(x̄) > µ+ aβ. (1.14)

Then there exists η > 0 such that

ū(x) ≥ µ+ ϕ(γn,f + η)(β − ρF 0(x̄− x)) (1.15)

for all x ∈ x̄− βF 0.

(ii) Similarly, if in the place of (1.13) and (1.14) a point x̄ ∈ Ω and numbers
β > 0, µ ∈ R satisfy the inequalities

ū(x) ≤ µ ∀x ∈ x̄+ βF 0 ⊂ Ω (1.16)

and
ū(x̄) < µ− aβ, (1.17)

then there exists η > 0 such that

ū(x) ≤ µ− ϕ(γn,f + η)(β − ρF 0(x− x̄))F 0 (1.18)

for all x ∈ x̄+ βF 0.
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Proof. (i) If k > 0 but γn,f = 0, i.e., either n > 1 or f (·) is affine near 0,
then the result is trivial because ϕ (η) = 0 for each 0 < η < k.

Let us suppose now k = 0. Then γn,f = 0 and ϕ(t) > 0 for all t > 0.
Since the function ū(·) is continuous and ϕ(·) is upper semicontinuous, it
follows from (1.14) that for some small δ > 0 and α ∈ (0, β) the inequality

ū(x) ≥ µ+ ϕ(t)(β − ρF 0(x̄− x)) (1.19)

holds whenever ρF 0(x̄−x) ≤ α and 0 < t ≤ δ. Let us consider the real-valued
function s 7→ ϕ(δ(α

s
)n−1), which is (Riemann) integrable on the interval [α, β].

Denoting by

Rδ(r) := µ+

β∫
r

ϕ
(
δ(
α

s
)n−1

)
ds, (1.20)

we deduce from (1.19) that

ū(x) ≥ Rδ(ρF 0(x̄− x)) (1.21)

for all x ∈ Ω with ρF 0(x̄ − x) = α. Observe that Rδ(β) = µ, and by (1.13)
the inequality (1.21) holds trivially for x ∈ Ω with ρF 0(x̄ − x) = β. This
inequality is thus valid on ∂Aα,β, where

Aα,β := {x ∈ Rn : α ≤ ρF 0(x̄− x) ≤ β}.

Our goal now is to extend this inequality to the interior of Aα,β, using its
validity on the boundary, i.e., to prove a comparison result. Denote by
Sδ(x) := Rδ(ρF 0(x̄− x)) and assume that the (open) set

U := {x ∈ Aα,β : ū(x) < Sδ(x)}

is nonempty. Let us extend the Lipschitz continuous function Sδ : Aα,β → R+

to the whole Ω by setting Sδ(x) = Rδ(β) = µ for x ∈ Ω with ρF 0(x̄−x) > β,
and Sδ(x) = Rδ(α) whenever ρF 0(x̄−x) < α. Consider the function w(x) :=
max{ū(x), Sδ(x)}, which is equal to Sδ(x) on U and to ū(x) elsewhere. Let
us show that w(·) minimizes the functional in (PF ) on ū(·) + W 1,1

0 (Ω,R),
taking into account that ū is a solution of (PF ).

Since ū(·) is a solution, we have∫
Ω

[f(ρF (∇ū(x)))− f(ρF (∇w(x)))] dx ≤ 0. (1.22)
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If p(·) is an arbitrary (measurable) selection of x 7→ ∂(f ◦ ρF (∇w(x))), then,
by definition of the subdifferential of a convex function,

f(ρF (∇ū(x)))− f(ρF (∇w(x))) ≥ 〈p(x),∇ū(x)−∇w(x)〉 (1.23)

for a.e. x ∈ Ω, and hence∫
Ω

[f(ρF (∇ū(x)))− f(ρF (∇w(x)))] dx ≥

≥
∫

Ω

〈p(x),∇ū(x)−∇w(x)〉 dx. (1.24)

Now we construct a measurable selection p(·) in such a way that the last
integral is equal to zero. Since ∇w(x) = ∇ū(x) for a.e. x ∈ Ω \ U , and
∇w(x) = ∇Sδ(x) for a.e. x ∈ U (see [41, p. 50]), we choose first p(x) as an
arbitrary measurable selection of the mapping x 7→ ∂(f ◦ ρF )(∇ū(x)) 6= ∅
on Ω \ U . On the set U instead we define p(x) according to the differential
properties of Sδ(x). Observe first of all that R′δ(r) = −ϕ(δ(α

r
)n−1) for all

α < r < β except for at most a countable number of points. Furthermore,
by the Lipschitz continuity of x 7→ ρF 0(x̄ − x) the function Sδ(·) is almost
everywhere differentiable on Ω, and

∇Sδ(x) = −R′δ(ρF 0(x̄− x))∇ρF 0(x̄− x) (1.25)

for a.e. x ∈ U . Due to (1.4) the gradient ∇ρF 0(x̄ − x) belongs to ∂F , and,
consequently,

ρF (∇Sδ(x)) = ‖R′δ(ρF 0(x̄− x))‖ = ϕ(δ(
α

ρF 0(x̄− x)
)n−1).

Hence, by the definition of ϕ(·), on one hand, we obtain

δ

(
α

ρF 0(x̄− x)

)n−1

∈ ∂f(ρF (∇Sδ(x))) (1.26)

for a.e. x ∈ U . On the other hand (see (1.4) and (1.25)), ∇Sδ (x) is a normal
vector to F 0 at the point x̄−x

ρF0 (x̄−x)
, that means (see also (1.2))〈

∇Sδ(x),
x̄− x

ρF 0(x̄− x)

〉
= σF 0(∇Sδ(x)) = ρF (∇Sδ(x)),
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or, in the dual form,

x̄− x
ρF 0(x̄− x)

∈ NF

(
∇Sδ(x)

ρF (∇Sδ(x))

)
∩ ∂F 0 = ∂ρF (∇Sδ(x)).

Recalling (1.26), let us now define the (continuous) function

p(x) := δ

(
α

ρF 0(x̄− x)

)n−1
x̄− x

ρF 0(x̄− x)
, (1.27)

which is a selection of x 7→ ∂(f ◦ ρF )(∇Sδ(x)) almost everywhere in U .
The next step is to prove that∫

Ω

〈p(x),∇ū(x)−∇w(x)〉 dx = 0. (1.28)

We use polar coordinates r = ‖x− x̄‖ and ω = (x− x̄)/‖x− x̄‖. Note that
for each ω, ‖ω‖ = 1, on the boundary of the (open) linear set lω := {r ∈
(α, β) : (r, ω) ∈ U} the equality ū(x) = Sδ(x) holds. Therefore,∫

lω

〈ω,∇ū(x)−∇Sδ(x)〉 dr =

∫
lω

d

dr
(ū(x)− Sδ(x)) dr = 0,

and by Fubini theorem we obtain

∫
U

〈p(x),∇ū(x)−∇Sδ(x)〉 dx =

= −δαn−1
∫
‖ω‖=1

dω
ρn
F0 (−ω)

∫
lω

1
rn
〈rω,∇ū(x)−∇Sδ(x)〉rn−1 dr = 0,

proving thus the equality (1.28).
Hence, ∫

Ω

f(ρF (∇ū(x))) dx =

∫
Ω

f(ρF (∇w(x))) dx. (1.29)

Furthermore, (1.23) together with (1.29) and (1.28) imply that

f(ρF (∇ū(x)))− f(ρF (∇w(x))) = 〈p(x),∇ū(x)−∇w(x)〉 (1.30)

for a.e. x ∈ Ω. Let E ⊂ U be a set of null measure such that for all x ∈ U \E
the equality (1.30) takes place, and the gradient ∇σF (x̄− x) (coinciding, by
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homogeneity, with ∇σF (p(x)) (see (1.27)) exists. In accordance with (1.30)
both ∇ū(x) and ∇w(x) belong to ∂(f ◦ ρF )∗(p(x)) = ∂(f ∗ ◦ σF )(p(x)), and
for each x ∈ U \ E the latter subdifferential admits the form

∂f ∗(ρF 0(p(x)))∇σF (x̄− x),

where (see (1.27))

ρF 0(p(x)) = δ

(
α

ρF 0(x̄− x)

)n−1

. (1.31)

Notice that there is at most a countable family of disjoint open intervals
J1, J2, ... ⊂ [α, β] such that the real function f(·) is affine on each Ji with a
slope τi > 0, i = 1, 2, ... . In other words, τi are discontinuity points of ϕ(·).

Denoting by Ei := x̄ − α
(
δ
τi

) 1
n−1

∂F 0 we see that for all x /∈
∞⋃
i=1

Ei (the set

of null measure) ∂f ∗(ρF 0(p(x))) is a singleton. So that ∇w(x) = ∇ū(x) for
a.e. x ∈ Ω contradicting the assumption U 6= ∅. Thus, we have proved the
inequality (1.21) on {x ∈ Ω : α ≤ ρF 0(x̄ − x) ≤ β}. Combining ( 1.21) and

(1.20) by the mean value theorem we obtain (1.15) with η = δ
(
α
β

)n−1

.

Finally, assume that γn,f = k > 0. In this case n = 1, the function
f(·) admits positive slope at zero but it is not affine near 0 (consequently,
ϕ(k) = 0), and obviously a = 0. Then, for a given β > 0 with x̄− βF 0 ⊂ Ω
we have ū(x̄) > µ + ϕ(k)β, and, since ū(·) and ϕ(·) are continuous, there
exist δ > 0 and 0 < α < β such that

ū(x) ≥ µ+ ϕ(k + t)(β − ρF 0(x̄− x))

for all x ∈ Ω with ρF 0 (x̄− x) ≤ α and 0 < t ≤ δ. Taking into account
the monotonicity of the subdifferential ∂f ∗(·) and the nonaffinity of f(·) in
a neighbourhood of zero, we can choose δ > 0 such that ∂f ∗(k + δ) is a
singleton (equivalently, k + δ is a slope of f(·) different from slopes of its
affine pieces near zero). Now we can proceed as in the first part of the proof
by using the comparison argument with the linear function

Rδ(r) := µ+ ϕ(k + δ)(β − r), α ≤ r ≤ β.

The selection p(x) ∈ ∂(f ◦ ρF )(∇(Rδ ◦ ρF 0)(x̄−x)) appearing in the equality
(1.28) takes the form

p(x) = (k + δ)
x̄− x

ρF 0(x̄− x)
.
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Observe that the final part of the proof should be omitted here because
the subdifferential ∂f ∗(ρF 0(p(x))) = ∂f ∗(k + δ) is already a singleton by
construction. Thus we have

ū(x) ≥ µ+ ϕ(k + δ)(β − ρF 0(x̄− x))

for all x ∈ Ω with ρF 0(x̄− x) ≤ β, and the first part of theorem is proved.

(ii) This can be proved using the same reasoning as in (i) with some
evident modifications. For instance, the inequality (1.21) here has the form

ū(x) ≤ R̃δ(ρF 0(x− x̄)),

where

R̃δ(r) := µ−
β∫
r

ϕ

(
δ
(α
s

)n−1
)
ds.

In the case a = 0, i.e., when the function f(·) is strictly convex at the
origin, we immediately obtain a consequence of Theorem 1.2.1, which will be
exploited in Section 1.3. Here r±(·) are the functions defined by (1.8).

Corollary 1.2.1. Assume that a = 0, and one of the following hypotheses
holds:

(a) k = 0;

(b) n = 1 and f(·) is not affine near 0.

If ū(·) is a continuous solution of (PF ), which does not attain its minimal
(maximal) value at a point x̄ ∈ Ω, then the whole set x̄−r−(x̄)F 0 (respectively,
x̄+r+(x̄)F 0) does not contain in its interior points of minimum (respectively,
maximum) of ū(·).

Proof. It is enough to take β := r−(x̄) (respectively, r+(x̄)) and observe that
under the hypothesis (a), (b) we have ϕ(γn,f + η) > 0 for all η > 0. The
result follows now from the estimate (1.15) or (1.18), respectively.
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Otherwise, if a > 0 then the estimates of Theorem 1.2.1 can be applied
to obtain the generalizations of SMP presented in Sections 1.4, 1.5 and 1.6.
Those results are essentially based on the following assertion.

Corollary 1.2.2. Assume that a > 0, and let ū(·) be a continuous solution
of (PF ) such that for some x0 ∈ Ω and δ > 0

ū(x) ≥ ū(x0) + aρF 0(x− x0) ∀x ∈ x0 + δF 0 ⊂ Ω. (1.32)

Then
ū(x) = ūx0) + aρF 0(x− x0) (1.33)

holds for all x ∈ x0 + δ
‖F‖‖F 0‖+1

F 0.
Symmetrically, if

ū(x) ≤ ū(x0)− aρF 0(x0 − x) ∀x ∈ x0 − δF 0 ⊂ Ω, (1.34)

then
ū(x) = ū(x0)− aρF 0(x0 − x) (1.35)

for all x ∈ x0 − δ
‖F‖‖F 0‖+1

F 0

Proof. We prove the first part by using the statement (i) of Theorem 1.2.1,
while the symmetric assertion can be proved similarly (it is enough only to
apply (ii) in the place of (i)). Assume that

ū(x̄) > µ+ aρF 0(x̄− x0),

where µ := ū(x0), for some x̄ ∈ Ω with

ρF 0(x̄− x0) <
δ

‖F‖‖F 0‖+ 1
.

Let us choose ε > 0 so small that

ρF 0(x̄− x0)(‖F‖‖F 0‖+ 1) + ε‖F‖‖F 0‖ < δ (1.36)

and
ū(x̄) > µ+ a(ρF 0(x̄− x0) + ε). (1.37)

Setting β := ρF 0(x̄ − x0) + ε, we have x̄ − βF 0 ⊂ x0 + δF 0. Indeed, given
y ∈ x̄− βF 0, using the inequalities (1.3), we obtain

ρF 0(y − x̄) ≤ ‖F‖‖F 0‖ρF 0(x̄− y) ≤ ‖F‖‖F 0‖(ρF 0(x̄− x0) + ε),
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and it follows from (1.36 ) that

ρF 0(y − x0) ≤ ρF 0(y − x̄) + ρF 0(x̄− x0) < δ.

In particular, ū(x) ≥ µ for all x ∈ x̄− βF 0. Combining this inequality with
(1.37) by Theorem 1.2.1 (i) we find η > 0 such that

ū(x) ≥ µ+ ϕ(η)(β − ρF 0(x̄− x)) ∀x ∈ x̄− βF 0. (1.38)

Applying (1.38) to the point x0 ∈ x̄− βF 0, we obtain finally

ū(x0) ≥ µ+ ϕ(η)ε ≥ µ+ aε > µ,

which is a contradiction. The equality (1.33) can be extended then to the
boundary of x0 + δ

‖F‖‖F 0‖+1
F 0 by continuity of the involved functions.

From the latter part of the proof of Theorem 1.2.1 (i) it is easy to see
that in the case n = 1, due to the disconnectedness of the annulus Aα,β,
estimates like (1.15) and (1.18) hold without symmetry. To be more precise,
let us consider a convex (not necessarily even) function L : R→ R+∪{+∞}
with L(0) = 0 and 0 ∈ int domL, lower semicontinuous on its domain and
such that L(·) is not identically equal to zero on both negative and positive
half-lines. In what follows the set of functions with these properties will be
denoted by L. Given L(·) ∈ L it is obvious that the function L decreases
on ] −∞, 0[ and increases on ]0,+∞[, that there exist 0 < b± ≤ +∞ with
domL∗ = {t : −b− < t < b+}, where one of the signs ”<” (or both of them)
can be replaced to ”≤”, and that 0 ∈ ∂L(0), 0 ∈ ∂L∗(0). Consequently,
for some nonnegative (finite) k± and a± we have ∂L(0) = [−k−, k+] and
∂L∗(0) = [−a−, a+]. As in the symmetric case, let us introduce the upper
semicontinuous nondecreasing function ϕ : (−b−, b+)→ R by setting ϕ(t) :=
sup ∂L∗(t). Observe that by monotonicity of the subdifferential, one of the
numbers k+ or a+ (analogously, k− or a−) is always equal to zero. The
following statement contains the one-sided estimates for solutions of the one-
dimensional problem (PF ). For the sake of simplicity we consider here only
the case of local minimum. One easily makes the respective modifications
when the symmetric conditions (of local maximum) take place.

Theorem 1.2.2. Let L ∈ L, and let ū(·) be a continuous solution of (PF ).
Assume that a point x̄ ∈ Ω and numbers µ ∈ R, β > 0 are such that

ū(x) ≥ µ ∀x ∈ [x̄− β, x̄] ⊂ Ω (1.39)
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and
ū(x̄) > µ+ a+β. (1.40)

If L is not affine in a right-hand neighbourhood of zero then there exists η > 0
such that

ū(x) ≥ µ+ ϕ(k+ + η)(β + x− x̄) ∀x ∈ [x̄− β, x̄]. (1.41)

Analogously, if L is not affine in a left-hand neighbourhood of zero and the
relations (1.39), (1.40) are substituted by the following:

ū(x) ≥ µ ∀x ∈ [x̄, x̄+ β] ⊂ Ω;

ū(x̄) > µ+ a−β,

then for some η > 0

ū(x) ≥ µ− ϕ(−k− − η)(β + x̄− x) ∀x ∈ [x̄, x̄+ β]. (1.42)

Proof. We use here the same arguments as in the proof of Theorem 1.2.1.
Let us emphasize only some simplifications in the main steps that have a
methodical interest. Let us consider the first case (L(·) is not affine on the
right side of the origin, and (1.39), (1.40) are fulfilled). We write (1.40) as
ū(x̄) > µ+ ϕ(k+)β and by the upper semicontinuity of ϕ(·) choose η > 0 so
small that the latter inequality holds with ϕ(k+ + η) in the place of ϕ(k+).
Assume also (see the last part of the proof of Theorem 1.2.1 (i)) that the
subdifferential ∂L∗(k++η) is a singleton, namely, ∂L∗(k++η) = {ϕ(k++η)}.
Here we use the nonaffinity of L(·) on the right side of zero. Defining on Ω
the continuous function

Rδ(x) :=


µ if x < x̄− β,
µ+ ϕ(k+ + η)(β + x− x̄) if x̄− β ≤ x ≤ x̄,
µ+ ϕ(k+ + η)β if x > x̄,

we wish to prove that ū(x) ≥ Rδ(x) for all x ∈ [x̄ − β, x̄]. If this inequality
is violated in some (open) set U ⊂ (x̄ − β, x̄) then by the Newton-Leibnitz
formula ∫

Ω

(ū′(x)− w′(x)) dx =

∫
U

(ū′(x)−R′δ(x)) dx = 0, (1.43)

where w(x) := max{ū(x), Rδ(x)}. Since k+ + η ∈ ∂L(R′δ(x)), we have

L(ū′(x))− L(w′(x)) ≥ (k+ + η)(ū′(x)− w′(x)) (1.44)
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for a.e. x ∈ Ω, and we conclude by (1.43) and by the choice of ū(·) that w(·)
is also a solution of (PF ). Therefore, the inequality (1.44) becomes equality
almost everywhere on Ω. Consequently, both ū′(x) and w′(x) belong to
∂L∗(k+ + η), i.e., ū′(x) = w′(x) = ϕ(k+ + η) for a.e. x ∈ U , contradicting
the assumption that ū(x) < Rδ(x) on U . Thus, the estimate (1.41) holds.
The right-sided inequality (1.42), where −ϕ(−k−−η−) > 0, can be obtained
similarly by using the behaviour of L(·) on the left side of zero.

We are ready now to establish various versions of SMP, starting from the
traditional one.

1.3 Strong Maximum Principle under the strict

convexity assumption

Our main hypothesis here is

(H1) ∂L∗(0) = {0},

which is, obviously, equivalent to a = 0 when L = f ◦ ρF . In the case n > 1
we also assume the dual hypothesis

(H2) ∂L(0) = {0},

which reduces to k = 0 if L = f ◦ρF . In the asymmetric case (n = 1), clearly,
(H1)⇔ a+ = a− = 0 while (H2)⇔ k+ = k− = 0.

Theorem 1.3.1 (Strong Maximum Principle). Assume that one of the fol-
lowing conditions holds:

(i) n = 1 and L(·) ∈ L is not affine in both left- and right-hand neighbour-
hoods of zero;

(ii) n > 1 and the lagrangean L(·) satisfies both hypotheses (H1) and (H2),
being represented as L = f ◦ ρF , where f : R+ → R+ ∪ {+∞} is a
convex lower semicontinuous function with f(0) = 0, and F ⊂ Rn is a
convex closed bounded set with 0 ∈ intF .
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Then for each open bounded connected region Ω ⊂ Rn there is no continuous
admissible nonconstant minimizer of

u (·) 7→
∫
Ω

L (∇u (x)) dx (1.45)

on u0(·) +W 1,1
0 (Ω) for u0(·) ∈ W 1,1 (Ω), which admits its minimal (or max-

imal) value in Ω.

Proof. Observe first that in the framework of the condition (i) the hypothesis
(H1) holds automatically, while (H2) can be violated. An open bounded
connected set in this case is an interval Ω = (A,B) with A < B. Assuming
that ū(·) is a minimizer of (1.45), and x̄ ∈ Ω is such that ū(x̄) > µ :=
min

Ω
ū(x), we put β := x̄ − A and obtain by Theorem 1.2.2 that ū(x) >

µ for all x ∈ (A, x̄] (because in (1.41) we have ϕ(k+ + η) > 0 ∀η > 0).
Analogously, by using the estimate (1.42) of Theorem 1.2.2, we conclude
that ū(x) > µ ∀x ∈ [x̄, B). Consequently, there are only two possibilities:
either the minimum of ū(·) is attained in one of the end-points of the segment
[A,B] or ū ≡ µ on Ω. In the case of maximum the reasoning is similar.

Let us suppose now condition (ii). Take an arbitrary continuous admis-
sible function ū : Ω → R that minimizes the integral (1.45), and let µ be
its minimum on Ω. If ū(·) is not constant then the (open) set W := {x ∈
Ω : ū (x) 6= µ} is nonempty. Since a = 0, it follows from Corollary 1.2.1
that x̄ − βF 0 ⊂ W whenever x̄ ∈ W , 0 < β < r− (x̄) (see (1.8)). Fix
now x∗ ∈ W (closure of W in Ω). By the continuity let us choose an arbi-
trary 0 < ε < 1

2‖F‖r
−(x∗) so small that r−(x∗) ≤ 2r−(x) for all x ∈ Ω with

‖x− x∗‖ ≤ ε. Let x̄ ∈ W ∩
(
x∗ + εB

)
. Then x̄ ∈ W and

ρF 0 (x̄− x∗) ≤ ε ‖F‖ < 1

2
r− (x∗) ≤ r− (x̄) .

Hence, x∗ also belongs to W , and W is closed in Ω, implying that W = Ω
because Ω is connected. Thus, the open region Ω is free from the points of
mimimum of ū(·). Analogously, ū(·) being non constant can not attain in Ω
its maximum, and SMP is proved. Notice that here we use the argument in
some sense dual to the classical proof for harmonic functions (see, e.g., [36,
p. 15]).
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As an example of the functional, for which the validity of SMP follows
from Theorem 1.3.1 but is not covered by earlier results, we consider the
integral ∫

Ω

(
n∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣
)2

dx.

Here f(t) = t2 and ρF (·) is the l1-norm in Rn. Observe that the set

F = {x ∈ Rn :
n∑
i=1

‖xi‖ ≤ 1}

in this case is neither smooth, nor strictly convex.

The Strong Maximum Principle is not valid if the hypothesis (H1) does
not hold because, as shown in [19], there are many (Lipschitz) continuous
nonnegative (nonpositive) minimizers of (1.45) with the trivial boundary
condition u0 (x) = 0, which touch the zero level at interior points of Ω as well.
If (H2) is violated then in the case n > 1 one can construct a counterexample
to SMP based on the same arguments as those in [16]. Indeed, fix arbitrary
x̄ ∈ Rn, µ ∈ R and define

Ω := {x ∈ Rn : α < ρF 0(x̄− x) < β}

for some β > α > 0. Then for each δ > 0 the function Sδ(x) := Rδ(ρF 0(x̄−x))
(see (1.20)) is a solution of (PF ) (here ∂f(0) = [0, k], k > 0) with u0(x) =
Sδ(x) in virtue of the relations (1.28) and (1.23), where w(·) = Sδ(·), U = Ω,
ū(·) is another minimizer, and the mapping p(·) is given by (1.27). Clearly,
µ = min

x∈Ω
Sδ(x), and it is enough only to choose δ > 0, α and β such that

Rδ(α) > µ and Rδ(r) = µ for β−ε ≤ r ≤ β, where ε > 0 is sufficiently small.
Let, for instance, β = 2α and k < δ < 2n−1k (observe the importance of the
condition n > 1 for this construction). Then for some 0 < ε < β − α

δ

(
α

α + ε

)n−1

> k, δ

(
α

2α− ε

)n−1

< k

and, consequently,

Rδ(α) ≥ µ+

α+ε∫
α

ϕ

(
δ
(α
s

)n−1
)
ds ≥ µ+ ϕ

(
δ

(
α

α + ε

)n−1
)
ε > µ,
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while for β − ε ≤ r ≤ β we have

µ ≤ Rδ(r) ≤ µ+

β∫
β−ε

ϕ

(
δ
(α
s

)n−1
)
ds ≤ µ+ ϕ

(
δ

(
α

2α− ε

)n−1
)
ε = µ.

We use here the fact that ϕ(t) ≡ 0 on [0, k] and ϕ(t) > 0 for t > k. Thus
Sδ (·) is a nonconstant continuous solution of (PF ) admitting its minimum at
each point x ∈ Ω with β − ε ≤ ρF 0(x̄− x) ≤ β, which contradicts SMP.

The function L(·) may have a nontrivial slope at zero, which is different
from the slopes at all points x 6= 0. Let us give a simple example of such
function, which, moreover, is neither strictly convex nor smooth near the
origin.

Example 1. Fix an arbitrary strictly decreasing sequence {τm} ⊂ (0, π/2)
converging to zero, and define the continuous function f : (0, π/2) → R+,
which is equal to tgt for t = τm, m = 1, 2, ..., and for τ1 < t < π/2, and
affine on each interval (τm+1, τm). We set also f(t) = +∞ for t ≥ π/2.Then
∂f(0) = [−1, 1] but, nevertheless, the Strong Maximum Principle is valid for
the functional

∫
Ω

f(‖u′(x)‖) dx due to Theorem 1.3.1.

However, even in the case n = 1 the function f(·) can not be affine near
the origin.

Example 2. If f(t) = kt for 0 ≤ t ≤ ε then for each admissible function
u(·) ∈ W 1,1(0, 1) with the boundary values u(0) = 0 and u(1) = ε/2 we have
by Jensen’s inequality

1∫
0

f(‖u′(x)‖) dx ≥ f(‖
1∫
0

u′(x) dx‖) =
kε

2
=

1∫
0

f(‖ū′(x)‖) dx,

where ū(x) := ε
2
x, x ∈ [0, 1]. On the other hand, the function ũ(x) equal to 0

on
[
0, 1

2

]
and to εx− ε

2
on
[

1
2
, 1
]

gives the same minimal value to the integral.
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1.4 A one-point extended Strong Maximum

Principle

The traditional Strong Maximum Principle is no longer valid if L = f ◦ ρF
with ∂f ∗(0) 6= {0}. However, also in this case we can consider a similar
property, which clearifies the structure of minimizers of the functional (PF )
and has the same field of applications as the classical SMP. Let us start with
the one-point SMP when a test function admits a unique point of local min-
imum (maximum). Setting û(x) = µ+ aρF 0(x− x0) with µ ∈ R and x0 ∈ Ω,
it was already shown (see Corollary 1.2.2) that for an arbitrary minimizer
ū(·), ū(x0) = µ, of (PF ) the inequality ū(x) ≥ û(x) valid on a neighbourhood
of x0 becomes, in fact, the equality on another (may be smaller) neighbour-
hood. First we show that this property can be extended to the maximal
homothetic set x0 + rF 0 contained in Ω.

Theorem 1.4.1. Assume that L = f ◦ ρF , where f : R+ → R+ ∪ {+∞} is
a convex lower semicontinuous function, f(t) = 0 iff t ∈ [0, a], a > 0, and
F ⊂ Rn is a convex closed bounded set with 0 ∈ intF . Let Ω ⊂ Rn be an
open bounded domain, x0 ∈ Ω and ū(·) be a continuous solution of (PF ). If

ū(x) ≥ ū(x0) + aρF 0(x− x0) (1.46)

for all x ∈ x0 + r+ (x0)F 0 then the equality

ū (x) = ū (x0) + aρF 0 (x− x0) (1.47)

holds on x0 + r+ (x0)F 0. Analogously, if

ū (x) ≤ ū (x0)− aρF 0 (x0 − x) (1.48)

for all x ∈ x0 − r− (x0)F 0, then the equality

ū (x) = ū (x0)− aρF 0 (x0 − x) (1.49)

holds on x0 − r− (x0)F 0.
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Proof. Let us prove the first assertion, while the second one is symmetric
and can be proved similarly. Let us define

R := sup {r > 0 : ū (x) = ū (x0) + aρF 0 (x− x0)

for all x ∈ x0 + rF 0 ⊂ Ω
}

. (1.50)

By Corollary 1.2.2 we have R > 0. Our goal now is to prove that R = r+(x0).
Assuming the contrary, i.e., R < r+(x0) let us choose δ > 0 so small that

R + δ(‖F‖‖F 0‖+ 1) < r+(x0) (1.51)

and x̄ ∈ Ω with R < ρF 0(x̄− x0) < R + δ such that

ū(x̄) > ū(x0) + aρF 0(x̄− x0) (1.52)

(see the condition (1.46)). By strictness of the inequalities (1.51) and (1.52)
we find also ε > 0 such that

R + δ(‖F‖‖F 0‖+ 1) + ε‖F‖‖F 0‖ < r+(x0) (1.53)

and
ū(x̄) > ū(x0) + a(ρF 0(x̄− x0) + ε). (1.54)

Setting µ := ū(x0) + aR let us define the function v̄(·) equal to

max{ū(x), µ}

on x0 +r+(x0)F 0 and to ū(x) on the remainder of Ω. It is continuous because
R < r+(x0) and for each x ∈ Ω with ρF (x− x0) ≥ R we have

ū(x) ≥ ū(x0) + aρF 0(x− x0) ≥ µ, (1.55)

i.e., v̄(x) = ū(x). We claim that v̄(·) minimizes the functional in (PF ) on
ū(·) + W 1,1

0 (Ω). Indeed, it follows from (1.55) that v̄(·) ∈ ū(·) + W 1,1
0 (Ω),

and clearly ∇v̄(x) = 0 for each x ∈ Ω with v̄(x) 6= ū(x). Denoting by
Ω′ := {x ∈ Ω : ū(x) = v̄(x)} we have∫

Ω

f(ρF (∇v̄(x))) dx =

∫
Ω′

f(ρF (∇ū(x))) dx ≤

≤
∫
Ω

f(ρF (∇ū(x))) dx ≤
∫
Ω

f(ρF (∇v̄(x))) dx. (1.56)
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Therefore, v̄(·) is a solution of (PF ) with u0(·) = v̄(·).
Let x′0 be a unique point from [x0, x̄] such that ρF 0 (x′0 − x0) = R. Namely,

x′0 = x0 + λ (x̄− x0) where 0 < λ := R
ρF0 (x̄−x0)

< 1. Setting now β :=

ρF 0 (x̄− x′0) + ε, by (1.54) we obtain

v̄ (x̄) ≥ ū (x̄) > ū (x0) + aρF 0 (x′0 − x0) +

+ a (ρF 0 (x̄− x′0) + ε) = µ+ aβ. (1.57)

On the other hand, the inequality ρF 0 (x̄− x) ≤ β implies that

ρF 0 (x− x0) ≤ ρF 0 (x− x̄) + ρF 0 (x̄− x′0) + ρF 0 (x′0 − x0) ≤
≤ ‖F‖

∥∥F 0
∥∥ ρF 0 (x̄− x) + ρF 0 (x̄− x′0) +R ≤

≤
(
‖F‖

∥∥F 0
∥∥+ 1

)
ρF 0 (x̄− x′0) +

+ ε ‖F‖
∥∥F 0

∥∥+R. (1.58)

Since obviously ρF 0 (x̄− x′0) < δ, we obtain from (1.58) and (1.53) that
ρF 0 (x− x0) < r+ (x0). Hence, by the definition of v̄ (·)

v̄ (x) ≥ µ ∀x ∈ x̄− βF 0. (1.59)

The inequalities (1.59) and (1.57) allow us to apply Theorem 1.2.1 with the
solution v̄ (·) in the place of ū (·) and to find η > 0 such that

v̄ (x) ≥ µ+ ϕ (η) (β − ρF 0 (x̄− x)) ∀x ∈ x̄− βF 0.

In particular, for x = x′0 ∈ x̄− βF 0 we have

v̄ (x′0) ≥ µ+ ϕ (η) ε > µ. (1.60)

However, by the definition of R (see (1.50))

ū (x′0) = ū (x0) + aρF 0 (x′0 − x0) = µ.

Thus v̄ (x′0) = µ as well, contradicting the strict inequality (1.60).

In the case when the Minkowski functional ρF (·) is differentiable, the
latter extremality result can be extended to arbitrary (densely) star-shaped
domains in the place of ρF 0-balls x0 ± rF 0.
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Theorem 1.4.2. Assume that the lagrangean L(·) is such as in Theorem
1.4.1 with a convex compact and smooth set F ⊂ Rn, 0 ∈ intF ; that Ω ⊂ Rn
is an open bounded region and x0 ∈ Ω. Then for each continuous solution
ū (·) of (PF ) and each open Ω̂ ⊂ Ω, which is densely star-shaped w.r.t. x0,
the inequality (1.46) (respectively, (1.48)) holds for all x ∈ Ω̂ if and only if
the equality (1.47) (respectively, (1.49)) is valid on Ω̂.

Proof. As earlier we prove here only the implication (1.46)⇒(1.47), while
the other one ((1.48)⇒(1.49)) can be treated similarly. Moreover, it is
enough to prove the equality (1.47) on the star StΩ̂ (x0), because to each

x ∈ Ω̂�StΩ̂ (x0) ⊂ StΩ̂ (x0) it can be extended by continuity of the involved
functions.

Let us assume validity of (1.46) on Ω̂ and fix x̄ ∈ StΩ̂ (x0). By the
compactness we choose ε > 0 such that

[x0, x̄]± εF 0 ⊂ Ω̂. (1.61)

Set

δ := 2εMF 0

(
2ε

∆
;

ε

ε+ ∆
,

∆

ε+ ∆

)
, (1.62)

where MF 0 is the rotundity modulus defined by (1.5) and ∆ is the ρF 0-
diameter of the domain Ω̂, i.e.,

∆ := sup
ξ,η∈Ω̂

ρF 0 (ξ − η) > 0. (1.63)

It follows from the remarks of Section 1.1 that F 0 is rotund, and therefore
δ > 0. Let us consider an uniform partition of the segment [x0, x̄] by the
points

xi := x0 + ih
x̄− x0

ρF 0 (x̄− x0)
,

i = 0, 1, ...,m, with

h :=
ρF 0 (x̄− x0)

m
≤ min

{
ε√
M
,
δ

M

}
, (1.64)

where M := (‖F‖ ‖F 0‖+ 1)
2
. Since the inequality (1.46) holds for all x ∈

x0 + εF 0 (see (1.61)) and ρF 0 (x1 − x0) = h ≤ ε
‖F‖‖F 0‖+1

, it follows from
Corollary 1.2.2 that

ū (x1) = ū (x0) + aρF 0 (x1 − x0) = ū (x0) + ah.
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We want to prove by induction in i that

ū (xi) = ū (x0) + iah, (1.65)

i = 1, 2, ...,m. Then for i = m we will have

ū (x̄) = ū (xm) = ū (x0) + aρF 0 (x̄− x0) ,

and theorem will be proved due to arbitrarity of x̄ ∈ StΩ̂ (x0). So, we assume
that (1.65) is true for some i with 1 ≤ i ≤ m − 1 and define the function
ūi : Ω→ R as

max {ū (x) ,min {ū (xi) + aρF 0 (x− xi) , µi − aρF 0 (xi − x)}} (1.66)

on Ω̂ and as ū (x) elsewhere. Here

µi := ū (x0) + a (i+M)h. (1.67)

Let us devide the remainder of the proof in three steps.
Step 1. We claim first that for each x /∈ [x0, x̄]± εF 0 the inequality

ρF 0 (x− x0) + ρF 0 (xi − x)− ρF 0 (xi − x0) ≥ δ (1.68)

holds. Indeed, given such a point x we have

ρ0 := ρF 0 (x− x0) ≥ ε and ρi := ρF 0 (xi − x) ≥ ε.

On the other hand, clearly ρ0 ≤ ∆ and ρi ≤ ∆ (see (1.63)). Hence, by the
monotonicity

λ :=
ρ0

ρ0 + ρi
∈
[

ε

∆ + ε
,

∆

∆ + ε

]
. (1.69)

Furthermore,

ρF 0 (x− x0) + ρF 0 (xi − x)− ρF 0 (xi − x0) =

= (ρ0 + ρi)

[
1− ρF 0

(
ρi

ρ0 + ρi

xi − x
ρi

+
ρ0

ρ0 + ρi

x− x0

ρ0

)]
≥

≥ 2ε [1− ρF 0 (ξ + λ (η − ξ))] , (1.70)

where ξ := xi−x
ρi

and η := x−x0
ρ0

. Since

ξ − η =

(
1

ρ0

+
1

ρi

)(
ρ0

ρ0 + ρi
xi +

ρi
ρ0 + ρi

x0 − x
)

,
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by the choice of x we obtain

ρF 0 (ξ − η) ≥
(

1

ρ0

+
1

ρi

)
ε ≥ 2ε

∆
. (1.71)

Joining together (1.69)-(1.71), (1.62) and the definition of the rotundity mod-
ulus (1.5) we immediately arrive at (1.68).

Step 2. Let us show that ūi (·) is the continuous minimizer of the func-
tional in (PF ) on ū (·) + W 1,1

0 (Ω). Given x ∈ Ω̂ with x /∈ [x0, x̄] ± εF 0 it
folows from (1.68) and (1.64) that

ρF 0 (x− x0) + ρF 0 (xi − x) ≥ δ + ih ≥ (i+M)h. (1.72)

Since ū (x) ≥ ū (x0) + aρF 0 (x− x0) by the condition, we deduce from (1.72)
and (1.67) that ū (x) ≥ µi − aρF 0 (xi − x). Consequently, ūi (x) = ū (x) (see
(1.66)). Due to (1.61) this means continuity of the function ūi (·). Besides
that obviously ūi (·) ∈ ū (·) + W 1,1

0 (Ω). We see from (1.66) that for each
x ∈ Ω with ūi (x) 6= ū (x) the gradient ∇ūi (x) belongs to aF , and therefore
f (ρF (∇ūi (x))) = 0. By the same argument as in the proof of Theorem 1.4.1
(see (1.56)) ūi (·) gives the minimum to (PF ) among all the functions with
the same boundary data.

Step 3. Here we prove that for each x with

ρF 0 (x− xi) ≤
(
‖F‖

∥∥F 0
∥∥+ 1

)
h (1.73)

(such x belong to Ω̂ by (1.61) and (1.64)) the inequality

ūi (x) ≥ ūi (xi) + aρF 0 (x− xi) (1.74)

holds. Indeed, it follows from (1.73) and (1.3) that

ρF 0 (x− xi) + ρF 0 (xi − x) ≤Mh, (1.75)

and taking into account the definition of µi (see (1.67)) and the induction
hypothesis (1.65) we obtain from (1.75) that

ū (xi) + aρF 0 (x− xi) ≤ µi − aρF 0 (xi − x) ,

i.e., the minimum in (1.66) is equal to ū (xi) + aρF 0 (x− xi). This implies
(1.74) because
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ūi (xi) = max {ū (xi) ,min {ū (xi) , µi}} = ū (xi) . (1.76)

Applying now Corollary 1.2.2 to the solution ūi (·) (see Step 2) and to the

point xi ∈ Ω we conclude that the inequality (1.74) becomes the equality for
each x ∈ xi +hF 0, in particular, for x = xi+1. Thus, by (1.76) and (1.65) we
have

ūi (xi+1) = ū (x0) + (i+ 1) ah.

On the other hand, by the definition of ūi (·) (see (1.66))

ū (xi+1) ≤ ūi (xi+1) = ū (x0) + aρF 0 (xi+1 − x0) .

Since the opposite inequality holds by the condition, we finally obtain

ū (xi+1) = ū (x0) + aρF 0 (xi+1 − x0) =

= ū (x0) + (i+ 1) ah,

and the induction is complete.

The following one-point version of SMP is the immediate consequence of
the latter result.

Corollary 1.4.1 (one-point Strong Maximum Principle). Let the lagrangean
L = f ◦ρF be such as in Theorem 1.4.2 (the set F is supposed to be smooth),
and Ω ⊂ Rn be an open bounded and densely star-shaped w.r.t. x0 ∈ Ω. Then
given a continuous solution ū (·) of (PF ) the inequality (1.46) (respectively,
(1.48)) holds for all x ∈ Ω if and only if the respective equality (1.47) (or
(1.49)) takes place.

Notice that the (dense) star-shapedness of the region Ω in the above
statement can not be dropped as the following counter-example shows.

Example 3. Let Σ ⊂ Rn be an arbitrary open bounded set, which is star-
shaped w.r.t. x0 ∈ Σ. Fix x̄ ∈ Σ, x̄ 6= x0, and a real number 0 < r <
min {‖x0 − x̄‖ , d∂Σ (x̄)}, where d∂Σ (·) means the distance from a point to
the boundary of Σ. Let us consider the other domain Ω := Σ�

(
x̄+ rB

)
,

where B is the closed unit ball centred in zero. Assuming the function f :
R+ → R+∪{+∞} and the gauge set F ⊂ Rn to be such as in Theorem 1.4.2
we construct a continuous solution ū (·) of (PF ) with the property

ū (x) ≥ ū (x0) + aρF 0 (x− x0) ∀x ∈ Ω, (1.77)

where the inequality is strict on some nonempty (open) set Ω′ ⊂ Ω.
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In what follows by St (x0) we intend the star associated with the point x0

in the domain Ω. It is obvious that x ∈ Ω�St (x0) if and only if the segment
[x0, x] meets the ball x̄+ rB, or, in other words, the quadratic equation

‖x0 + λ (x− x0)− x̄‖2 = λ2 ‖x− x0‖2 −
−2λ 〈x− x0, x̄− x0〉+ ‖x̄− x0‖2 = r2 (1.78)

has (one or two) roots both belonging to the interval (0, 1). We write the
condition of resolvability of (1.78) as

D (x) := 〈x− x0, x̄− x0〉2 − ‖x− x0‖2 (‖x̄− x0‖2 − r2
)
≥ 0 (1.79)

and denote by

λ± (x) :=
〈x− x0, x̄− x0〉 ±

√
D (x)

‖x− x0‖2 (1.80)

its roots. Taking into account continuity of all the involved functions we have

Ω′ := int (Ω�St (x0)) = {x ∈ Σ : D (x) > 0 and

0 < λ− (x) < λ+ (x) < 1} (1.81)

and

E := ∂ (Ω�St (x0)) ∩ ∂ (St (x0)) =

=
{
x ∈ Σ : D (x) = 0 and 0 < λ± (x) = 〈x−x0,x̄−x0〉

‖x−x0‖2
< 1
}
. (1.82)

The open set Ω′ is clearly nonempty since it contains, e.g., all the points
x̄+ (r + δ) x̄−x0

‖x̄−x0‖ with δ > 0 small enough. For each x ∈ E let us define the
”trace” operator

Φ (x) := x0 + λ± (x) (x− x0) , (1.83)

which is continuous and satisfies the following ”cone” property: if x ∈ E and
x′ = x0 + λ (x− x0) ∈ Ω with λ > λ± (x) then also x′ ∈ E and Φ (x′) =
Φ (x). Indeed, we find from (1.79) and (1.80) that D (x′) = λ2D (x) = 0 and
λ± (x′) = 1

λ
λ± (x) ∈ (0, 1). Hence x′ ∈ E and the equality Φ (x′) = Φ (x)

follows directly from (1.83). This property and continuity of Φ (·) imply that
the image C := Φ (E) is a compact subset of {x ∈ Ω : ‖x− x̄‖ = r}.

Define the function ū : Ω→ R by

ū (x) :=

{
a inf
y∈C
{ρF 0 (x− y) + ρF 0 (y − x0)} if x ∈ Ω�St (x0) ,

aρF 0 (x− x0) if x ∈ St (x0) ,
(1.84)
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and show, first, its continuity. To this end it is enough to verify the equality

inf
y∈C
{ρF 0 (x− y) + ρF 0 (y − x0)} = ρF 0 (x− x0) (1.85)

for each point x ∈ E. Notice that the inequality ”≥” in (1.85) is obvious. In
order to prove ”≤” let us take an arbitrary x ∈ E and put y := Φ (x) = x0 +
λ± (x) (x− x0). Then ρF 0 (y − x0) = λ± (x) ρF 0 (x− x0) and ρF 0 (x− y) =
(1− λ± (x)) ρF 0 (x− x0). So that the inequality ”≤” in (1.85) immediately
follows. The function ū (·) is, moreover, lipschitzean on Ω, and its Clarke
subdifferential ∂cū (x) is always contained in aF (see [20, p.92]).

Since by Rademaher’s Theorem the gradient ∇ū (x) a.e. exists and
∇ū (x) ∈ ∂cū (x), we have f (ρF (∇ū (x))) = 0 for a.e. x ∈ Ω, and, con-
sequently, ū (·) is a solution of (PF ).

The inequality (1.77) is obvious (here ū (x0) = 0). Fix now x ∈ Ω′ and
y ∈ C = Φ (E). Then y = x0 + λ± (z) (z − x0) with some z ∈ E. Assuming
that there exists λ > 0 with x− y = λ (y − x0) and taking into account the
representation of y, we have x = x0 + µ (z − x0) with µ := (λ+ 1)λ± (z) >
λ± (z). Due to the ”cone” property of the ”trace” operator (see above) x ∈ E
as well, which is a contradiction. Thus, by the rotundity of the set F 0 the
strict inequality

ρF 0 (x− y) + ρF 0 (y − x0) > ρF 0 (x− x0)

holds. Finally, by the compactness of the set C and by arbitrarity of y ∈ C
we conclude that the inequality (1.77) is strict whenever x ∈ Ω′, and the
construction is complete.

The method used in Example 3 can be essentially sharpened in order
to cover the case of an arbitrary domain Ω, in which an open subset is not
linearily attainable from x0 ∈ Ω. So, let us formulate the following conjecture.

Conjecture The condition Ω ⊂ St (x0) is necessary for validity of the
one-point Strong Maximum Principle w.r.t. x0 ∈ Ω as given by Corollary
1.4.1.

1.5 A multi-point version of SMP

The one-point version of SMP given in the previous section (see Corollary
1.4.1) can be easily extended to the case when the test function û (·) has a
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finite number of local minimum (maximum) points. Namely, let xi ∈ Rn,
i = 1, ...,m, be different, m ∈ N, and arbitrary real numbers θ1, θ2, ..., θm be
such that the compatibility condition

θi − θj < aρF 0 (xi − xj) , i 6= j, (1.86)

is fulfilled. Considering the functions

û+ (x) := min
1≤i≤m

{θi + aρF 0 (x− xi)} (1.87)

and
û− (x) := max

1≤i≤m
{θi − aρF 0 (xi − x)} , (1.88)

we deduce immediately from (1.86) that û+ (xi) = û− (xi) = θi, i = 1, ...,m,
and that {x1, x2, ..., xm} is the set of all local minimum (maximum) points
of the function (1.87) or (1.88), respectively.

Before proving the main statement (Theorem 1.5.1) let us give some prop-
erty of minimizers in (1.87) (respectively, maximizers in (1.88)), which ex-
tends a well-known property of metric projections. Since it will be used in
the next sections as well, we formulate the following assertion in the form
convenient for both situations.

Lemma 1.5.1. Let Γ ⊂ Rn be a nonempty closed set and θ (·) be a real-
valued function defined on Γ. Given x ∈ Rn�Γ assume that the minimum
of the function y 7→ θ (y) + aρF 0 (x− y) (respectively, the maximum of y 7→
θ (y)− aρF 0 (y − x)) on Γ is attained at some point ȳ ∈ Γ. Then ȳ continues
to be a minimizer of y 7→ θ (y) + aρF 0 (xλ − y) (respectively, a maximizer of
y 7→ θ (y)− aρF 0 (y − xλ)) for all λ ∈ [0, 1], where xλ := (1− λ)x+ λȳ.

Proof. Given λ ∈ [0, 1] and y ∈ Γ we obviously have x−y = xλ−y+λ (x− ȳ),
and by the semilinearity

ρF 0 (x− y) ≤ ρF 0 (xλ − y) + λρF 0 (x− ȳ) . (1.89)

Since θ (ȳ) + aρF 0 (x− ȳ) ≤ θ (y) + aρF 0 (x− y), it follows from (1.89) that

θ (ȳ) + a (1− λ) ρF 0 (x− ȳ) ≤ θ (y) + aρF 0 (xλ − y) .

This proves the first assertion because (1− λ) (x− ȳ) = xλ − ȳ. The second
case can be easily reduced to the first one by changing the signs.

44



Theorem 1.5.1 (multi-point Strong Maximum Principle). Assume that the
lagrangean L = f ◦ ρF satisfies our main hypotheses with the smooth gauge
set F , and Ω ⊂ Rn is an open bounded convex region containing the points
x1, ..., xm. Then each continuous admissible minimizer ū (·) in the variational
problem (PF ) such that ū (xi) = θi, i = 1, ...,m, and

ū (x) ≥ û+ (x) ∀x ∈ Ω (1.90)

(respectively, ū (x) ≤ û− (x) ∀x ∈ Ω) coincides with û+ (x) (respectively,
with û− (x)). Here the functions û± (·) are defined by (1.87) and (1.88).

Proof. As usual we prove only the first part of the statement. Denoting by

Ci :=
{
x ∈ Ω : û+ (x) = θi + aρF 0 (x− xi)

}
,

and by Ωi := intCi, i = 1, ...,m, we obviously have xi ∈ Ωi and deduce from
Lemma 1.5.1 that the open set Ωi is star-shaped w.r.t. xi. Since on Ωi the
inequality (1.90) admits the form

ū (x) ≥ ū (xi) + aρF 0 (x− xi) ,

applying Theorem 1.4.2 we conclude that

ū (x) = ū (xi) + aρF 0 (x− xi) = û+ (x) ∀x ∈ Ωi.

It is enough now to observe that the union of (disjoint) sets Ωi, i = 1, ...,m,
is dense in Ω. Therefore, the equality ū (x) = û+ (x) holds for all x ∈ Ω due
to the continuity of both functions.

1.6 Definition and interpretation of the inf-

and sup-convolutions

Now we essentially enlarge the class of test functions involving the infinite
(continuous) envelopes of the functions θ + aρF 0(x − x0) (respectively, θ −
aρF 0(x0 − x)) by such a way that the generalized SMP (see Section 1.7)
gets an unique extremal extension principle and unifies both the traditional
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Strong Maximum Principle proposed by A. Cellina and the extended Strong
Maximum Principle, which we studied in Sections 1.4 and 1.5.

Namely, given an arbitrary real function θ (·) defined on a closed subset
Γ ⊂ Ω and satisfying a natural slope condition w.r.t. F :

θ (x)− θ (y) ≤ aρF 0 (x− y) ∀x, y ∈ Γ,. (1.91)

we prove that the inf-convolution

u+
Γ,θ (x) := inf

y∈Γ
{θ (y) + aρF 0 (x− y)} (1.92)

(respectively, the sup-convolution

u−Γ,θ (x) := sup
y∈Γ
{θ (y)− aρF 0 (y − x)} ) (1.93)

is the only continuous minimizer u (·) in the problem (PF ) such that u (x) =
θ (x) on Γ and u (x) ≥ u+

Γ,θ (x) (respectively, u (x) ≤ u−Γ,θ (x)), x ∈ Ω.
As standing hypotheses in what follows we assume that F is convex closed

bounded and smooth with 0 ∈ intF , and that Ω is an open convex bounded
region in Rn.

Observe that the function u±Γ,θ (·) is the minimizer in (PF ) with u0(x) =

u±Γ,θ (x). Indeed, it is obviously Lipschitz continuous on Ω, and for its (classic)

gradient∇u±Γ,θ existing almost everywhere by Rademacher’s theorem we have

∇u±Γ,θ (x) ∈ ∂cu±Γ,θ (x) ⊂ aF

for a.e. x ∈ Ω (see [20, Theorem 2.8.6]). Here ∂c stands for the Clarke’s
subdifferential. Consequently,

f
(
ρF
(
∇u±Γ,θ (x)

))
= 0

a.e. on Ω, and the function u±Γ,θ (·) gives to (PF ) the minimal possible value
zero.

Due to the slope condition (1.91) it follows that u±Γ,θ (x) = θ (x) for all

x ∈ Γ. Moreover, u±Γ,θ (·) is the (unique) viscosity solution of the Hamilton-
Jacobi equation

± (ρF (∇u (x))− a) = 0, u |Γ = θ,

(see, e.g., [11]).
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Notice that Γ can be a finite set, say {x1, x2, ..., xm} . In this case θ (·)
associates to each xi a real number θi, i = 1, ...,m, and the condition (1.91)
slightly strengthened (by assuming that the inequality in (1.91) is strict for
xi 6= xj) means that all the simplest test functions θi+aρF 0 (x− xi) (respec-
tively, θi − aρF 0 (xi − x)) are essential (not superfluous) in constructing the
respective lower or upper envelope. Then the extremal property established
in Section 1.7 is reduced to the extended SMP of Section 1.5 (see Theorem
1.5.1).

On the other hand, if θ (·) is a Lipschitz continuous function defined on
a closed convex set Γ ⊂ Ω with nonempty interior then (1.91) holds iff

∇θ (x) ∈ aF

for a.e. x ∈ Γ. This immediately follows from Lebourg’s mean value theorem
(see [20, p. 41]) recalling the properties of the Clarke’s subdifferential and
from the separability theorem.

Certainly, the mixed (discrete and continuous) case can be considered as
well, and all the situations are unified by the hypothesis (1.91).

In the particular case θ ≡ 0 ((1.91) is trivially fulfilled) the function
u+

Γ,θ (x) is nothing else than the minimal time necessary to achieve the closed
set Γ from the point x ∈ Ω by trajectories of the differential inclusion with
the constant convex right-hand side

−aẋ (t) ∈ F 0, (1.94)

while −u−Γ,θ (x) is, contrarily, the minimal time, for which trajectories of

(1.94) arrive at x starting from a point of Γ. Furthermore, if F = B then
the gauge function ρF 0 (·) is the euclidean norm in Rn, and we have

u±Γ,θ (x) = ±adΓ (x)

where dΓ (·) means the distance from a point to the set Γ.

1.7 Generalized Strong Maximum Principle

Now we are ready to deduce the extremal property of the functions u±Γ,θ (·)
announced above.
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Theorem 1.7.1. Under all the standing hypotheses let us assume that a
continuous admissible minimizer in (PF ) is such that

(i) ū (x) = u+
Γ,θ (x) = θ (x) ∀x ∈ Γ;

(ii) ū (x) ≥ u+
Γ,θ (x) ∀x ∈ Ω.

Then ū (x) ≡ u+
Γ,θ (x) on Ω.

Symmetrically, if a continuous admissible minimizer ū (·) satisfies the
conditions

(i)′ ū (x) = u−Γ,θ (x) = θ (x) ∀x ∈ Γ;

(ii)′ ū (x) ≤ u−Γ,θ (x) ∀x ∈ Ω,

then ū (x) ≡ u−Γ,θ (x) on Ω.

Proof. Let us prove the first part of Theorem only since the respective
changements in the symmetric case are obvious.

Given a continuous admissible minimizer ū (·) satisfying conditions (i)
and (ii) we suppose, on the contrary, that there exists x̄ ∈ Ω\Γ with ū (x̄) >
u+

Γ,θ (x̄).
Let us denote by

Γ+ :=
{
x ∈ Ω : ū (x) = u+

Γ,θ (x)
}

and claim that
u+

Γ,θ (x) = inf
y∈Γ+
{ū (y) + aρF 0 (x− y)} (1.95)

for each x ∈ Ω. Indeed, the inequality ”≥” in (1.95) is obvious because
Γ+ ⊃ Γ and ū (y) = θ (y), y ∈ Γ. On the other hand, given x ∈ Ω take an
arbitrary y ∈ Γ+ and due to the compactness of Γ we find y∗ ∈ Γ such that

ū (y) = θ (y∗) + aρF 0 (y − y∗) . (1.96)

Then, by triangle inequality,

ū (y) + aρF 0 (x− y) ≥ θ (y∗) + aρF 0 (x− y∗) ≥
≥ u+

Γ,θ (x) . (1.97)
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Passing to infimum in (1.97) we prove the inequality ”≤” in (1.95) as well.
Since for arbitrary x, y ∈ Γ+ and for y∗ ∈ Γ satisfying (1.96) we have

ū (x)− ū (y) = u+
Γ,θ (x)− u+

Γ,θ (y) ≤
≤ aρF 0 (x− y∗)− aρF 0 (y − y∗) ≤ aρF 0 (x− y) , (1.98)

we can extend the function θ : Γ→ R to the (closed) set Γ+ ⊂ Ω by setting

θ (x) = ū (x) , x ∈ Γ+,

and all the conditions on θ (·) remain valid (see (1.98) and (1.95)). So,
without loss of generality we can assume that the strict inequality

ū (x) > u+
Γ,θ (x) (1.99)

holds for all x ∈ Ω \ Γ 6= ∅.

Notice that the convex hull K := co Γ is the compact set contained in Ω
(due to the convexity of Ω). Let us choose now ε > 0 such that K±εF 0 ⊂ Ω
and denote by

δ := 2εMF 0

(
2ε

∆
;

ε

ε+ ∆
,

∆

ε+ ∆

)
> 0,

where as usual MF 0 is the modulus of rotundity associated to F 0 (see 1.5)
and

∆ := sup
ξ,η∈Ω

ρF 0 (ξ − η) .

Similarly as in Step 1 in the proof of Theorem 1.4.2 we show that

ρF 0 (y1 − x) + ρF 0 (x− y2)− ρF 0 (y1 − y2) ≥ δ (1.100)

whenever y1, y2 ∈ Γ and x ∈ Ω� [(K + εF 0) ∪ (K − εF 0)]. Indeed, we obvi-
ously have

ε ≤ ρ1 := ρF 0 (y1 − x) ≤ ∆ and ε ≤ ρ2 := ρF 0 (x− y2) ≤ ∆,

and, consequently,

λ :=
ρ2

ρ1 + ρ2

∈
[

ε

ε+ ∆
,

∆

ε+ ∆

]
. (1.101)
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Setting ξ1 := y1−x
ρ1

and ξ2 := x−y2
ρ2

we can write

ξ1 − ξ2 =

(
1

ρ1

+
1

ρ2

)(
ρ2

ρ1 + ρ2

y1 +
ρ1

ρ1 + ρ2

y2 − x
)

,

and hence

ρF 0 (ξ1 − ξ2) ≥
(

1

ρ1

+
1

ρ2

)
ε ≥ 2ε

∆
. (1.102)

On the other hand,

ρF 0 (y1 − x) + ρF 0 (x− y2)− ρF 0 (y1 − y2)

= (ρ1 + ρ2)

[
1− ρF 0

(
ρ1

ρ1 + ρ2

ξ1 +
ρ2

ρ1 + ρ2

ξ2

)]
≥

≥ 2ε [1− ρF 0 (ξ1 + λ (ξ2 − ξ1))] . (1.103)

Combining (1.103), (1.102), (1.101) and the definition of the rotundity mod-
ulus we arrive at (1.100).

Let us fix x̄ ∈ Ω�Γ and ȳ ∈ Γ such that

u+
Γ,θ (x̄) = θ (ȳ) + aρF 0 (x̄− ȳ) .

Then by Lema 1.5.1 the point ȳ is also a minimizer on Γ of the function
y 7→ θ (y) + aρF 0 (xλ − y) , where xλ := λx̄+ (1− λ) ȳ, λ ∈ [0, 1], i.e.,

u+
Γ,θ (xλ) = θ (ȳ) + aρF 0 (xλ − ȳ) . (1.104)

Define now the Lipschitz continuous function

v̄ (x) := max {ū (x) ,min {θ (ȳ) + aρF 0 (x− ȳ) ,

θ (ȳ) + a (δ − ρF 0 (ȳ − x))}} (1.105)

and claim that v̄ (·) minimizes the functional in (PF ) on the set ū (·) +
W 1,1

0 (Ω). In order to prove this we observe first that for each x ∈ Ω,
x /∈ K ± εF 0, and for each y ∈ Γ by the slope condition (1.91) and by
(1.100) the inequality

θ (y) + aρF 0 (x− y)− θ (ȳ) + aρF 0 (ȳ − x) ≥
≥ a (ρF 0 (ȳ − x) + ρF 0 (x− y)− ρF 0 (ȳ − y)) ≥ aδ (1.106)
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holds. Passing to infimum in (1.106) for y ∈ Γ and taking into account the
basic assumption (ii) , we have

ū (x) ≥ inf
y∈Γ
{θ (y) + aρF 0 (x− y)}

≥ θ (ȳ) + a (δ − ρF 0 (ȳ − x)) ,

and, consequently, v̄ (x) = ū (x) for all x ∈ Ω \ [(K + εF 0) ∪ (K − εF 0)]. In
particular, v̄ (·) ∈ ū (·) +W 1,1

0 (Ω). Furthermore, setting

Ω′ := {x ∈ Ω : v̄ (x) 6= ū (x)} ,

by the well known property of the support function, we have ∇v̄ (x) ∈ aF
for a.e. x ∈ Ω′, while ∇v̄ (x) = ∇ū (x) for a.e. x ∈ Ω�Ω′. Then∫

Ω

f (ρF (∇v̄ (x))) dx =

∫
Ω�Ω′

f (ρF (∇ū (x))) dx

≤
∫
Ω

f (ρF (∇ū (x))) dx ≤
∫
Ω

f (ρF (∇u (x))) dx

for each u (·) ∈ ū (·) +W 1,1
0 (Ω).

Finally, setting

µ := min

{
ε,

δ

(‖F‖ ‖F 0‖+ 1)2

}
,

we see that the minimizer v̄ (·) satisfies the inequality

v̄ (x) ≥ θ (ȳ) + aρF 0 (x− ȳ) (1.107)

on ȳ + µ (‖F‖ ‖F 0‖+ 1)F 0. Indeed, it follows from (1.3) that

ρF 0 (x− ȳ) + ρF 0 (ȳ − x) ≤ µ
(
‖F‖

∥∥F 0
∥∥+ 1

)2 ≤ δ

whenever ρF 0 (x− ȳ) ≤ µ (‖F‖ ‖F 0‖+ 1), implying that the minimum in
(1.105) is equal to θ (ȳ) + aρF 0 (x− ȳ). Since, obviously, v̄ (ȳ) = θ (ȳ), ap-
plying Corollary 1.2.2 we deduce from (1.107) that

v̄ (x) = θ (ȳ) + aρF 0 (x− ȳ)

51



for all x ∈ ȳ + µF 0 ⊂ K + εF 0 ⊂ Ω. Taking into account (1.105), we have

ū (x) ≤ θ (ȳ) + aρF 0 (x− ȳ) , x ∈ ȳ + µF 0. (1.108)

On the other hand, for some λ0 ∈ (0, 1] the points xλ, 0 ≤ λ ≤ λ0, belong
to ȳ + µF 0. Combining now (1.108) for x = xλ with (1.104) we obtain

ū (xλ) ≤ u+
Γ,θ (xλ)

and hence (see the hypothesis (ii))

ū (xλ) = u+
Γ,θ (xλ) ,

0 ≤ λ ≤ λ0, contradicting (1.99).
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Chapter 2

Lagrangeans linearly depending
on u

In Chapter 1 we arrived at various versions of the variational Strong Maxi-
mum Principle starting from homogeneous elliptic partial differential equa-
tions such as Laplace equation ∆u = 0, which is necessary optimality condi-
tion for the convex symmetric integral∫

Ω

1

2
‖∇u(x)‖2 dx.

Slightly generalizing this problem we are led to the problem with additive
linear term depending on the state variable∫

Ω

(
1

2
‖∇u(x)‖2 + σu(x)

)
dx, (2.1)

where σ 6= 0 is a real constant. The Euler-Lagrange equation for (2.1) is the
simplest Poisson equation

∆u(x) = σ, x ∈ Ω. (2.2)

Similarly as in [16, 37, 38] (see also Chapter 1 of this Thesis) for the case
σ = 0, some properties of solutions to (2.2) regarding the SMP can be ex-
tended to minimizers of more general functional than (2.1), for which the
Euler-Lagrange equation is no longer valid. Certainly, the Strong Maximum
(Minimum) Principle in the traditional sense for these functionals (as well
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as for Poisson equation (2.2) doesn’t hold. Nevertheless, using an a priori
class of minimizers given by A. Cellina [13] one can obtain a comparison
result (see Section 2.2) as well as local estimates of solutions to respective
variational problems, which approximate to validity of the traditional SMP
or of its modifications considered in Chapter 1 as σ → 0.

2.1 Preliminaries

Let us fix σ > 0 and consider two variational problems

min

{∫
Ω

[f(ρF (∇u(x))) + σu(x)] dx : u(·) ∈ u0(·) +W 1,1
0 (Ω)

}
(Pσ)

and

min

{∫
Ω

[f(ρF (∇u(x)))− σu(x)] dx : u(·) ∈ u0(·) +W 1,1
0 (Ω)

}
(P−σ)

Here f : R+ → R+ ∪ {+∞}, f(0) = 0, is a convex lower semicontinuous
function, F ⊂ Rn is a convex closed bounded set with 0 ∈ intF , Ω ⊂ Rn is
an arbitrary open bounded connected region and u0(·) ∈ W 1,1(Ω). These are
our standing assumptions along with the chapter.

In what follows, as earlier, f ∗ stands fot the Legendre-Fenchel transform
(conjugate) of the convex function f , and b > 0 is such that domf ∗ = [0, b]
(or [0, b)). In particular, b can be +∞.

Let us introduce the (index) sets

Γ±Ω := {γ = (x0, k) ∈ Ω× R : Ω ⊂ x0 ± b ·
n

σ
F 0} (2.3)

and the following Lipschitz continuous functions

ω+
γ (x) =

n

σ
f ∗
(σ
n
ρF 0(x− x0)

)
+ k, γ ∈ Γ+

Ω, (2.4)

ω−γ (x) = −n
σ
f ∗
(σ
n
ρF 0(x0 − x)

)
+ k, γ ∈ Γ−Ω, (2.5)

defined on Ω. Further on we will naturally assume Ω ⊂ Rn to be chosen
so small that Γ±Ω 6= ∅. Sometimes it is convenient to consider only the case
when b = +∞ (equivalently, f(·) not affine on some semiline [b,+∞)).

The following result allows us to consider ω±γ (·) as the possible candidates
to comparison functions for the problems (Pσ) and (P−σ).
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Theorem 2.1.1. Let Ω ⊂ Rn be an open bounded connected domain with
sufficiently regular boundary such that the Divergence Theorem holds (see,
e.g., [26]). Then the function ω+

γ (·) defined by (2.4) is the only solution to
(Pσ) with u0(·) = ω+

γ (·). Similarly, the function ω−γ (·) defined by (2.5) is the
only solution to (P−σ) with the same boundary condition, i.e., u0(·) = ω−γ (·).

The statement of Theorem follows immediately from Theorem 1 [13],
taking into account that the conjugate of the function ξ ∈ Rn 7→ f(ρF (ξ))
coincides with f ∗(ρF 0(·)) and that the domain of (f ◦ ρF (·))∗ is the set bF 0

or its interior.
Observe that although the Cellina’s result above holds for general func-

tional (with no symmetry assumption), we believe that such type symmetry
is rigorously needed for results below.

2.2 Comparison theorem

Here we obtain an auxiliary comparison result on minimizers of the varia-
tional problems (P±σ), which will be used further for proving local estimates
on minimizers as well as some local versions of SMP.

Theorem 2.2.1. Given x̄ ∈ Ω let us choose positive numbers α, β with α < β
such that the closure of the annulus A+

α,β(x̄) := {x ∈ Rn : α < ρF 0(x̄−x) < β}
is contained in Ω. Assume that there exist M > 0 and a decreasing absolutely
continuous function R : [α, β] 7→ R such that

M

rn−1
+
σ

n
r ∈ ∂f(|R′(r)|) (2.6)

for a.e. r ∈ [α, β]. If a continuous minimizer ū(·) in (P−σ) satisfies the
inequality

ū(x) ≥ R(ρF 0(x̄− x)) (2.7)

on the boundary ∂A+
α,β(x̄) then the same inequality takes place for all x ∈

A+
α,β(x̄).

Similarly, setting A−α,β(x̄) := {x ∈ Rn : α < ρF 0(x − x̄) < β}, let us

assume that the closure A−α,β(x̄) ⊂ Ω, and there exist a constant M > 0 and
an increasing absolutely continuous function R : [α, β] 7→ R satisfying (2.6)
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for a.e. r ∈ [α, β]. Then for an arbitrary continuous minimizer ū(·) in (Pσ)
validity of the inequality

ū(x) ≤ R(ρF 0(x− x̄)) (2.8)

on the boundary ∂A−α,β(x̄) implies its validity for all x ∈ A−α,β(x̄).

Proof. Let us prove the first part of Theorem. Denoting by

S(x) = R(ρF 0(x̄− x)),

we assume that the (open) set U = {x ∈ A+
α,β(x̄) : u(x) < S(x)} is nonempty.

Define the function ω(·) to be equal to max(ū(x), S(x)) on A+
α,β(x̄) and to

ū(x) elsewhere. Obviously, ω(·) is continuous and equals to S(x) on U . For
x ∈ Ω\U instead ω(x) = ū(x). Now we show that ω(·) is a solution to (P−σ)
with u0(x) = ω(x) = ū(x), x ∈ ∂Ω.

Since ū(·) is a minimizer in (P−σ), we have

0 ≥
∫

Ω

{[f(ρF (∇ū(x)))− σū(x)]− [f(ρF (∇(ω(x))))− σω(x)]} dx =

=

∫
U

[f(ρF (∇ū(x)))− f(ρF (∇S(x)))− σ(ū(x)− S(x))] dx ≥

≥
∫
U

[〈p(x),∇(ū(x)− S(x))〉 − σ(ū(x)− S(x))] dx, (2.9)

where p(x) is a measurable selection of the mapping

x 7→ ∂(f ◦ ρF )(∇S(x)).

We want to construct a selection p(·) such that the last integral in (2.9)
equals zero. To this end we define p(·) according to the differential properties
of S(x). Observe first that by (2.6) and monotonicity of the function R(·)

−R′(r) ∈ ∂f ∗
(
M

rn−1
+
σ

n
r

)
(2.10)

for a.e. r ∈ [α, β]. Taking into account that the gradient ∇ρF 0(x̄− x) exists
almost everywhere, we have

∇S(x) = −R′(ρF 0(x̄− x))∇ρF 0(x̄− x) (2.11)
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for a.e. x ∈ U . Furthermore, the gradient ∇ρF 0(x̄ − x) belongs to ∂F (see
(1.4)) and, consequently,

ρF (∇S(x)) = |R′(ρF 0(x̄− x))| ∈ ∂f ∗
(

M

ρn−1
F 0 (x̄− x)

+
σ

n
ρF 0(x̄− x)

)
or, equivalently,

M

ρn−1
F 0 (x̄− x)

+
σ

n
ρF 0(x̄− x) ∈ ∂f(ρF (∇S(x)))

for a.e. x ∈ U . The subdifferential of the composed function f ◦ρF at ∇S(x)
is equal to

∂f(ρF (∇S(x)))∂ρF (∇S(x)),

and by (1.4) the gradient ∇S(x) is normal to F 0 at x̄−x
ρF0 (x̄−x)

, or, in dual form,

x̄− x
ρF 0(x̄− x)

∈ NF

(
∇S(x)

ρF (∇S(x))

)
∩ ∂F 0 = ∂ρF (∇S(x)).

So we can define the function

p(x) =

(
M

ρn−1
F 0 (x̄− x)

+
σ

n
ρF 0(x̄− x)

)
x̄− x

ρF 0(x̄− x)
=

=
M(x̄− x)

ρnF (x̄− x)
+
σ

n
(x̄− x),

which is a measurable selection of x 7→ ∂(f ◦ ρF )(∇S(x)) on U . Then,∫
U

[〈p(x),∇(ū(x)− S(x))〉 − σ(ū(x)− S(x))] dx =

=

∫
U

[〈σ
n

(x̄− x),∇(ū(x)− S(x))
〉
− σ(ū(x)− S(x))

]
dx+

+

∫
U

〈
M(x̄− x)

ρnF (x̄− x)
,∇(ū(x)− S(x))

〉
dx.
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On one hand, by the Divergence Theorem (applied to the annulus A+
α,β(x̄))∫

U

[〈σ
n

(x̄− x),∇(ū(x)− S(x))
〉
− σ(ū(x)− S(x))

]
dx =

= −σ
n

∫
U

div ([ū(x)− S(x)](x− x̄)) dx =

= −σ
n

∫
A+
α,β(x̄)

div ([ū(x)− ω(x)](x− x̄)) dx =

=
σ

n

∫
∂A+

α,β(x̄)

〈[ū(x)− S(x)](x̄− x),n〉 dx = 0, (2.12)

where n is the outward unit normal to the boundary (recall that ū(x) = ω(x)
outside A+

α,β(x̄)).
On the other hand, applying the polar coordinates r = ‖x − x̄‖ and

ω = (x − x̄)/‖x − x̄‖, and observing that for each ω, ‖ω‖ = 1, the equality
ū(x) = S(x) holds on the boundary of the (open) linear set lω := {r ∈ (α, β) :
(r, ω) ∈ U}, we obtain as earlier (see Section 1.2)∫

U

〈 M(x̄− x)

ρnF 0(x̄− x)
,∇(ū(x)− S(x))〉 dx =

= −M
∫
‖ω‖=1

dω

ρnF 0(−ω)

∫
lω

1

rn
< rω,∇(ū(r, ω)− S(r, ω)) > rn−1 dr = 0.

Hence ∫
U

[〈p(x),∇(ū(x)− S(x))〉 − σ(ū(x)− S(x))] dx = 0, (2.13)

and, recalling (2.9), we have that ω(·) is a solution to (P−σ). It follows from
the same inequalities that∫

U

[f(ρF (∇ū(x)))− f(ρF (∇S(x)))− σ(ū(x)− S(x))] dx = 0. (2.14)

Combining (2.13) and (2.14) we find∫
U

[f(ρF (∇ū(x)))− f(ρF (∇S(x)))− 〈p(x),∇(ū(x)− S(x))〉] dx = 0.
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Taking into account the definition of the subdifferential of a convex function,
the integrand here is nonnegative, and we conclude that

f(ρF (∇ū(x))) = f(ρF (∇S(x))) + 〈p(x),∇(ū(x)− S(x))〉

a.e. on U . Notice that there is at most a countable family of disjoint open
intervals J1, J2, ... ⊂ [α, β] such that the real function f(·) is affine on each
Ji with a slope τi > 0, i = 1, 2, ... . Denoting by

Ei = {x :
M

ρn−1
F 0 (x̄− x)

+
σ

n
ρF 0(x̄− x) = τi},

we have that for all x /∈
∞⋃
i=1

Ei (the set of null measure) ∂f ∗(ρF 0(p(x))) is a

singleton. Thus ∇ū(x) = ∇S(x) for a.e. x ∈ U ,which is a contradiction.

The second part of Theorem can be proved similarly with some obvious
changes. For instance, we define S(x) as the right-hand side of the inequality
(2.8) and ω(x) to be min(ū(x), S(x)) on A−α,β(x̄). Moreover, the respective
signs in (2.9), (2.10), (2.11) and (2.12) will be changed, and the final conclu-
sions remain valid.

2.3 Local estimates of minimizers

In this section based on the comparison theorem from Section 2.2 we deduce
estimates of minimizers in the problems (Pσ) and (P−σ) in neighbourhoods
of points, which are (or not) points of local extremum. First, we prove that
if x̄ ∈ Ω is not a point of local maximum (minimum) of a solution ū(·) to
the problem (Pσ) (respectively, (P−σ)) then the deviation of ū(·) from the
extremal level can be controlled near x̄ by a solution ω±γ to the respective
problem suggested by Theorem 2.1.1.

Theorem 2.3.1. Let Ω ⊂ Rn, the gauge set F ⊂ Rn and the function
f : R+ → R+ ∪ {+∞} satisfy our standing assumptions.
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(i) Given a solution ū(·) to the problem (P−σ) let us assume that a point
x̄ ∈ Ω is such that for some real k and β > 0

ū(x) ≥ k ∀x ∈ x̄− βF 0 ⊂ Ω, (2.15)

and
ū(x̄) > k +

n

σ
f ∗
(σ
n
β
)
. (2.16)

Then for all x ∈ x̄− βF 0 the inequality

ū(x) ≥ k +
n

σ

[
f ∗
(σ
n
β
)
− f ∗

(σ
n
ρF 0(x̄− x)

)]
holds.

(ii) Similarly, if ū(·) is a solution to (Pσ) and a point x̄ ∈ Ω satisfies for
some k and β > 0 the conditions

ū(x) ≤ k ∀x ∈ x̄+ βF 0 ⊂ Ω, (2.17)

and
ū(x̄) < k − n

σ
f ∗
(σ
n
β
)

(2.18)

then
ū(x) ≤ k − n

σ

[
f ∗
(σ
n
β
)
− f ∗

(σ
n
ρF 0(x− x̄)

)]
for all x ∈ x̄+ βF 0 ⊂ Ω.

Proof. (i) By continuity of ū(·) we find α ∈ (0, β) such that

ū(x) > k +
n

σ

[
f ∗
(σ
n
β
)
− f ∗

(σ
n
α
)]

(2.19)

for all x, ρF 0(x̄ − x) ≤ α. It is obvious that the conjugate function f ∗(·) is
uniformly continuous on the segment I := [0, β + η] for some small η > 0.
So, fixed ε > 0 we can choose δ > 0 such that

|f ∗(t)− f ∗(s)| ≤ σε

2n
(2.20)

whenever t, s ∈ I with |t − s| ≤ δ. Combining (2.20) with (2.19) we have
that

ū(x) > k − ε+
n

σ

[
f ∗
(σ
n
β + δ

)
− f ∗

(σ
n
α + δ

)]
(2.21)
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whenever ρF 0(x̄− x) ≤ α.
Since f ∗(·) is absolutely continuous on I, denoting by ϕ(·) its derivative,

which exists almost everywhere, we deduce from (2.21) that

ū(x) > k − ε+

∫ β

α

ϕ
(σ
n
s+ δ

)
ds (2.22)

for all x ∈ Ω with ρF 0(x̄ − x) ≤ α Let us define the absolutely continuous
decreasing function

R(r) := k − ε+

∫ β

r

ϕ

(
σ

n
s+ δ

(α
s

)n−1
)

ds, (2.23)

satisfying obviously the condition (2.6) with M = δαn−1. It follows from
(2.22) and from the monotonicity of ϕ(·) that

ū(x) ≥ R(ρF 0(x̄− x)) (2.24)

for all x with ρF 0(x̄− x) = α. On the other hand, for x with ρF 0(x̄− x) = β
the estimate (2.24) follows directly from the definition (2.23) and from (2.15).
Applying now Theorem 2.2.1 we see that (2.24) holds on the whole annulus
A+
α,β(x̄) = {x : α < ρF 0(x̄− x) < β}.

Taking now an arbitrary x with ρF 0(x̄− x) ≤ β, we successively obtain

ū(x) ≥ k − ε+

∫ β

ρF0 (x̄−x)

ϕ

(
σ

n
s+ δ

(α
s

)n−1
)

ds ≥

≥ k − ε+

∫ β

ρF0 x̄−x)

ϕ

(
σ

n
s+ δ

(
α

β

)n−1
)

ds ≥

≥ k − ε+
n

σ

[
f ∗
(
σ

n
β + δ

(α
s

)n−1
)
− f ∗

(
σ

n
ρF 0(x̄− x) + δ

(
α

β

)n−1
)]

.

Since α < β, recalling (2.20), from the latter inequality we have

ū(x) ≥ k − 2ε+
n

σ

[
f ∗
(σ
n
β
)
− f ∗

(σ
n
ρF 0(x̄− x)

)]
,

and by arbitrarity of ε the assertion of Theorem follows.
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The symmetric assertion (ii) can be proved similarly with some obvious
changes. In this case, e.g., we set

R(r) := k + ε−
∫ β

r

ϕ

(
σ

n
s+

M

sn−1

)
ds,

and use the second part of Theorem 2.2.1.

In fact, in the above theorem we proved that any solution to the problem
(Pσ) (respectively, (P−σ)) admits a lower (respectively, upper) estimate by a
minimizer of the respective functional from the Cellina’s class (see Theorem
2.1.1) near a nonextremum point x̄. For instance, in the case of (Pσ) it is a
function ω+

γ (·) where γ =
(
x̄, k − n

σ
f ∗
(
σ
n
β
))

, k is local maximum, and the
constant β > 0 caracterizes the ”deepness” of nonmaximality of the given
solution at x̄.

Based on these properties we can obtain local estimates of solutions,
on the contrary, near points of (local) extremum, which are in some sense
similar to the Strong Maximum and Strong Minimum principles established
in Chapter 1. However, for the problems (P±σ) this property has a ”cross”
effect, i.e., the (lower) estimate of an arbitrary solution ū(·) to the problem
(P−σ) is obtained by means of a special minimizer ω+

γ (·) of the functional in
(Pσ) and vice versa. Nevertheless, this effect vanishes as σ tends to zero.

In order to prove the following statement we need to require additionally
that the function f(·) is smooth at the origin

∂f(0) = {0}. (2.25)

This is the standard hypothesis used also for proving SMP in Chapter 1.

Theorem 2.3.2. Let ū(·) be a continuous solution to (P−σ) and x0 ∈ Ω be
a point of its local minimum. Namely, assume that there exists δ > 0 such
that

ū(x) ≥ ū(x0) (2.26)

for all x ∈ x0 + δF 0 ⊂ Ω. Then on the (slightly smaller) neighbourhood
x0 + δ

‖F‖‖F 0‖+1
F 0 we have

ū(x) ≤ ω+
γ (x)
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where γ = (x0, ū(x0)).
Similarly, let ū(·) be a continuous solution to (Pσ), x0 ∈ Ω be a point of

its local maximum, and δ > 0 be such that

ū(x) ≤ ū(x0)

whenever x ∈ x0 − δF 0 ⊂ Ω. Then

ū(x) ≥ ω−γ (x)

for all x ∈ x0 − δ
‖F‖‖F 0‖+1

F 0 with the same γ = (x0, ū(x0)).

Proof. Let us prove the first part of theorem. Assume, on the contrary, that
for some x̄ ∈ Ω with ρF 0(x̄− x0) ≤ δ

‖F‖‖F 0‖+1
the strict inequality

ū(x̄) > k +
n

σ
f ∗
(σ
n
ρF 0(x̄− x0)

)
takes place with k := ū(x0). Let us choose ε > 0 so small that

(‖F‖‖F 0‖+ 1)ρF 0(x̄− x0) + ε‖F‖‖F 0‖ < δ (2.27)

and
ū(x̄) > k +

n

σ
f ∗
(σ
n

[ρF 0(x̄− x0) + ε]
)
.

Seting β = ρF 0(x̄− x0) + ε we have

ū(x̄) > k +
n

σ
f ∗
(σ
n
β
)
. (2.28)

We claim now that x̄− βF 0 ⊂ x0 + δF 0. Indeed, given y ∈ x̄− βF 0 by (1.3)
we have

ρF 0(y − x̄) ≤ ‖F‖‖F 0‖ρF 0(x̄− y) ≤ ‖F‖‖F 0‖(ρF 0(x̄− x0) + ε),

and by (2.27)

ρF 0(y − x0) ≤ ρF 0(y − x̄) + ρF 0(x̄− x0) < δ.

In particular, due to the condition (2.26) we have ū(x) ≥ k. Then by Theo-
rem 2.3.1 (see also the condition (2.28))

ū(x) ≥ k +
n

σ

[
f ∗
(σ
n
β
)
− f ∗

(σ
n
ρF 0(x̄− x)

)]
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for all x ∈ x̄−βF 0 . In particular, for x0 (which obviously belongs to x̄−βF 0)
we obtain

k = ū(x0) ≥ k +
n

σ

[
f ∗
(σ
n

(ρF 0(x̄− x0) + ε)
)
− f ∗

(σ
n
ρF 0(x̄− x0)

)]
> k.

The latter (strict) inequality follows from the fact that ∂f(0) = {ξ : f ∗(ξ) =
0} is reduced to the singleton {0} (see (2.25)), and, consequently, the con-
vex function f ∗(·) is strictly increasing on [0,+∞). Obtained contradiction
proves the first part of Theorem, while the second part can be proved simi-
larly.

Concluding this chapter, let us illustrate estimates given by Theorems
2.3.1 and 2.3.2 by a simple example.

Example 4. Let f(ξ) = 1
2
ξ2, ξ > 0. In the case F = B the special minimiz-

ers of the functional ∫
Ω

(
1

2
‖∇u(x)‖2 + σu(x)

)
dx (2.29)

with σ 6= 0 given by Theorem 2.1.1 have the form

ωsgnσγ (x) = k +
1

2

n

σ

(σ
n
‖x− x0‖

)2

= k +
σ

2n
‖x− x0‖2

where γ = (k, x0) ∈ ΓsgnσΩ .

According to Theorems 2.3.1 and 2.3.2 each continuous minimizer of
(2.29) on u0(·) ∈ W 1,1(Ω) (with the same boundary condition) is locally
contained between two functions

k − σ

2n
‖x− x0‖2 and k +

σ

2n
‖x− x0‖2 (2.30)

for various values of x0 and k. If now x∗ is a point of (local) extremum
of the minimizer then the upper and lower estimates (2.30) are centered at
the point x0 = x∗ and both of them converge to a constant as σ → 0. So,
we arrive at the traditional Strong Maximum Principle. The same property
holds of course when the function f(·) is not smooth and (or) some (neither
smooth nor rotund) gauge set in the place of the norm is considered.

64



Chapter 3

Rotationally invariant
lagrangeans with a nonlinear
term depending on u

In this Chapter we are interested in proving SMP for functionals which are
rotationally invariant with respect to the gradient and contain a nonlinear
additive term depending on the state variable. Namely, we consider the
minimization problem

min

{∫
Ω

[f(‖∇u(x)‖) + g(u(x))] dx : u(·) ∈ u0(·) +W 1,1
0 (Ω)

}
(Pg)

where f, g : R+ → R+ are convex with f(0) = g(0) = 0.
Here we use the same notions of Convex Analysis as in the previous

chapters. Let us notice only that if a convex function f : R 7→ R ∪ {+∞} is
differentiable at some point t then, in particular, the Fenchel identity

f(t) + f ∗(s) = ts ∀s ∈ ∂f(t)

can be written as
f ∗(f ′(t)) = tf ′(t)− f(t). (3.1)

If the functions f(·) and g(·) in (Pg) are sufficiently regular then we can
associate to (Pg) the Euler-Lagrange equation

div∇(f ◦ ‖ · ‖)(∇u(x)) = g′(u(x)),
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which is a particular case of elliptic partial differential equations studied by
P. Pucci, J. Serrin and H. Zou (see [52, 54, 53]). In our terms the authors
assumed that

• f : R+ → R+, f(0) = 0, admits a strictly increasing continuous deriva-
tive on (0,+∞) such that limt→0+ f

′(t) = 0;

• g : R+ → R+ has non-decreasing continuous derivative g′(t), g′(0) = 0,
on some interval [0, δ), δ > 0.

Under these standing hypotheses they gave the necessary and sufficient con-
ditions for validity of the SMP in the following form:

• either g(s) = 0 on [0, δ) or

• g(s) > 0 on (0, δ], and the (Riemann) improper integral∫ δ

0

ds

(f ∗ ◦ f ′)−1(g(s))
(3.2)

diverges.

To obtain their results the authors used the comparison technique, where
the (auxiliary) comparison function, being itself a solution of the partial dif-
ferential equation, is constructed as a fixed point of some nonlinear compact
operator in the space of continuous functions.

We do not suppose the function g(·) to be continuously differentiable that
does not allow us to refer directly to the results obtained in the context of
Partial Differential Equations. However, we try to adapt the technique by
P. Pucci and J. Serrin to the case of the multivalued subdifferential. In par-
ticular, we are lead to consider a set-valued upper semicontinuous operator
in the functional space and to prove a parametrized version of the Kakutani
theorem. It turns out that a fixed point of the so constructed multifunction
satisfies all the properties announced in the works by P. Pucci and J. Ser-
rin and can be used as a comparison function in the variational technique
developed by A. Cellina for the functionals depending only on the gradient
(see Chapter 1). Thus, in the last section of this chapter we conclude the
proof of the variational SMP for the problem (Pg). It is interesting to ob-
serve that despite of the essentially multivalued character of the proof (that,
in our opinion, can not be avoided), the final sufficient condition forvalidity
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of the SMP is obtained, exactly, in the form above (including divergence of
the integral (3.2)) by exploiting the fact that the convex function g(·) admits
derivative at almost each point.

3.1 Construction of the auxiliary operator

Similarly as in the works by P. Pucci and J. Serrin ([53, 54]) we search a
comparison function ω : C([0, β − α],R) 7→ R such as

ω(t) = m−
∫ β−α

t

(f ′)−1

(
1

(β − s)n−1
×

×
[
λ−

∫ β−α

s

(β − τ)n−1p(τ) dτ

])
ds, (3.3)

where p(·) is a measurable selection of t 7→ ∂g(ω(t)) and λ > 0 is such that
ω(0) = 0. In order to prove the existence of such a function we make some
constructions as follows.

Let us denote by F the class of all strictly convex functions f : R+ → R+,
f(0) = 0, admitting continuous derivative f ′(·) on (0,+∞) with limt→0+ f

′(t) =
0, and by G the family of functions g : R+ → R+, g(0) = 0, which are convex
on some interval [0, δ), δ > 0, such that ∂g(0) = {0}.

For our convenience we extend the functions f ′(·) and g(·) to the whole
real line by setting f ′(s) = −f ′(−s) and g(s) = 0 for s < 0. Also choosing an
arbitrary m ∈ (0, δ) (the exact sense of this constant will be clarified later)
we redefine g(z) for z ≥ m by affine way.

Choose also α, β with 0 < α < β and set p̄ := sup{z : z ∈ ∂g(u), u ∈
[0,m]} and

λ̄ := βn−1

[
f ′
(

σm

β − α

)
+ p̄(β − α)

]
. (3.4)

Given ω(·) ∈ C([0, β − α],R) and σ ∈ [0, 1] let us consider the multifunction
Pω,σ : [0, λ̄]→ R defined by

Pω,σ(λ) = σm−
∫ β−α

0

(f ′)−1((β − s)1−n[λ−

−σ
∫ β−α

s

(β − τ)n−1∂g(ω(τ)) dτ ]) ds. (3.5)
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We claim that Pω,σ(·) is upper semicontinuous. Indeed, for each λ ∈ [0, λ̄]
and u ∈ Pω,σ(λ) we have

u = σm−
∫ β−α

0

(f ′)−1((β − s)1−n[λ−

−σ
∫ β−α

s

(β − τ)n−1p(τ) dτ ]) ds (3.6)

for some measurable selection p(·) of t 7→ ∂g(ω(t)) on [0, β − α]. By (3.4)
and monotonicity of the derivative f ′(·), on one hand, the number (3.6) is
not smaller than

−
∫ β−α

0

(f ′)−1

(
βn−1

(β − s)n−1

[
f ′
(

m

β − α

)
+ p̄(β − α)

])
ds ≥

≥ −
∫ β−α

0

(f ′)−1

((
β

α

)n−1 [
f ′
(

m

β − α

)
+ p̄(β − α)

])
ds =

= −(β − α)(f ′)−1

((
β

α

)n−1 [
f ′
(

m

β − α

)
+ p̄(β − α)

])
,

while, on the other hand,

u ≤ σm−
∫ β−α

0

(f ′)−1

(
−
(
β

α

)n−1

p̄(β − α)

)
ds =

= σm+ (β − α)(f ′)−1

((
β

α

)n−1

p̄(β − α)

)
.

Therefore the values of Pω,σ(·) are contained in [C1, C2] for some real C1, C2,
and we need to prove only that Pω,σ(·) has closed graph. Consider a sequence
of elements (λk, vk) ∈ graphPω,σ that converges to some (λ, v) ∈ [0, λ̄] ×
[C1, C2]. We can represent

vk = σm−
∫ β−α

0

(f ′)−1

(
1

(β − α)n−1
×

×
[
λk − σ

∫ β−α

t

(β − τ)n−1pk(τ) dτ

])
ds

for some measurable selection pk(·) of t 7→ ∂g(ω(t)), k = 1, 2, .... It follows
from the upper semicontinuity of the latter multifunction that the sequence
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(pk(·))k is bounded and by the Dunford - Pettis theorem we may assume
without loss of generality that it converges weakly to some p(t) ∈ ∂g(ω(t))
(the subdifferential admits convex values). Then for each t ∈ [0, β − α] the
integrals ∫ β−α

t

(β − τ)n−1pk(τ) dτ

converge to ∫ β−α

t

(β − τ)n−1p(τ) dτ,

and using continuity of the functions (f ′)−1(·), Lebesgue dominated conver-
gence theorem and unicity of the limit we conclude that

v = σm−
∫ β−α

0

(f ′)−1

(
1

(β − α)n−1

[
λ− σ

∫ β−α

t

(β − τ)n−1p(τ) dτ

])
ds,

i.e., (λ, v) ∈ graphPω,σ. Hence Pω,σ(·) is upper semicontinuous.
Now we prove existence of c ∈ [0, λ̄] such that 0 ∈ Pω,σ(c). Let us start

by observing that Pω,σ(0) ⊂ [0,+∞) and Pω,σ(λ̄) ⊂ (−∞, 0]. Indeed, let
z1 ∈ Pω,σ(0). This means that for some measurable selection p1(t) ∈ ∂g(ω(t))
accordingly to our convention

z1 = σm −
∫ β−α

0

(f ′)−1

(
−σ

(β − s)n−1
×

×
∫ β−α

s

(β − τ)n−1p1(τ) dτ

)
ds ≥ σm ≥ 0,

Similarly, if z2 ∈ P (λ̄) then there exists a measurable selection p2(t) ∈
∂g(ω(t)) with

z2 = σm−
∫ β−α

0

(f ′)−1((β − s)1−n)[βn−1f ′(σm/(β − α))+

+p̄βn−1(β − α)− σ
∫ β−α

s

(β − τ)n−1p2(τ) dτ ]) ds ≤

≤ σm−
∫ β−α

0

(f ′)−1

(
f ′
(

σm

β − α

))
ds = 0.
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Let us choose a sequence of continuous approximate selections (fk)k of
the mapping λ 7→ Pω,σ(λ), i.e., such that

graph fk ⊂ graphPω,σ +
1

k
B̄, (3.7)

k = 1, 2, ... (see [4]). These selections, clearly can be chosen passing through
some fixed points of graphPω,σ, say fk(0) = u0 ≥ 0 and fk(λ̄) = uλ̄ ≤
0. By Bolzano theorem there exists a sequence (ck)k in (0, λ̄) such that
fk(ck) = 0. Without loss of generality we assume that ck converges to some
c ∈ [0, λ̄]. Therefore, by (3.7) there exist sequences (λk)k ⊂ [0, λ̄] and (uk)k,
uk ∈ Pω,σ(λk) such that |uk|+ |ck − λk| → 0, or, in other words, λk → c and
uk → 0 as k →∞. Consequently, 0 ∈ Pω,σ(c) as required.

Let us consider now the set of all zeros

Λ(ω, σ) := {c ∈ [0, λ̄] : 0 ∈ Pω,σ(c)}

and show that the mapping (ω, σ) 7→ Λ(ω, σ) defined on C([0, β−α],R)×[0, 1]
has closed graph. To this end, we choose sequences (ωk(·))k ⊂ C([0, β−α],R),
(σk)k ⊂ [0, 1] and (ck)k ⊂ [0, λ̄] such that

σkm =

∫ β−α

0

(f ′)−1

(
1

(β − s)n−1
×

×
[
ck − σk

∫ β−α

s

(β − τ)n−1pk(τ) dτ

])
ds (3.8)

for some measurable selections pk(t) ∈ ∂g(ωk(t)), t ∈ [0, β − α], converging,
respectively, to a function ω(·) ∈ C([0, β − α],R), to σ ∈ [0, 1] and to some
c ∈ [0, λ̄]. Due to the upper semicontinuity of the subdifferential, given
k = 1, 2, .... we choose ik ≥ 1 such that

∂g(ωik(t)) ⊂ ∂g(ω(t)) +
1

k
B̄ (3.9)

for all t ∈ [0, β − α]. Notice that ik does not depend on t by the uniform
convergence of functions. It follows from (3.9) that there exist measurable
selections qik(t) ∈ ∂g(ω(t)) such that pik(t)−qik(t)→ 0 as k → +∞ uniformly
in t ∈ [0, β − α]. Choosing if necessary a subsequence from (qik(·))k we may
suppose that (qik(·))k and, consequently, (pik(·))k converges weakly to some
measurable selection p(t) ∈ ∂g(ω(t)). This implies the weak convergence of
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the integrals
∫ β−α
s

(β− τ)n−1pik(τ) dτ for each s ∈ [0, β−α]. Passing now to
the limit in the equality (3.8) we conclude that c ∈ Λ(ω, σ).

Let us denote by H(ω, σ) the set of continuous mappings

t 7→ σm −
∫ β−α

t

(f ′)−1

(
1

(β − s)n−1
×

×
[
λ− σ

∫ β−α

t

(β − τ)n−1p(τ) dτ

])
ds (3.10)

for all measurable selections p(t) ∈ ∂g(ω(t)) and all λ ∈ Λ(ω, σ). In the next
section we prove existence of a function satisfying (3.3) through fixed points
of the one-parametric family of the multivalued mappings ω → H(ω, σ).

3.2 Existence of a fixed point

We preface the proof of existence theorem with several lemmas.

Lemma 3.2.1. The multivalued mapping

H : C([0, β − α],R)× [0, 1]→ C([0, β − α],R)

defined above (see (3.10)) has closed graph.

Proof. Let (ωk)k ⊂ C([0, β−α],R), (σk)k ⊂ [0, 1] and (vk)k ⊂ C([0, β−α],R),
vk(·) ∈ H(ωk, σk), k = 1, 2, ..., be sequences converging, respectively, to ω(·),
to σ ∈ [0, 1] and to v(·). Representing each function vk(·) as

vk(t) = σm −
∫ β−α

t

(f ′)−1

(
1

(β − s)n−1
×

×
[
λk − σk

∫ β−α

t

(β − τ)n−1pk(τ) dτ

])
ds (3.11)

for some λk ∈ Λ(ωk, σk) and some measurable selection pk(t) ∈ ∂g(ωk(t)),
t ∈ [0, β−α], we assume without loss of generality that λk → λ ∈ Λ(ω, σ) (see
Section 3.1) and that the sequence (pk)k converges weakly to a measurable
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function p(t) ∈ ∂g(ω(t)), t ∈ [0, β − α]. Passing now to the (pointwise) limit
in (3.11), we conclude that

v(t) = σm−
∫ β−α

t

(f ′)−1

(
1

(β − s)n−1

[
λ− σ

∫ β−α

t

(β − τ)n−1p(τ) dτ

])
ds,

t ∈ [0, β − α]. Thus, (ω(·), σ, v(·)) belongs to graphH, and the statement is
proved.

Lemma 3.2.2. Given C > 0 there exists a compact set KC ⊂ C([0, β−α],R)
such that H(ω, σ) ⊂ KC for all ω(·) ∈ C([0, β − α],R) with ‖w(t)‖ ≤ C,
t ∈ [0, β − α], and for all σ ∈ [0, 1].

Proof. Since the subdifferential ∂g(·) is bounded on the ball CB̄, the set of

functions t 7→
∫ β−α
t

(β − τ)n−1p(τ) dτ for all p(t) ∈ ∂g(ω(t)), ‖ω(t)‖ ≤ C,
t ∈ [0, β − α], is relatively compact in C([0, β − α],R). Furthermore, since
the function (f ′)−1 is continuous, the expression under the first integral in
(3.10) is contained in some ball RCB̄. Therefore, H(ω, σ) ⊂ KC for all
ω(·) ∈ C([0, β − α],R) with ‖ω(t)‖ ≤ C, where

KC := {x(·) ∈ C1([0, β − α],R) : ‖ẋ(t)‖ ≤ RC ∀t ∈ [0, β − α]},

is relatively compact in C([0, β − α],R) by Ascoli-Arzelà theorem.

Lemma 3.2.3. The set

A := {(ω, σ) ∈ C([0, β − α],R)× [0, 1] : ω ∈ H(ω, σ)}.

is nonempty and bounded.

Proof. Nonemptiness of A is obvious ((0, 0) ∈ A ). In order to show the
boundedness let us represent each ω(·) with ω ∈ H(ω, σ) in the form

ω(t) = σm −
∫ β−α

t

(f ′)−1

(
1

(β − s)n−1
×

×
[
λ− σ

∫ β−α

s

(β − τ)n−1p(τ) dτ

])
ds, (3.12)

with some λ ∈ Λ(ω, σ) ⊂ [0, λ̄], and some measurable selection p(t) ∈
∂g(ω(t)). Since the subdifferential ∂g(z) is bounded on [0,m] and single-
valued for z ≥ m, we immediately obtain boundedness of the right-hand side
of (3.12).
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Now we are ready to prove a fixed point theorem. For this we adopt the
Leray-Schauder theorem (see, e.g., [36]) to multivalued operators by using
one of the versions of Kakutani theorem, proved by Bohnenblust and Karlin
(see, e.g., [5]).

Theorem 3.2.1. The multivalued mapping ω 7→ H(ω, 1) has a fixed point
ω(·) such that ω(0) = 0.

Proof. In accordance with Lemma 3.2.3, there exists M > 0 such that ‖ω‖ ≤
M whenever (ω, σ) ∈ A, σ ∈ [0, 1]. Consider the linear space

B = {ω ∈ C([0, β − α],R) : ω(0) = 0}

and given ε > 0 define the multivalued operator Fε : B 7→ B,

Fε(ω) =


H
(
Mω
M−ε , 1

)
∩ B if ‖ω‖ ≤M − ε,

H
(
Mω
‖ω‖ ,

M−‖ω‖
ε

)
∩ B if M − ε < ‖ω‖ < M,

{0} if ‖ω‖ ≥M.

Due to upper semicontinuity of (ω, σ) 7→ H(ω, σ), by the construction it
follows that the set-valued mapping Fε : B 7→ B is upper semicontinuous as
well. Moreover, it admits nonempty values due to the definition of Λ(ω, σ).

The values of Fε(·) are, obviously, closed and by Lemma 3.2.2 contained
in the compact set KM . Then, applying Bohnenblust-Karlin theorem (see
[5]) we find a fixed point ωε(·) ∈ B, ωε(·) ∈ Fε(ωε).

Setting ε = 1
k
, k = 1, 2, ..., and denoting by

σk =


1 if ‖ω 1

k
‖ ≤M − 1

k
,

k(M − ‖ω 1
m
‖) if M − ε < ‖ω 1

k
‖ < M,

0 if ‖ω 1
k
‖ ≥M,

we observe first that
ω 1
k
∈ H(ω 1

k
, σk) (3.13)

for each k = 1, 2, ..., and, consequently, (ω 1
k
, σk) ∈ A. Since ω 1

k
(·) ∈ KM

and σk ∈ [0, 1], without loss of generality we can assume that the sequence
(ω 1

k
)k converges uniformly to some ω(·) ∈ B, ω(0) = 0, and σk → σ ∈ [0, 1].

Passing to the limit in (3.13) as k →∞, by closedness of graphH we obtain
ω ∈ H(ω, σ).
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Let us show finally that σ = 1. Assuming σ < 1, we have σk < 1 for all
k ≥ 1 large enough and consequently ‖ω 1

k
‖ > M − 1

k
. Passing to the limit we

obtain ‖ω‖ ≥M , contradicting the choice of M > 0. Theorem is proved.

Thus, there exist λ ∈ Λ(ω, 1) ⊂ [0, λ̄] and a measurable selection p(·) of
the mapping t 7→ ∂g(ω(t)) on [0, β − α], such that

ω(t) = m −
∫ β−α

t

(f ′)−1

(
1

(β − s)n−1
×

×
[
λ−

∫ β−α

s

(β − τ)n−1p(τ) dτ

])
ds

and ω(0) = 0.

3.3 Properties of the comparison function

In the previous section we proved existence of a function ω(·) ∈ C([0, β −
α],R) such that for some measurable selection p(t) ∈ ∂g(ω(t)) the equality
(3.3) holds. Fixed such a function we study now some of its properties.

Lemma 3.3.1. The function ω(·) is continuously differentiable on [0, β−α]
and

(a) ω(t) ≥ 0 ∀t ∈ [0, β − α];

(b) ω′(t) ≥ 0 ∀t ∈ [0, β − α];

(c) there exists t̄ ∈ [0, β − α) such that ω(t) ≡ 0 on [0, t̄] and ω(t) > 0,
ω′(t) > 0 on (t̄, β − α].

Proof. The continuous differentiability of ω(·) follows from (3.3) and conti-
nuity of (f ′)−1 ((f ′)−1 is continuous since f ′ is continuous and strictly in-
creasing).

If the statement (a) is not true then, taking into account that ω(0) = 0
and ω(β−α) = m > 0, one can choose two different points t0, t1 ∈ [0, β−α),
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t0 < t1, such that ω(t0) = ω(t1) = 0 and ω(t) < 0 for t ∈ (t0, t1). It follows
from (3.3) that

[(β − t)n−1f ′(ω′(t))]′ = (β − t)n−1p(t) (3.14)

for all t ∈ [0, β−α]. Multiplying both sides of (3.14) by ω(t) and integrating
by parts on [t0, t1] yields∫ t1

t0

(β − t)n−1f ′(ω′(t))ω′(t) dt = −
∫ t1

t0

(β − t)n−1p(t)ω(t) dt.

Since p(t) ∈ ∂g(ω(t)), ω(t) < 0 for t ∈ [t0, t1], and by the convention g(s) = 0
for s ≤ 0, we have p(t) = 0 for all t ∈ [t0, t1]. Hence,∫ t1

t0

(β − t)n−1f ′(ω′(t))ω′(t) dt = 0. (3.15)

Recall that xf ′(x) > 0 for all x 6= 0. Then the equality (3.15) means that
ω′(t) ≡ 0 on [t0, t1], and, hence, ω(t) ≡ 0 because ω(t0) = ω(t1) = 0, which
is a contradiction.

In order to prove items (b) and (c), let us define the set

J = {t ∈ (0, β − α) : ω′(t) > 0},

which is nonempty (because ω(0) = 0 and ω(β − α) = m > 0), and open by
continuity of the derivative ω′(·).

Set t̄ = infJ ∈ [0, β − α). Then ω(t) =
∫ t

0̄
ω′(s) ds ≤ 0 for each t ∈ [0, t̄].

Consequently, by (a) we conclude that ω ≡ 0 on [0, t̄]. Furthermore, for each
t ∈ (t̄, β−α] there exists t̂, t̄ < t̂ < t such that t̂ ∈ J . Then, by monotonicity
of the function s 7→ (f ′)−1(s) we have

ω′(t) = (f ′)−1

(
1

(β − t)n−1

[
λ−

∫ β−α

t

(β − τ)n−1p(τ) dτ

])
≥

≥ (f ′)−1

(
1

(β − t̂)n−1

[
λ−

∫ β−α

t̂

(β − τ)n−1p(τ) dτ

])
= ω′(t̂) > 0.

Thus, ω′(t) > 0 and

ω(t) =

∫ t

t̄

ω′(s) ds > 0

for all t ∈ (t̄, β − α].
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The important step in proving the validity of SMP consists in the estab-
lishment of a connection between properties of the function ω(·) and diver-
gence of the improper integral (3.2). Namely, through the following estimates
we prove that this divergence implies that ω′(0) > 0. In other words, in terms
of the previous lemma t̂ = 0.

Lemma 3.3.2. Assuming that ω′(0) = 0, the inequality

f ′(ω′(t)) ≤ p(t)

(β − t)n−1

(
βn

n
− (β − t)n

n

)
(3.16)

holds for t ∈ [0, β − α].

Proof. By integrating the equality (3.14) (which is equivalent to the repre-
sentation of ω(·), see (3.3)) on a segment [τ, t], 0 ≤ τ ≤ t ≤ β − α, we
have

(β − t)n−1f ′(ω′(t))− (β − τ)n−1f ′(ω′(τ)) =

∫ t

τ

(β − s)n−1p(s) ds.

Letting τ → 0+, due to monotonicity of the function ω(·) and of the subd-
ifferential ∂g(·), taking into account that f ′(·) and ω′(·) are continuous and
ω′(0) = 0, we obtain that

(β − t)n−1f ′(ω′(t)) ≤ p(t)

∫ t

0

(β − s)n−1 ds,

and the estimate (3.16) follows.

In the lemma above we proved an estimate on f ′ along with ω′(·). Now
we treat the same property for the composed function f ∗ ◦ f ′.

Lemma 3.3.3. Assume that ω(·) is such as in Lemma 3.3.2 . Then,

f ∗(f ′(ω′(t))) ≤ L(t)

∫ t

0

p(s)ω′(s) ds

for all t ∈ [0, β − α] where

L(t) := 1 +
n− 1

n

((
β

β − t

)n
− 1

)
. (3.17)
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Proof. By (3.1) we find

f ∗(f ′(ω′(t))) = ω′(t)f ′(ω′(t))− f(ω′(t)) =

= ω′(t)f ′(ω′(t))−
∫ ω′(t)

0

f ′(s) ds, (3.18)

t ∈ [0, β − α]. Integrating (3.18) by parts, we obtain that

f ∗(f ′(ω′(t))) =

∫ ω′(t)

0

s df ′(s). (3.19)

Since f ′(·) is strictly increasing, we can make the change of variables y = f ′(s)
in the Stieltjes integral (3.19) and arrive at the formula

f ∗(f ′(ω′(t))) =

∫ f ′(ω′(t))

0

(f ′)−1(y) dy. (3.20)

It follows from (3.20) that the function f ∗ ◦ (f ′ ◦ ω′) is almost everywhere
differentiable on [0, β − α], and

[f ∗(f ′(ω′(t)))]′ = ω′(t)[f ′(ω′(t))]′ (3.21)

for a.e. t ∈ [0, β − α]. Derivating in the left-hand side we can rewrite the
equality (3.14) in the form

(f ′(ω′(t))′ =
n− 1

β − t
f ′(ω′(t)) + p(t).

Then, substituting to (3.21) and integrating on the segment [0, t] we have

f ∗(f ′(ω′(t))) =

∫ t

0

n− 1

β − s
f ′(ω′(s))ω′(s) ds+

∫ t

0

p(s)ω′(s) ds.

Hence, applying the estimate (3.16), we obtain

f ∗(f ′(ω′(t))) ≤
∫ t

0

(
n− 1

β − s
· p(s)

(β − s)n−1
×

×
(
βn

n
− (β − s)n

n

)
ω′(s) + p(s)ω′(s)

)
ds =

=

∫ t

0

(
1 +

n− 1

(β − s)n

(
βn

n
− (β − s)n

n

))
p(s)ω′(s) ds ≤

≤ L(t)

∫ t

0

p(s)ω′(s) ds,

and Lemma is proved.
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We are ready now to establish the main property of the function ω(·),
which will be used in the sequel.

Theorem 3.3.1. Assume that g ∈ G is strictly increasing. If ω′(0) = 0 then
for each δ > 0 the integral ∫ δ

0

ds

(f ∗ ◦ f ′)−1(g(s))

converges.

Proof. By Lemma 3.3.1 there exists t̄ ∈ [0, β − α) such that ω(t) = 0 for
t ∈ [0, t̄] while ω(t) > 0 in (t̄, β − α). By the monotonicity of f ′ and f ∗ the
limit (finite or infinite)

D := limt→+∞f
∗(f ′(t))

exists. Observe that the derivative f ′(·) can be upper bounded by a constant
µ ∈ domf ∗, and the latter domain not necessarily coincides with R. Due to
this fact the limit D can be finite as well. Let us fix now δ > 0 and t1 and
t2, 0 < t̄ < t1 < t2 < β − α such that

ω(t1)L(t2) < δ

and ∫ ω(t1)L(t2)

0

p(ω−1(y)) dy < D,

where p(·) is the measurable selection of ∂g(ω(·)) associated to ω(·), and L(·)
is defined by (3.17).

By Lemma 3.3.3,

f ∗(f ′(ω′(t))) ≤ L(t)

∫ t

0

p(s)ω′(s) ds ≤

≤ L(t2)

∫ t

t̄

p(s)ω′(s) ds (3.22)

for all t ∈ [t̄, t2] (notice that the function L(·) is nondecreasing). Taking into
account the strict monotonicity of the function ω(·) on [t̄, t2] we can apply
to the integral in (3.22) the change of variables y = L(t2)ω(s) and obtain∫ t

t̄

p(s)ω′(s) ds =
1

L(t2)

∫ L(t2)ω(t)

0

p

(
ω−1

(
y

L(t2)

))
dy. (3.23)
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Since p(·) and ω−1(·) are nondecreasing and L(t2) ≥ 1, we have from (3.23)∫ t

t̄

p(s)ω′(s) ds ≤ 1

L(t2)

∫ L(t2)ω(t)

0

p(ω−1(y)) dy,

which together with (3.22) gives

f ∗(f ′(ω′(t))) ≤
∫ L(t2)ω(t)

0

p(ω−1(y)) dy. (3.24)

Notice that y 7→ p(ω−1(y)) is a measurable selection of y 7→ ∂g(y). Being
the function g(·) absolutely continuous it admits a finite derivative g′(·) at
almost each point. Therefore, p(ω−1(y)) = g′(y) for almost every y > 0.
Hence, from (3.24) by monotonicity we find

ω′(t) ≤ (f ∗ ◦ f ′)−1(g(L(t2)ω(t))). (3.25)

Finally, returning to the old variables through the substitution y = L(t2)ω(t)
and using the inequality (3.25) we conclude∫ ω(t)L(t2

0

dy

(f ∗ ◦ f ′)−1(g(y))
=

= L(t2)

∫ t1

t̄

ω′(s)ds

(f ∗ ◦ f ′)−1(g(L(t2)ω(s)))
≤

≤ L(t2)(t1 − t̄) < +∞,

and Theorem is proved.

3.4 Proof of the Strong Maximum Principle

Our first task in this section is to associate to the function ω(·) defined in
the previous sections a continuous minimizer in the problem (Pg) for some
special domain. Let f ∈ F and g ∈ G. Given x0 ∈ Rn and β > α > 0, let us
define the open annulus

Aα,β(x0) := {x ∈ Rn : α < ‖x− x0‖ < β}. (3.26)
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Theorem 3.4.1. If Ω = Aα,β(x0) and ω(·) ∈ C([0, β − α],R) satisfies the
equality (3.3) for some (fixed) measurable p(t) ∈ [0, β − α] then the function
V : Ω→ R, V (x) = ω(β−‖x−x0‖) is a solution to (Pg) with u0(x) = V (x).

Proof. Denoting by q(x) := p(β − ‖x − x0‖) and taking arbitrary u(·) ∈
V (·) +W 1,1

0 (Ω), we sucessively obtain∫
Ω

(f(‖∇u(x)‖) + g(u(x))− [f(‖∇V (x)‖) + g(V (x))]) dx ≥

≥
∫

Ω

[〈∇(f ◦ ‖ · ‖)(∇V (x)),∇u(x)−∇V (x)〉+

+ q(x)(u(x)− V (x))] dx =

∫
Ω

[f ′(‖∇V (x)‖)〈−(x− x0)/‖x− x0‖,

∇u(x)−∇V (x)〉+ q(x)(u(x)− V (x))] dx. (3.27)

Here we used the definition of the subdifferential ∂g(·) and convexity of the
function f .

Let us recall the definition of ω(·) (see (3.3)), which can be written in the
form

f ′(ω′(t)) =
1

(β − t)n−1

[
λ−

∫ β−α

t

(β − τ)n−1p(τ) dτ

]
, (3.28)

or

f ′(−v′(r)) =
1

rn−1

[
λ+

∫ α

r

sn−1p(β − s) ds

]
, (3.29)

where v(r) := ω(β − r), α ≤ r ≤ β. Pass now to the polar coordinates r =
‖x− x0‖ and θ = x−x0

‖x−x0‖ in (3.27), taking into account that ∇V (x) = v′(r)θ

and ‖∇V (x)‖ = −v′(r). So, we can represent the last integral in (3.27) as∫
‖θ‖=1

dθ

(∫ β

α

[
−f ′(−v′(r)) d

dr
(u(θ, r)− v(r))

]
rn−1 dr +

+

∫ β

α

[p(β − r)(u(θ, r)− v(r))] rn−1 dr

)
. (3.30)

Further, substituting the value of f ′(−v′(r)) from (3.29) and integrating by
parts the first integral in (3.30) with respect to the variable r ∈ [α, β], we
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reduce (3.30) to ∫
‖θ‖=1

[
−
∫ β

α

((u(r, θ)− v(r))rn−1p(β − r) dr+

+

∫ β

α

((u(r, θ)− v(r))rn−1p(β − r) dr

]
dθ = 0. (3.31)

We used here the fact that the functions u(·) and v(·) admit the same values
on the boundary of Ω. Combining (3.31) and (3.27) we conclude∫

Ω

[f(‖∇V (x)‖) + g(V (x))] dx ≤
∫

Ω

[f(‖∇u(x)‖) + g(u(x))] dx,

and Theorem is proved.

We know from the results of the previous section that ω(t) > 0 on (0, β−α]
and ω′(t) > 0 on [0, β − α] under the assumption (3.2) . In order to prove
the Srong Maximum Principle we need the following comparison result.

Theorem 3.4.2. Let Ω ⊂ Rn be an open bounded connected region, x0 ∈ Ω
and α, β, 0 < α < β, be such that Aα,β(x0) ⊂ Ω, and ω(·) be a continuous
function defined by (3.3). Set v(r) := ω(β − r), r ∈ [α, β], and suppose that
u(·) is a continuous solution of (Pg) with

u(x) ≥ v(‖x− x0‖) ∀x ∈ ∂Aα,β(x0).

Then the same inequality holds for all x ∈ Aα,β(x0).

Proof. Let us denote V (x) = v(‖x− x0‖) and assume, on contrary, that the
(open) set

E− = {x ∈ Aα,β(x0) : u(x) < V (x)}

is non empty. Define the function η−(x) equal to

min{u− V, 0} =

{
u(x)− V (x) if x ∈ E−,
0 if x ∈ Aα,β(x0) \ E−,

and to zero on Ω \ Aα,β(x0). Clearly, η−(·) ∈ W 1,1
0 (Ω) is continuous,

(u− η−)(x) =

{
V (x) if x ∈ E−,
u(x) if x ∈ Ω \ E−,

(3.32)
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and (see [41])

∇(u− η−)(x) =

{
∇V (x) for a.e. x ∈ E−,
∇u(x) for a.e. x ∈ Ω \ E−.

(3.33)

Since u(·) is a solution of (Pg), it follows from (3.32) and (3.33) that

0 ≥
∫

Ω

(f(‖∇u(x)‖) + g(u(x))−

− [f(‖∇(u− η−)(x)‖) + g((u− η−)(x))]) dx =

=

∫
E−

[f(‖∇u(x)‖)− f(‖∇V (x)‖) + g(u(x))− g(V (x))] dx ≥

≥
∫
E−

[〈∇(f ◦ ‖ · ‖)(∇V (x)),∇u(x)−∇V (x)〉+ q(x)(u(x)− V (x))] dx =

=

∫
E−

[f ′(‖∇V (x)‖)〈−(x− x0)/‖x− x0‖,∇u(x)−∇V (x)〉+

+ q(x)(u(x)− V (x))] dx, (3.34)

where q(x) := p(β − ‖x− x0‖), and p(t) as usual is the measurable selection
of t 7→ ∂g(ω(t)), associated to ω(·). Introducing the polar coordinates r =
‖x−x0‖ and θ = x−x0

‖x−x0‖ similarly as in the proof of Theorem 3.4.1 we reduce

the last integral in (3.34) to∫
‖θ‖=1

(∫
lθ

[
f ′(−v′(r)) d

dr
(u(θ, r)− v(r))

]
rn−1 dr+

+

∫
lθ

p(β − r)(u(θ, r)− v(r))rn−1 dr

)
dθ, (3.35)

where lθ := {r ∈ (α, β) : (r, θ) ∈ E−}.
Recalling (3.29), integrating (3.35) by parts and taking into account that

the functions u(θ, r) and v(r) coincide on the boundary of the linear set lθ,
θ ∈ [α, β], similarly as in the proof of Theorem 3.4.1, we we deduce from
(3.34) that∫

E−
[f(‖∇u(x)‖)− f(‖∇V (x)‖) + g(u(x))− g(V (x))] dx = 0. (3.36)

It follows also (see (3.34)) that∫
E−

[〈∇(f ◦ ‖ · ‖)(∇V (x)),∇u(x)−∇V (x)〉+

+ q(x)(u(x)− V (x))] dx = 0. (3.37)
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On the other hand, the integral∫
E−

[f(‖∇u(x)‖)− f(‖∇V (x)‖) + q(x)(u(x)− V (x))] dx

is contained between the integrals (3.36) and (3.37), and so it is equal to zero
as well. Hence, ∫

E−
[f(‖∇u(x)‖)− f(‖∇V (x)‖)−

− 〈∇(f ◦ ‖ · ‖)(∇V (x)),∇u(x)−∇V (x)〉 dx = 0. (3.38)

By convexity, the integrand in (3.38) is nonnegative for a.e. x ∈ E− and we
have the pointwise equality

f(‖∇u(x)‖) = f(‖∇V (x)‖) +

+ 〈∇(f ◦ ‖ · ‖)(∇V (x)),∇u(x)−∇V (x)〉

for a.e. x ∈ E−. In other words, (∇u(x), f(‖∇u(x)‖)) belongs to the same
face of the epigraph of the convex function z 7→ f(‖z‖) as (∇V (x), f(‖∇V (x)‖)).
Since f is strictly convex, we conclude that ∇u(x) = ∇V (x) a.e. in E−, i.e.
η− = 0 on Ω, which is a contradiction.

Finally, the following theorem gives sufficient conditions for the validity
of the Strong Maximum Principle.

Theorem 3.4.3. In addition to our standing assumptions let us suppose that
either g(s) = 0, s ∈ [0, δ], for some δ > 0, or g(s) > 0 near zero and for
some δ > 0 the Riemann improper integral (3.2) diverges. Then the Strong
Maximum Principle holds for the problem (Pg).

Proof. In the first case (g(s) = 0∀s ∈ (0, δ]) the Strong Maximum Principle
is proved in [16].

Let us consider the second hypothesis, i.e.,∫ δ

0

ds

(f ∗ ◦ f ′)−1(g(s))
= +∞.

Let Ω ⊂ Rn be any open bounded connected domain and u(·) be a continuous
nonnegative solution of (Pg). Suppose that both sets

E = {x ∈ Ω : u(x) = 0} and Ω \ E = {x ∈ Ω : u(x) > 0}
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are nonempty. Due to connectedness of Ω there exists x∗ ∈ E ∩ Ω \ E.
Choose β > 0 such that the ball B̄2β(x∗) ⊂ Ω, and let x0 ∈ Ω \ E be
such that ‖x∗ − x0‖ < β. From continuity of u(·) one can find m ∈ (0, δ)
and α ∈ (0, ‖x∗ − x0‖) such that u(x) ≥ m on B̄α(x0). We associate to the
numbers α, β and m a function ω(·) ∈ C([0, β−α],R) studied in the previous
sections, which is defined by the formula (3.3) with some measurable selection
p(t) ∈ ∂g(ω(t)), and consider the annulus

Aα,β(x0) := {x ∈ Rn : α < ‖x− x0‖ < β}.

Let us set v(r) = ω(β − r), r ∈ [α, β], and apply the comparison theorem.
Namely, by the choice of the constants m and α we obviously have u(x) ≥
v(‖x − x0‖) whenever ‖x − x0‖ is equal to α or to β. By Theorem 2.4.2
the same inequality holds also inside the annulus Aα,β(x0). In particular,
u(x∗) ≥ v(‖x∗−x0‖). But by Lemma 2.3.1 and Theorem 2.3.1 the derivative
v′(r) is negative on [α, β], i.e., the function v(·) is strictly decreasing. Then
u(x∗) ≥ v(‖x∗ − x0‖) > v(β) = 0, which is a contradiction.

Example 5. Consider the problem of minimizing the integral functional∫
Ω

[‖∇u(x)‖p + (u(x))p] dx

with p > 1. Here f(ξ) = ξp for ξ > 0, its derivative f ′(ξ) = pξp−1, and

f ∗(v) = v

(
v

p

) 1
p−1

−
(
v

p

) p
p−1

.

Thus,
(f ∗ ◦ f ′)(t) = (p− 1)tp;

(f ∗ ◦ f ′)−1(t) =

(
t

p− 1

) 1
p

,

and ∫ δ

0

ds

(f ∗ ◦ f ′)−1(g(s))
=

∫ δ

0

ds(
sp

p−1

) 1
p

= +∞.

So, the Strong Maximum Principle holds by the above theorem.
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Conclusion

Let us emphasize the main results obtained in Thesis. We considered the min-
imization problems for the convex integral functionals, depending by some
symmetric way on the gradient and containing, possibly, and additive term
depending on the state variable.

1. In the case when this additive term is equal to zero and the lagrangean
depends on the gradient through a gauge function we

(a) proved some local estimates for minimizers close to their nonex-
tremum points;

(b) proved validity of the Strong Maximum Principle in the traditional
sense;

(c) extended the Strong Maximum Principle to the case when the
lagrangean is affine near the origin;

(d) proved a ”multi-point” version of the Strong Maximum Principle;

(e) proved an uniqueness extremal extension principle.

2. In the case when the additive term is linear with respect to u we

(a) proved some local estimates for minimizers close to their nonex-
tremum points;

(b) obtained estimates of minimizers in neighbourhoods of points of
local maximum (minimum) which can be interpreted as an (ap-
proximate) version of the Strong Maximum Principle.
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3. Finally when the lagrangean is rotationally invariant w.r.t. the gradient
and is nonlinear w.r.t. u we:

(a) proved the classic Strong Maximum Principle under the hypoth-
esis that some Riemann improper integral, involving all the data
of the problem, diverges.
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