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Abstract

The control of a distributed collector solar field is addressed in this work, exploiting the
plant’s transport characteristic. The plant is modeled by a hyperbolic type partial differen-
tial equation (PDE) where the transport speed is the manipulated flow, i.e. the controller
output. The model has an external distributed source, which is the solar radiation captured
along the collector, approximated to depend only of time. From the solution of the PDE,
a linear discrete state space model is obtained by using time-scaling and the redefinition
of the control input. This method allows overcoming the dependency of the time constants
with the operating point. A model-based predictive adaptive controller is derived with the
internal temperature distribution estimated with a state observer. Experimental results at
the solar power plant are presented, illustrating the advantages of the approach under con-
sideration. Copyright c©2002

Key words: Time-scaling, adaptive control, predictive control, solar energy, distributed
plant.

1 INTRODUCTION

This paper concerns the control of a solar energy collector field and extends the
work presented in (Silva, 1999; Silva and Lemos, 2001). This work is character-
ized by the use of non-uniform sampling in time in order to linearize the partial
differential equation (PDE) in the discretization procedure. In the work referenced
above, an I/O description of the plant has been used resulting in a finite impulse
response (FIR) transfer function. This means that the optimal predictive controller
is given by a feedforward block, with the set-point value, accessible disturbances
and past control actions as inputs, i.e. there is no dependency on the plant output.
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In the approach here presented, the internal dynamics are taken into account and
the control law includes feedback terms by means of a state observer. Furthermore,
the introduction of the internal state estimation allows the controller to damp the
internal oscillations that arise from the cancelation of anti-resonant modes.

Although the authors, among other researchers, have participate on the develop-
ment of several controllers for this plant using adaptive predictive control tech-
niques (Coito et al., 1997; Silva et al., 1998; Silva et al., 1997; Rato et al., 1997;
Pickhardt and Silva, 1998), i.e. without any a priori knowledge about the plant, in
this work, the goal was to increase performance by the development of an adaptive
predictive controller embedding in its design the relevant physical characteristics
of the plant. The ACUREX field used in these experiments is described in avail-
able literature (Camacho et al., 1992; Camacho et al., 1988) and has motivated a
wide range of research work on more sophisticated controllers of which (Barão
et al., 2002; Berenguel and Camacho, 1995; Camacho et al., 1994; Camacho et
al., 1994; Camacho, Berenguel and Rubio, 1997; Camacho et al., 1992; Camacho
and Berenguel, 1997; Coito et al., 1997; Carotenuto et al., 1985; Carotenuto et
al., 1986; Johansen et al., 2000; Johansen et al., 2002; Lemos, Rato and Mosca,
2000; Meaburn and Hughes, 1994; Orbach et al., 1981; Rorres et al., 1980; Rubio
et al., 1995; Rubio et al., 1996; Silva et al., 1997) are significant examples.

In this plant, the main sources of disturbances are measured and its dynamic be-
havior depends strongly on its geometry (available). This allows us to derive an ac-
curate model that is described by a partial differential equation (PDE). The plant is
characterized by: non-linearity caused by the dependency of bandwidth and static
gain with flow (the manipulated variable); fast accessible disturbances (solar ra-
diation with sudden clouds); time varying dynamics with the daily and annually
cycles, and pluvial cycles that modify the reflectivity of the mirrors; and sudden
plant changes when groups of collectors are entering/exiting solar track.

Since the controller is to be implemented in a digital computer, the dynamic de-
pendency on flow can be overcome by time-scaling, replacing the elements of
time (sampling period) by elements of volume. This results in a discrete linear
model with variable sampling period dependent on the imposed flow. Plants, such
as rolling mills, conveyor belts or fluids in pipes, can be transformed with time-
scaling (Åström and Wittenmark, 1984). Plants of this class may be controlled with
advantage using the method reported here, which takes into consideration the de-
pendency of the time-scaling on the manipulated variable.

From the Adaptive Predictive Control point of view, the loss of generality of the
results here presented is compensated by the possibility of extending them for the
class of systems modeled by similar equations (PDEs), e.g. heat-exchangers, road
traffic, river pollution, etc.

The paper is organized as follows. In section 2, the plant and the discretization of its
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Fig. 1. Solar collectors (one of the twenty rows).

Fig. 2. Oil storage tank.

non-linear model is described. Section 3 describes the controller design. In section
4, some experimental results on the real plant are shown and some conclusions are
drawn in section 5.

2 THE SOLAR PLANT

2.1 PLANT DESCRIPTION

The ACUREX field of the Plataforma Solar de Almerı́a (PSA) is located in the
south of Spain and consists of 480 distributed solar collectors, arranged in 10 loops
along an east-west axis (fig. 1). The collector has a reflective cylindrical parabolic
surface, in order to concentrate the incident solar radiation on a pipe located on the
surface focal line.

A heat transfer fluid (oil) is pumped from the bottom of a storage tank through the
collectors, where it acquires solar energy, and from the output of the field again to
the top of the tank. By manipulating the oil flow, with the pump, it is possible to
control the output temperature of the oil.
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Fig. 3. Radiation sensor with 2 d.o.f.
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Fig. 4. Process schematic.

The controlled variable is computed from the average values of an array of 10
temperature sensors located at the output of each loop.

Due to safety reasons, the oil flow is limited between 2.0 and 10.0 liters per second.
The heated oil from the collector field, stored in the tank, can be used e.g. for the
production of electrical energy or for the operation of a desalination plant.

The field is equipped with a tracking system by which the mirrors can rotate parallel
to the axis of the receiving tube, in order to follow the sun in height throughout the
day. There is a temperature sensor located at the input of the field, measuring the
temperature of the oil entering the active part (mirrors). A 2 d.o.f. solar radiation
sensor, able to track the sun, is also available to measure the total incident radiation
(fig.3). From this measure, it is possible to compute the corrected radiation (i.e. the
effective radiation heating the oil), using an algorithm with the actual day and time.

Simulation results show that this plant cannot perform well under all operating
systems with linear methods (Barão et al., 2002).

2.2 PLANT MODEL

The plant is a distributed system where the most relevant part of the dynamics is
the transport effect. Therefore, the plant should be modeled by a hyperbolic type
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Fig. 5. Characteristic curves when w(t) ≡ 0.

which models transport phenomena equation with variable transport speed and a
distributed source:

∂y(z, t)

∂t
+

f(t)

A

∂y(z, t)

∂z
= Γw(t) (1)

where y is the temperature distribution along space z and time t; f is the volumetric
flow and w is the effective solar radiation. The parameter Γ = (Dηo)/(ρASf )
(where D is the mirrors width, ηo is the optical efficiency, A is the transversal pipe
section area, Sf is the specific thermal capacity of the oil and ρ is the oil density
approximated by a constant) has been estimated using real plant data.

Considering first the case when the r.h.s. of eq. (1) is zero, i.e. w(t) ≡ 0, the PDE
admits then solutions given in the implicit form

y(z, t) = φ



z −
1

A

t∫

t0

f(σ)dσ



 (2)

where φ(z) is the initial (t = t0) temperature distribution. This means that the ini-
tial temperature profile moves, with its shape unchanged, in a convective transport
defining paths (characteristic curves) z = z(t) along which the value of y does not
vary with respect to time (fig. 5).

Mathematically, we are looking for a path z(t) (known as a characteristic curve),
parameterized by time, such that

dy(z(t), t)

dt
= 0 (3)
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which, by the chain rule, is equivalent to

∂y(z, t)

∂z

dz

dt
+

∂y(z, t)

∂t
= 0 (4)

If y solves equation (3) then this would be satisfied provided that

dz

dt
=

f(t)

A
(5)

This ODE has solutions of the form

z(t) =
1

A

t∫

t0

f(σ)dσ + z0 (6)

In the general case of equation (1), since the r.h.s. is independent of y, the solution
can again be found using the chain rule of derivation to integrate the collected solar
radiation along the characteristic curve:

dy(z(t), t)

dt
= Γw(t) (7)

yielding for the temperature at the output z = L

y(L, t) = Υ y(0, t0) + Γ

t∫

t0

w(σ)dσ (8)

with the transport time τ = t − t0, given by

t∫

t−τ

f(σ)dσ = LA = V (9)

where V is the total collector volume. The parameter Υ in equation (8) has been
introduced in order to take the losses into account. Since the losses in this plant
are not significant, this parameter arises as a simplification of the problem (the
losses depend on the residence time i.e. the flow). In (Pickhardt and Silva, 1998) a
different approach for obtaining the model given by equations (8) and (9) is shown,
based on energy balances.

The equations (8) and (9) allow us to establish a steady-state relationship among
the I/O temperature gain, ∆T , the solar radiation w̄ and the flow f̄ as

∆T = (ΓV )
w̄

f̄
(10)
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Fig. 6. Relation between the flow and sampling period.

this relation will be useful further on in the interpretation of the resulting control
law.

2.3 TIME-SCALED DISCRETIZATION

Considering again equations (8) and (9), and using elementary volumes instead
of elementary time intervals (sampling period) on a discretization procedure, the
collector volume, V , is divided in n smaller equal volumes, ν. Since the controller
will be implemented in a digital computer, a zero order hold (ZOH) is considered
for the flow command. Choosing the sampling period, TS , for each discrete time
epoch, k, such that the product of the flow value by the sampling period results in
the elementary volume (fig. 6), i.e.

ν =
V

n

f(k) × Ts(k) = ν (11)

Then, equation (9) implies that

n∑

i=1

Ts(k − i) = τk (12)

where τk stands for the I/O transport delay (through volume V ), in seconds, for
the fluid element present at the output at time instant k. The discrete time radiation
signal can be computed from the continuous one with a forward average at time k
as

w(k) =
1

Ts(k)

tk+1∫

tk

w(σ)dσ (13)

Equation (8) represents the I/O model for the complete pipe with volume V . This
equation can be applied for each of the n volumes ν with the variable sampling
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Fig. 7. State temperatures.

period (11) yielding, in discrete time,

xj(k + 1) = βxj−1(k) + Γw(k)Ts(k) (14)

where β ≈ 1 is a loss parameter such that βn = Υ and xi(k) is the oil temperature
at the output of the subvolume i (see fig. 7) at the (discrete) time instant k . Using
(11) this can be written as

xj(k + 1) = βxj−1(k) + α
w(k)

f(k)
j = 1 · · ·n

y(k) = xn(k) and x0(k) = v(k) (15)

where α = Γν is the solar energy capture efficiency for a subvolume ν.

Gathering these equations in a state-space frame yields

X(k + 1) =













0 · · · 0 0

βIn−1

0
...

0













︸ ︷︷ ︸

A

X(k)

+













1

1
...

1













︸ ︷︷ ︸

B

(α
w(k)

f(k)
)

︸ ︷︷ ︸

u(k)

+













1

0
...

0













︸ ︷︷ ︸

D

v(k) (16)

y(k) = [0 · · · 0 1]
︸ ︷︷ ︸

C

X(k)

where X(k) = [x1(k) · · · xn(k)]T is the state vector.

Note that v(k) stands for the temperature at the input of the field which is measured.
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Fig. 8. Zeros distribution (n = 5,β = 1).

The characteristic polynomial of (16) is given by Q(λ) = λn, i.e. n eigenvalues
placed at the origin resulting from the transport dynamics.

The zeros of the discrete plant’s transfer function are given by the roots of the
polynomial:

zn−1 + βzn−2 + · · · + βn−2z + βn−1 (17)

These zeros are distributed along a circle of radius β (fig. 8):

z = β ej 2πi

n , i = 1 · · · (n − 1) (18)

This anti-resonance behavior is not due to the discretization procedure, since it is
also present in the continuous model.

The controllability (for u and w inputs) and observability matrices are given by:

CB =













1 0 · · · 0

1 β 0
...

...
...

. . . 0

1 β · · · βn−1













(19)

CD =













β 0 · · · 0

0 β2 0
...

... 0
. . . 0

0 · · · 0 βn













(20)
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O =













0 · · · 0 1
... 0 β 0

0 ··
· 0

...

βn−1 0 · · · 0













(21)

and thus the system is fully controllable and fully observable.

3 THE CONTROLLER

3.1 PREDICTIVE CONTROLLER DESIGN

After expressing the plant in a classical state-space frame, with verified controlla-
bility and observability, the control should arise as a straightforward step, choosing
the desired eigenvalues distribution and determining the state feedback gain vector
using some standard method.

Hereafter, a predictive multistep cost function is proposed in order to set, using the
control horizon, the amount of fluid inside the volume that should be considered
to compute the control action. It is to be expected that a cost function, covering
all the collector volume, will result in a control action much smoother than if the
controller is only looking for the pipe’s last section.

Considering the following cost function (T < n):

JT =
T∑

i=1

{

ỹ2(k + i) + ρu2(k)
}

(22)

where ỹ(k) = y(k) − r(k) is the control error with r being the reference to track.

The future values of the output error are given by

ỹ(k + i) = CX(k + i) − r(k + i)

X(k + i) = AiX(k) + CBi
[u(k + i − 1) · · · u(k)]T

+CDi
[v(k + i − 1) · · · v(k)]T (23)
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with

Ai =













0 · · · 0 0

βiIn−i

0
...

0













i ≤ n − 1 (24)

CBi
=

















1 0 · · · 0

1 β
. . .

...

1 β
. . . 0

...
...

. . . βi−1

1 β · · · βi−1

















︸ ︷︷ ︸

#i







#n (25)

CDi
=

















β 0 · · · 0

0 β2 0 0
... 0

. . . 0

0 · · · 0 βi

0 · · · · · · 0

















︸ ︷︷ ︸

#i







#n (26)

If the minimization of (22) is made under the assumption of constant control action
and constant input temperature over the control horizon, i.e.,

u(k) = · · · = u(k + i − 1) (27)

v(k) = · · · = v(k + i − 1)

then the terms of the r.h.s. of (23) are given by:

CAiX(k) = βien−i

CCBi
[u(k + i − 1) · · · u(k)]T = (1 + β + · · · + βi−1)u(k)

CCDi
[v(k + i − 1) · · · v(k)]T = 0 or βnv(k) if i = n (28)

Assuming also a constant reference value along the control horizon, the minimiza-
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tion of (22) yields a control action:

u(k) =
(
∑T

i=1 λi)r(k) −
∑T

i=1 λiβ
ixn−i(k)

∑T
i=1 λ2

i + ρ
(29)

where λi = 1+β + · · ·+βi−1. Then, the flow applied to the field is computed from

f(k) =
αw(k)

u(k)
(30)

and the length of the sampling period at epoch k is given by

Ts(k) =
ν

f(k)
(31)

The control law given by equation (29) has an interesting physical interpretation.
Considering ρ = 0 (no control penalty) and β = 1 (no losses); with T = 1 the
control law reduces to

u(k) =
αw(k)

f(k)
=

r(k) − xn−1(k)

1
(32)

Comparing this control law with the steady-state relation from equation (10), it
is seen that the control establishes the necessary flow to guarantee that the oil at
the one before last (n − 1) sub-volume will reach the output, in the next sampling
period, being equal to the reference.

With larger values of T (again with ρ = 0 and β = 1), the control law can be
rewritten as

u(k) =
αw(k)

f(k)
=

(r(k) − xn−1(k)) + 4 × (r(k)−xn−2(k))
2

+ · · · + T 2 × (r(k)−xn−T (k))
T

1 + 4 + · · · + T 2
(33)

i.e. the control action is a weighted average of the control actions needed for each
sample of oil in the sub-volumes to reach the reference value at the output. In
addition, the minimization of a multistep quadratic cost function states that the
further away the fluid is from the collector output more important it is for the control
action computation. There are much more chances for the oil at the beginning of the
collector to reach the reference than the one that is a few samples away of exiting
the active part of the plant. It should be noted that the same arguments explain why
the plant’s output y(k) = xn(k) is not used for feedback.
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Fig. 9. Closed-loop system eigenvalues (n=4).
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Fig. 10. Simulation results (n=5; T=1 and T=2).

It is remarked that the condition of keeping the control action constant along the
horizon arises, not only from the simplicity thereby introduced in the minimization
procedure, but also because it should be the best strategy to cope with the existence
of anti-resonance modes. Due to the Finite Impulse Response (FIR) structure of the
model, the best control strategy (assuming constant radiation) should be to apply
a step, with the adequate amplitude, and wait for the new equilibrium point to
be reached. This strategy, in open-loop, would provide a ramp temperature profile
inside the collector pipe, with the final temperature equal to the desired one. Now,
with a receding horizon strategy, only the first control action is applied to the plant
and the minimization is repeated over the next time sample.

Since the horizon T is discrete and the sampling period Ts(k) depends on the flow,
the value of T establishes, not the time horizon into the future, but the amount of
oil inside the collectors that is important for the computation of the control action.
Figure 9 shows the distribution of the resulting eigenvalues for T = 1 to 4 when
n = 5. It is noted that, for T = 1, the eigenvalues are over the stability limit and
in the same position as the plant’s zeros. This means that, for T = 1, some hidden
oscillation is expected to occur, only visible in the control input. Figures 10 and 11
show simulation results for T = 1 to 4 when n = 5.
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Fig. 12. Observer eigenvalues (n=20).

3.2 OBSERVER DESIGN

In the ACUREX field, the measures of the internal oil temperature are not available.
To overcome this, a state observer has been implemented with the observer gain
given by

L =
[
1

n

2

n
· · ·

n

n

]

(34)

which is equivalent to a progressive linear correction along the pipe. Then, the
observer characteristic polynomial is given by

P (λ) = |λI − A + LC|

= λn +
n

n
λn−1 +

n − 1

n
λn−2 + · · · +

1

n
(35)

Figure 12 shows the distribution of the observer eigenvalues for n = 20. It is re-
minded at this point that the model is based on certain assumptions where all ther-
mal inertia of the oil and metal were left out. In the experimental results presented
in the next section, the model parameters α and β are estimated on-line via Recur-
sive Least Squares (RLS).
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4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL CONDITIONS

The following experiments have been made at PSA in June 2001.

An important practical issue is to select the number of collector divisions, n. This
value will establish, with the range of allowed flows, the sampling period range.
The total field volume for the active part is around 1800 liters. A value of n = 20
was chosen in order to get a sampling period between

T min
s =

1

fmax

V

n
= 9 s and T max

s =
1

fmin

V

n
= 45 s

In previous works with this plant, values of the sampling period between 15s and
39s have been used.

4.2 EXPERIMENT 1.

This experiment was performed with T = 8, and gives emphasis to the ability
of the time-scaled predictive controller to make set-point temperature changes of
50◦C, overcoming the non-linearity that results from the sudden change in the flow
value. In figure 13, the output temperature is presented with its reference on the top
plot and it is possible to observe the flow signal on the bottom one. Figure 14 shows
the solar radiation (top) and the input temperature (bottom).

From the plots, it is possible to observe that there are oscillations in the flow value,
which are not present at the output. This is due to the anti-resonance zeros cance-
lation by the controller poles.
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Fig. 14. Exp. 1. Solar radiation (top); and input temperature (bottom).
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Fig. 15. Exp. 2 Output temperature and reference (top); and field flow (bottom).
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Fig. 16. Exp. 2. Solar radiation (top); and input temperature (bottom).

4.3 EXPERIMENT 2.

In this experiment, the control horizon was increased to T = 16, enabling to re-
duce the effect of the pole-zero cancelation. In figure 15, the output temperature is
presented with the flow signal. Solar radiation and input temperature can be seen in
figure 16.
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Fig. 17. Exp. 3 Output temperature and reference (top); and field flow (bottom).
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Fig. 18. Exp. 3. Input/output temperatures and estimated internal temperature.

4.4 EXPERIMENT 3.

Although it is not very beneficial to the field’s pump, an experiment with T = 1
was performed, for a period of half an hour, to confirm the cancelation effect. In
figure 17 the output temperature is presented with its reference on the top plot and
it is possible to observe the flow signal on the bottom one. Figure 18 shows again
the output temperature, the estimated temperature in the middle of the collector and
the input temperature.

Attention should be payed to the fact that both the flow and the internal tempera-
ture present strong oscillations compared to the output temperature with only 15◦C
amplitude.

5 CONCLUSIONS

A time-scaled predictive controller has been developed for the special case of a
solar power plant. The algorithm takes advantage of the non-linear structure of the
plant reflecting the transport mechanisms inside the collectors to obtain a linear
structure in discrete time, via a time-scale non-linear transformation. This transfor-
mation implies varying the sampling interval according to the value of the manip-
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ulated variable, the flow. The algorithm has been applied to the real plant and the
results are presented in this paper.

This concept is not restricted to this particular field (the ACUREX). Any solar field
using this concept of manipulating flow to change the residence time inside the
collector can overcome the time constants dependence on flow with this kind of
transformation.
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