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We derive a threshold value for the coupling strength in terms of the topological entropy,
to achieve synchronization of two coupled piecewise linear maps, for the unidirectional
and for the bidirectional coupling. We prove a result that relates the synchronizability of
two m-modal maps with the synchronizability of two conjugated piecewise linear maps.
An application to the bidirectional coupling of two identical chaotic Du¢ ng equations is
given.

1. Introduction

Synchronization is a process wherein two or more systems starting from slightly
di¤erent initial conditions would evolve in time, with completely di¤erent behav-
iour, but after some time they adjust a given property of their motion to a common
behaviour, due to coupling or forcing. Various types of synchronization have been
studied. This includes complete synchronization (CS), phase synchronization (PS),
lag synchronization (LS) generalized synchronization (GS), anticipated synchroniza-
tion (AS), and others [2]. The coupled systems might be identical or di¤erent, the
coupling might be unidirectional, (master-slave or drive-response), or bidirectional
(mutual coupling) and the driving force might be deterministic or stochastic.
In [3], A. Kenfack studied the linear stability of the coupled double-well Du¢ ng

oscillators projected on a Poincaré section. In [4], Kyprianidis et al. observed
numerically the synchronization of two identical single-well Du¢ ng oscillators.
In this work we investigate the unidirectional and bidirectional synchronization
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of two identical m + 1 piecewise linear maps and obtain, analytically, the value of
the coupling parameter for which the complete synchronization is achieved. Then,
we study the relationship between the synchronization of two coupled identical
m�modal maps and the synchronization of the corresponding conjugated piecewise
linear maps. Next, we verify numerically the chaotic synchronization of two identical
bidirectionally coupled double-well Du¢ ng oscillators.

2. Main results

Consider a discrete dynamical system un+1 = f(un); where u = (u1; u2; :::; um)

is an m-dimensional state vector with f de�ning a vector �eld f : Rm ! Rm:
The coupling of two such identical maps xn+1 = f(xn) and yn+1 = f(yn) de�nes
another discrete dynamical system ' : N0 � R2m ! R2m, i.e., '(0; x; y) = (x; y);

8(x; y) 2 R2m and '(t+ s; x; y) = '(t; '(s; x; y)); 8(x; y) 2 R2m, 8(t; s) 2 N20:
Denoting by k the coupling parameter, if we consider an unidirectional coupling�

xn+1 = f(xn)

yn+1 = f(yn) + k [f(xn)� f(yn)]
; (1)

then '(n; x; y) = (f(xn) , f(yn)+k [f(xn)� f(yn)]): If the coupling is bidirectional�
xn+1 = f(xn)� k [f(xn)� f(yn)]
yn+1 = f(yn) + k [f(xn)� f(yn)]

; (2)

then '(n; x; y) = (f(xn) + k [f(yn)� f(xn)] , f(yn) + k [f(xn)� f(yn)]).
To be able to say if the two systems are synchronized we must look to the

di¤erence zn = yn � xn and see if this di¤erence converges to zero, as n ! 1: If
the coupling is unidirectional then

zn+1 = (1� k) [f(yn)� f(xn)] : (3)

If the coupling is bidirectional then

zn+1 = (1� 2k) [f(yn)� f(xn)] : (4)

These two systems are said in complete synchronization if there is an identity
between the trajectories of the two systems. In [7] and [8] it is establish that this
kind of synchronization can be achieved provided that all the Lyapunov exponents
are negative.

2.1. Synchronization of piecewise linear maps

Let I = [a; b] � R be a compact interval. By de�nition, a continuous map f : I ! I

which is piecewise monotone, i.e., there exist points a = c0 < c1 < � � � cm <

cm+1 = b at which f has a local extremum and f is strictly monotone in each of
the subintervals I0 = [c0; c1] ; ..., Im = [cm; cm+1] ; is called a m-modal map. As a
particular case, if f is linear in each subinterval I0; ..., Im, then f is called a m+ 1
piecewise linear map.
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By theorem 7.4 from Milnor and Thurston [5] and Parry [6] it is known that
every m-modal map f : I = [a; b] � R ! I; with growth rate s and positive
topological entropy htop(f) (log s = htop(f)) is topologically semiconjugated to a
p + 1 piecewise linear map T; with p 6 m; de�ned on the interval J = [0; 1], with
slope �s everywhere and htop(T ) = htop(f) = log s; i.e., there exist a function h
continuous, monotone and onto, h : I ! J; such that T � h = h � f: If, in addition,
h is a homeomorphism, then f and T are said topologically conjugated.
According to the above statements, we will investigate the synchronization of

two identical p+ 1 piecewise linear maps with slope �s everywhere (Theorem 2.1.)
and also the synchronization of two identical m-modal maps (Theorem 2.2.).
In what follows we will use the symbols f and k to represent, respectively, the

m-modal map and its coupling parameter and the symbols T and c to represent,
respectively, the p+ 1 piecewise linear map and its coupling parameter.
Let T : J = [a1; b1] � R ! J; be a continuous piecewise linear map, i.e., there

exist points a1 = d0 < d1 < � � � dp < dp+1 = b1 such that T is linear in each
subintervals Ji = [di; di+1] ; (i = 0; :::; p), with slope �s everywhere.
So, the unidirectional coupled system for T is�

Xn+1 = T (Xn)

Yn+1 = T (Yn) + c [T (Xn)� T (Yn)]
; (5)

and the di¤erence Zn = Yn �Xn veri�es

Zn+1 = (1� c) [T (Yn)� T (Xn)] : (6)

For the bidirectionally coupled system�
Xn+1 = T (Xn)� c [T (Xn)� T (Yn)]
Yn+1 = T (Yn) + c [T (Xn)� T (Yn)]

; (7)

the di¤erence Zn = Yn �Xn veri�es

Zn+1 = (1� 2c) [T (Yn)� T (Xn)] : (8)

Theorem 2.1. Let T : J ! J; be a continuous p + 1 piecewise linear map with
slope �s everywhere, with s > 1. Let c 2 [0; 1] be the coupling parameter. Then one
has:

(i) The unidirectional coupled system (5) is synchronized if

c >
s� 1
s
:

(ii) The bidirectional coupled system (7) is synchronized if

s+ 1

2s
> c >

s� 1
2s

:
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Proof. Attending to the fact that T is linear with slope �s in each subinterval J0;
..., Jp, then, the total variation of T is

V a1b1 (T ) =

b1Z
a1

jT 0(t)j dt =
pX
i=0

di+1Z
di

jT 0(t)j dt = s
pX
i=0

jdi+1 � dij = s jb1 � a1j :

We have

jT (Yn)� T (Xn)j =

������
YnZ

Xn

T 0(t) dt

������ 6
YnZ

Xn

jT 0(t)j dt = V Xn

Yn
(T ) = s jYn �Xnj :

Attending to (6), it follows that,

jZn+1j 6 j(1� c) sj jZnj and then jZqj 6 j(1� c) sjq jZ0j :

So, letting q !1; we have lim
q!1

j(1� c) sjq jZ0j = 0; if j(1� c) sj < 1: The previous
arguments shows that, if c 2 [0; 1] then the unidirectional coupled system (5) is
synchronized if c > s�1

s .
On the other hand, using the same arguments as before and attending to (8),

we have

jZn+1j 6 j(1� 2c) sj jZnj and then jZqj 6 j(1� 2c) sjq jZ0j :

Thus, considering q ! 1; we have lim
q!1

j(1� 2c) sjq jZ0j = 0; if j(1� 2c) sj < 1:

Therefore, we may conclude that, if c 2 [0; 1] the bidirectional coupled system (8)
is synchronized if s+12s > c > s�1

2s .

Note that, the bidirectional synchronization occurs at half the value of the cou-
pling parameter for the unidirectional case, as mentioned by Belykh et al [1].

2.2. Conjugacy and synchronization

In this section our question is to know the relationship between the synchronization
of two coupled identical m-modal maps and the synchronization of the two coupled
corresponding conjugated p+1 piecewise linear maps, with p 6 m: Consider in the
interval J the pseudometric de�ned by

d(x; y) = jh(x)� h(y)j :

If h is only a semiconjugacy, d is not a metric because one may have d(x; y) = 0 for
x 6= y. Nevertheless, if h is a conjugacy, then the pseudometric d, de�ned above,
is a metric. Two metrics d1 and d2 are said to be topologically equivalent if they
generate the same topology. A su¢ cient but not necessary condition for topological
equivalence is that for each x 2 I, there exist constants k1; k2 > 0 such that, for
every point y 2 I,

k1 d1(x; y) 6 d2(x; y) 6 k2 d1(x; y):
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Consider the pseudometric d de�ned above, d2(x; y) = d(x; y) and d1(x; y) =
jx� yj :
Suppose h : I ! J is a bi-Lipschitz map, i.e., 9 N; M > 0; such that,

0 < N jx� yj 6 jh(x)� h(y)j 6M jx� yj; 8(x; y) 2 I2: (9)

If h is a conjugacy and veri�es (9), then the metrics d and j:j are equivalents.
Consider f : I [a; b] � R ! I a m�modal function with positive entropy. For

the unidirectional coupled system given by (1) we have the di¤erence (3). As for
the bidirectional coupled system given by (2) we have the di¤erence (4).
As an extension of Theorem 2.1., for the synchronization of piecewise linear

maps, we can establish the following result concerning the synchronization of the
corresponding semiconjugated piecewise monotone maps.

Theorem 2.2. Let f : I ! I; be a continuous and piecewise monotone map with
positive topological entropy htop = log s and h : I ! J a semiconjugacy between f
and a continuous piecewise linear map T : J ! J; with slope �s everywhere. If
there exist constants N; M > 0 satisfying (9), then one has:

(i) The unidirectional coupled system (1) is synchronized if

k > 1� N

M

1

s
:

(ii) The bidirectional coupled system (2) is synchronized if

1 +
N

M

1

2s
> k > 1� N

M

1

2s
:

Proof. If f is monotone in the interval [x; y] ; then T is monotone in the interval
[h(x); h(y)], because h is monotone, so

jh(f(x))� h(f(y))j = jT (h(x))� T (h(y))j = s jh(x)� h(y)j :

Therefore d(x; y) = s�1d (f(x); f(y)) ; if f is monotone in the interval [x; y] : If f is
not monotone in the interval [x; y] ; but there exist, points ci (i = 1; :::; p� 1); such
that ci < ci+1; ci 2 [x; y] and f is monotone in each subinterval I1 = [x = c0; c1] ;
I2 = [c1; c2] ;..., Ip = [cp�1; y = cp] ; we have

d(x; y) =

p�1X
j=0

d(cj ; cj+1)

= s�1
p�1X
j=0

d (f(cj); f(cj+1))

= s�1
p�1X
j=0

jh (f(cj))� h(f(cj+1))j

> s�1 jh (f(x))� h(f(y))j
= s�1d (f(x); f(y)) :
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So, we can write d(x; y) > s�1d (f(x); f(y)) ; 8x; y 2 I: From (9) and for the
unidirectional coupling (3) we have

d(yn+1; xn+1) 6 M jyn+1 � xn+1j =M j1� kj jf(yn)� f(xn)j
6 M j1� kjN�1d (f(yn); f(xn)) 6M j1� kjN�1s d(yn; xn):

It follows that

d(yn+r; xn+r) 6Mr j1� kjrN�rsrd(yn; xn);

so d(yn+r; xn+r) !
r!1

0 if
��M (1� k)N�1s

�� < 1: Then, the coupled system (1) is

synchronized if

k > 1� N

M

1

s
:

For the bidirectional coupling (4) and using the same arguments as before, we
also have that

d(yn+1; xn+1) 6M j1� 2kjN�1s d(yn; xn):

It follows that d(yn+r; xn+r) !
r!1

0 if
��M (1� 2k)N�1s

�� < 1: Then, the coupled

system (2) is synchronized if

1

2

�
1 +

N

M

1

s

�
> k >

1

2

�
1� N

M

1

s

�
:

Denote by k� the synchronization threshold for (1), i.e. the system of piecewise
monotone functions synchronizes for k > k�. Denote by c� the value such that for
c > c� the system of piecewise linear maps (5) is synchronized. Note that

N(1� k�) =M(1� c�): (10)

With the assumptions we made, if the piecewise monotone coupled maps syn-
chronizes, so do the conjugated piecewise linear coupled maps and conversely, if
the piecewise linear coupled maps synchronizes, so do the conjugated piecewise
monotone coupled maps. In fact, from (9) we have d(yn; xn) 6 M jyn � xnj ;
therefore if system (1) synchronizes for k > k�; then system (5) synchronizes for
c > c�; because k� > c�: On the other hand, we have also from (9), jyn � xnj 6
N�1d(yn; xn); therefore if the system (5) synchronizes for c > c�, then the system
(1) synchronizes for k > k� with k� verifying (10).
For the bidirectional coupling, we have

1� 1
s
6 1� N

M

1

s
6 1 + N

M

1

s
6 1 + 1

s
;

so the synchronization interval for the piecewise monotone coupled maps is con-
tained in the synchronization interval for the conjugated piecewise linear coupled
maps.
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3. Du¢ ng oscillators�s example and symbolic synchronization.

Consider two identical bidirectionally coupled Du¢ ng oscillators, see [3] and refer-
ences therein�

x00(t) = x(t)� x3(t)� �x0(t) + k [y(t)� x(t)] + � Cos(wt)
y00(t) = y(t)� y3(t)� �y0(t)� k [y(t)� x(t)] + � Cos(wt) (11)

where k is the coupling parameter. We consider parameter values for which each
uncoupled (k = 0) oscillator exhibits a chaotic behaviour, so if they synchronize,
that will be a chaotic synchronization. We did a Poincaré section de�ned by y = 0
and found in the parameter plane (�; �), a region U where the �rst return Poincaré
map behaves like a unimodal map and a region B where the �rst return Poincaré
map behaves like a bimodal map. We choose, for example, w = 1:18, x0 = 0:5,
x00 = �0:3; y0 = 0:9, y00 = �0:2 and � = 0:4, � = 0:3578, for the unimodal case and
� = 0:5, � = 0:719, for the bimodal case.

Figure 1. Evolution of x versus y for the bidirectional coupled Du¢ ng oscillators, for some values
of k, in the unimodal case (� = 0:4; � = 0:3578).

Numerically we can see the evolution of the di¤erence z = y � x with k. The
synchronization will occur when x = y. See some examples in Fig.1 for the unimodal
case. Although not shown in this �gure, the graphics of the di¤erence y � x for
k greater then 0:122 are always a diagonal like in the picture for k = 0:25; showing
that these Poincaré unimodal maps are synchronized. For � = 0:4 and � = 0:3578
we have h = 0:2406 : : : ; then s = 1:272::: If the coupled maps where piecewise
linear maps with slope s = �1:272, the synchronization will occurs for c > c� =
s�1
2s = 0:107 and we see numerically that these unimodal Poincaré maps for the
Du¢ ng equations synchronizes at a little greater value, k� � 0:122, so these pictures
con�rms numerically the above theoretical results, though we cannot guarantee
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that the semiconjugation between the unimodal and the piecewise linear maps is a
conjugation.

4. Conclusions

We obtained explicitly the value c� of the coupling parameter, such that for c > c�

two piecewise linear maps, unidirectional or bidirectional coupled are synchronized.
Moreover we prove that, in certain conditions, the synchronization of two m-modal
maps is equivalent to the synchronization of the corresponding conjugated piece-
wise linear maps, but for di¤erent values of the coupling parameter. A numerical
application to the coupling of two Du¢ ng equations is given.
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