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This paper estimates von Neumann and Morgenstern utility functions using the generalized maximum
entropy (GME), applied to data obtained by utility elicitation methods. Given the statistical advantages
of this approach, we provide a comparison of the performance of the GME estimator with ordinary least
square (OLS) in a real data small sample setup. The results confirm the ones obtained for small samples
through Monte Carlo simulations. The difference between the two estimators is small and it decreases as
the width of the parameter support vector increases. Moreover, the GME estimator is more precise than
the OLS one. Overall, the results suggest that GME is an interesting alternative to OLS in the estimation
of utility functions when data are generated by utility elicitation methods.

Keywords: generalized maximum entropy; maximum entropy principle; von Neumann and Morgenstern
utility; utility elicitation

JEL Classifications: C13; C14; C49; D81

1. Introduction

One important step in decision analysis is the identification of the decision-maker’s preferences.
Thus, the estimation of the decision-maker utility function is a prerequisite for the analysis of
the given decision problem. In order to estimate the decision- maker utility function one often
needs to use utility elicitation methods based on surveys or experiments. However, the use of
these methods is likely to lead to relatively few observations since the decision-maker might not
be willing to answer to many questions.1 The fact that the number of observations generated
by utility elicitation methods is small, raises interesting issues regarding the estimation of the
decision-maker utility function.

With very small samples, the use of traditional estimation techniques may not be adequate.
With small samples, statistical inference under ordinary least squares (OLS) is based on the
assumption that the errors are normally distributed. However, if this assumption does not hold,
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222 C. Pires et al.

traditional OLS inference results will be incorrect. On the other hand, generalized maximum
entropy (GME) has the ability to estimate the parameters of a regressions without imposing any
constraints on the probability distribution of the errors and it is robust even when we have ill-posed
problems, namely with very small samples [4,5,10]. Moreover, using Monte Carlo simulations,
previous studies have shown that with small samples the generalized maximum entropy estimator
outperforms OLS [20]. Considering that GME is well suited to estimate regressions with a small
number of observations without imposing constraints on the errors probability distribution, a
natural question arises: is GME a good alternative to estimate utility functions when data are
obtained through utility elicitation methods?

In this paper, we explore the potentialities of the GME estimation of von Neumann and Mor-
genstern utility functions using only partial information about the agent’s preferences. Since the
elicitation of preferences is not a goal of this research, we use data from Abdellaoui et al. [2].
These authors elicit the preferences of 47 decision-makers using a choice-based method (trade-off
method) and a choiceless method (strength-of-preference method) and estimate the parame-
ters of three utility functions (power, exponential, and expo-power). In this paper, we apply
GME estimation to these data and compare it with OLS estimation. In addition, we use boot-
strap to obtain confidence intervals and compare the efficiency of the GME and the OLS
estimators.

This paper can be related with two areas of Economics research. On the one hand, there
exists some literature applying the maximum entropy (ME) principle to the estimation of utility
functions [1,15]. This literature does not impose a functional form for the utility function, but
has the drawback of generating non-differentiable utility functions which is problematic if one is
interested in using the estimated utility to solve decision problems, such as portfolio optimization.
Our approach is different as we apply GME to estimate a particular functional form of the utility
function. This approach may be considered semi-parametric as we assume a particular functional
form for the utility function but do not impose restrictions of the probability distribution of the
error terms. Thus, one important contribution of our work is that it is the first one to apply GME
in the estimation of utility functions.

The paper can also be related to the literature on GME and, in particular, to its applications in
Economics. The ability of GME to estimate economic relationships has already been explored by
several authors (see, for instance, [12,18,19]). GME applications in Economics cover a wide set
of fields, including finance, game theory and agricultural economics (see, for example, [3,8,14,24,
27,28]). Most applications of GME relate to ill-posed problems or ill-conditioned problems (non-
stationarity, number of unknown parameters exceeds the number of observations, collinearity).
Golan et al. [11] use GME and generalized cross-entropy to derive a Social Accounting Matrix
without having to impose the standard identification procedures. Paris and Howitt [22] employ
GME in a mathematical programming framework to estimate cost parameters for individual farm-
level data. Fraser [8] uses GME to estimate the demand for meat in the UK with data that are
subject to collinearity. Golan et al. [11,13] use GME to estimate a censored regression model.
More recently, Campbell and Carter Hill [4,5] demonstrate how to impose inequality constraints
in GME through the parameter support matrix. Although there exist many applications of GME in
Economics, our application has one distinctive feature: we use GME to estimate utility functions
using a very small number of observations. Thus, an interesting contribution of our study is that
it provides evidence on the comparison of GME with least-squares estimation using real data
small samples.

This paper is organized as follows: Section 2 presents the concepts of entropy, ME principle and
GME estimation and reviews recent applications of entropy and ME to decision theory. The main
results are presented in Section 3, where we compare the results of GME and OLS estimation. The
last section of the paper contains the main conclusions of this research and provides directions
for future research.
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2. Entropy, ME principle and GME

2.1 Background theory

In order to understand the concepts underlying GME estimation, it is worth explaining the mean-
ing of entropy and the ME principle, since these two concepts are important building blocks
of GME. The concept of entropy was introduced by Shannon [25] in the context of informa-
tion theory. Entropy is a measure of uncertainty or a measure of the information generated by
observing the outcome of a random event. Consider a future event X with n possible outcomes
and let (p1, p2, . . . , pn) be the associated probability distribution. The entropy of the probability
distribution p = (p1, p2, . . . , pn) is the measure H(p) given by

H(p) ≡
n∑

i=1

pi(− ln pi) = −
n∑

i=1

pi ln pi

and 0 · ln(0) = 0. When all outcomes are equally likely, pi = 1/n for all i, H(p) reaches a
maximum.

According to Laplace’s principle of insufficient reason, if we have no information about a
particular probability distribution, then one should assume that all outcomes are equally likely.
Consequently, the principle of insufficient reason corresponds to the maximization of the entropy
function. The ME principle proposed by Jaynes [17] generalizes the previous idea to a context
where there exists some information on the probability distribution. For instance, if particular
moments of the probability distribution generating the data are known then, among the probability
distributions that satisfy these moment conditions, one should choose the one that maximizes
entropy. In other words, we choose p so as to maximize H(p) subject to all the existent restrictions
(moment conditions, cumulative probability constraints and adding constraints) on the random
variable X. According to several authors [9,26], the ME principle uses only relevant information
and eliminates all irrelevant details from the calculations by averaging over them. The ME principle
can also be applied to the density function of continuous random variables.

In spite of the potentialities of the ME approach, the GME proposed and employed by Judge
and Golan [18] increases substantially the number of possible extensions and applications in
economics, particularly when we have ill-posed problems in linear models. Let us consider the
following standard regression model in matrix form:

y = Xβ + e, (1)

where y is a (T × 1) vector, X is a (T × K) matrix, β is a (K × 1) vector and e is a (T × 1)

vector of errors. According to Golan et al. [10] the problem is ill-posed if there is not enough
information contained in X and the noisy data y to permit the recovery of the K-dimensional β

parameter vector by traditional estimation methods. An ill-posed problem may arise from several
sources: (i) non-stationarity or other model specification issues may cause the number of unknown
parameters to exceed the number of data points; (ii) the data are mutually inconsistent and (iii)
the experiment may be badly designed, which may cause collinearity in X. The use of OLS (or
other traditional estimation methods) in those situations may cause: (a) arbitrary parameters; (b)
the solution may be undefined and (c) the estimates can be highly unstable given the high variance
or the low precision of the estimated parameters.

The GME generalizes the ME approach by estimating the probability distribution of each of
the K parameters and estimating the probability distribution of each of the T errors. Judge and
Golan [18] assume that each βk can be viewed as a discrete random variable with M potential
outcomes (with 2 ≤ M ≤ ∞). Let zk be the (M × 1) support vector for parameter βk and assume
that the elements in zk are ordered from the lowest, zk1, to the largest, zkM . Then, for each parameter
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224 C. Pires et al.

βk , there exists a probability vector pk such that

βk = [zk1 · · · zkM]
⎡
⎢⎣

pk1
...

pkM

⎤
⎥⎦ . (2)

The parameter support is based on prior information of economic theory or in previous
experiments [4,5,8].

Generalizing for all k (with k = 1, . . . , K), the vector β can be defined by

β = Zp =

⎡
⎢⎢⎢⎣

z′
1 0 . . . 0

0 z′
2 . . . 0

...
...

. . .
...

0 0 . . . z′
K

⎤
⎥⎥⎥⎦ .

⎡
⎢⎢⎢⎣

p1
p2
...

pK

⎤
⎥⎥⎥⎦ , (3)

where Z is a (K × KM) matrix of support points and p is a (KM × 1) vector of unknown weights
such that pkm > 0 and p′

kiM = 1 for all k (where iM is a M × 1 vector of ones). In a similar way,
to estimate the distribution of the errors, admit that we have J ≥ 2 support points and let V be
the (T × TJ) matrix of support points, and w be a (TJ × 1) vector of weights on these support
points. The unknown errors are defined as

e = Vw =

⎡
⎢⎢⎢⎣

v′
1 0 . . . 0

0 v′
2 . . . 0

...
...

. . .
...

0 0 . . . v′
T

⎤
⎥⎥⎥⎦ .

⎡
⎢⎢⎢⎣

w1

w2
...

wT

⎤
⎥⎥⎥⎦ . (4)

Once again, the weights satisfy wtj > 0 and w′
t iJ = 1 for all t.

The model can be reparameterized in matrix form as follows:

y = XZp + Vw, (5)

where y, X, Z and V are known and we estimate the unknown p and w vectors using the ME
approach. The regression model can be expressed as follows:

max H(p, w) = −p′ ln p − w′ ln w, (6)

s.t. y = XZp + Vw, (7)

(IK ⊗ i′M)p = iK , (8)

(IT ⊗ i′J)w = iT , (9)

where ⊗ is the Kronecker product. Equation (7) is a data constraint and Equations (8) and (9) are
additivity constraints, which require that the probabilities sum to one for each of the K parameters
and T errors.

The solution of the GME model [10] is

p̂km = exp(zkmx′
kλ̂)∑M

m=1 exp(zkmx′
kλ̂)

m = 1, . . . , M and k = 1, . . . , K (10)

and

ŵtj = exp(vtjλ̂t)∑J
j=1 exp(vtjλ̂t)

, j = 1, . . . , J and t = 1, . . . , T , (11)

where λ̂ is the vector of Lagrange multipliers for the data constraints.
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Journal of Applied Statistics 225

The endpoints of the probability supports can be either symmetric or asymmetric, depending on
the problem under consideration. For the error term, it is usual to use a symmetric representation
centred on zero. Pukelsheim [23] suggests setting error bounds as v′

t1 = −3σ and v′
tJ = 3σ , where

σ is the standard deviation of e. Since σ is unknown, it can be replaced by an estimate. Campbell
and Carter Hill [5] consider two possibilities: (1) σ̂ from the OLS regression and (2) the sample
standard deviation of y. These authors found better results using the second alternative.

Fraser [8] alerts to the problem of choosing the number of elements in the supports (M and J).
Mittelhammer et al. [20] conclude that the quality of the GME estimates depends on the quality of
the supports chosen, and the Monte Carlo experiments suggest that the GME with wide supports
will often perform better than OLS, especially for small samples (n < 25).

According to Mittelhammer et al. [20], the GME estimator is not constrained by any extraneous
assumptions. The information used is the observed information contained in the data, the infor-
mation contained in the constraints and the information of the structure of the model, including
the choices of the supports for the β ′

ks.

2.2 Applications of entropy and ME in decision analysis

In this section we briefly review recent applications of the entropy and ME principle in decision
analysis with particular emphasis on the estimation of utility functions [1,6,7]. In addition, we
explain how our work differs from the papers that use ME to estimate utility functions.

As described in the previous subsection, the ME principle applies to estimation of probability
distributions. However, the principle has also been applied in the estimation of utility functions
describing ordinal preferences by Herfert and La Mura [15] and in the estimation of von Neumann
and Morgenstern utility functions by Abbas [1]. Herfert and La Mura [15] scale utility so as to
behave as a probability measure, whereas Abbas [1] scales utility so that marginal utility behaves
as a probability measure. Since we are interested in estimating von Neumann and Morgenstern
utility functions, let us analyze in greater detail Abbas’s approach.

The main insight in Abbas [1] is to draw an analogy between utility and probability and to
use this analogy to apply ME to the estimation of the utility function. The starting point is to
normalize the utility function such that it ranges between zero and one. Then, defining the utility
density function as the derivative of the normalized utility function one can show that the utility
density function is non-negative and integrates to unit, precisely the same properties that define
a probability density function. Consequently, the ME principle can be applied to the estimation
of the utility density function when there exists partial information on the agent’s preferences.
For instance, if one knows the preference ordering then the ME principle would imply that the
marginal utilities are constant and hence the utility function is a linear function. On the other
hand, if some utility values are known, the ME utility approach requires that the utility function
satisfies these values’ constraints. This implies that the ME utility, as Abbas calls it, is simply the
function composed of the linear segments joining the known utility values.

The ME utility approach proposed by Abbas is conceptually appealing and it has the advantage
of making no assumptions on the functional form of the utility function. However, the maximum
utility entropy also has some drawbacks. The first one is that it assumes that there does not exist
any measurement error in the utility values. However, this assumption is likely to be violated
when data are obtained through utility elicitation methods. The second problem is that the ME
utility is non-differentiable, which contradicts the assumption used in the definition of the utility
density function. In addition, non-differentiability may lead to difficulties if one is interested in
using the estimated utility to solve decision problems, such as portfolio optimization. For these
reasons, we have decided not to pursue the Abbas approach. Instead, we use GME to estimate
a particular functional form of the utility function. Note that our approach may be considered
semi-parametric, since we assume a particular functional form for the utility function but do not

D
ow

nl
oa

de
d 

by
 [

b-
on

: B
ib

lio
te

ca
 d

o 
co

nh
ec

im
en

to
 o

nl
in

e 
U

E
vo

ra
] 

at
 0

3:
29

 3
0 

O
ct

ob
er

 2
01

3 



226 C. Pires et al.

impose restrictions on the probability distribution of the error terms. To the best of our knowledge
our work is the first to apply GME to the estimation of utility functions.

3. Estimation and results

In this section, we describe the data used in this paper, as well as the methodology applied to
estimate the parameters of interest through OLS and GME, and the inference process developed
in order to evaluate the accuracy of both methods and the statistical significance of the estimated
coefficients of interest.

3.1 Estimation of the parameters

Our data set is taken from Abdellaoui et al. [2]. These authors estimate the parameters of
three utility functions (power, exponential and expo-power) with only one parameter. Abdellaoui
et al. [2] elicit the preferences of decision-makers using a choice-based method (trade-off method)
and a choiceless method (the strength-of-preference method). The experience was made with 47
students from the Ecole Normale Supérieure of Cachan. The authors used a software programme
for observing indifferences while avoiding bias. The trade-off method was carried out before the
strength-of-preference method because its answers were used as inputs in the second method.

We use a parametric family of utility function, more specifically a power function, that is
defined by

y = xr if r > 0,

y = ln x if r = 0,

y = −xr if r < 0,

where r is a parameter related with the coefficient of risk aversion (the relative risk aversion is
equal to r − 1), x is the income and y are the utility values. Note that the power utility function
has constant relative risk aversion.

In order to estimate the parameter r, we logarithmize both sides of the equation and use the
following econometric model (e.g. assuming that r > 0):

ln y = r ln x + e,

Y = rX + e,
(12)

where Y = ln y and X = ln x. The model (12) will be estimated using OLS and GME.2

In our database, we have six observations for each participant, which is clearly a very small
sample to estimate the participant’s utility function. This fact may be problematic when we
apply the most traditional method of regression estimation: OLS. With small samples, traditional
statistical inference under OLS is based on the assumption that errors are normally distributed
(with large samples no such assumption is needed). However, if data are not normally distributed
the traditional OLS inference results will be incorrect under small samples. Given this context,
it is interesting to investigate whether GME is a good alternative to OLS. In this paper, the main
reason to use GME is precisely the fact that our samples are very small.3 To use GME, we do
not need to assume any theoretical probability distribution for the errors even to make statistical
inference.

In a first phase, we estimate the utility function parameter using the least-squares approach.
We found that the parameter r for all the participants is positive, 2.6429 being the high-
est and 0.5925 being the smallest. For all the regression models estimated, we tested the
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Table 1. Support vectors for GME used in the different experiments performed.

Center Width M

Experience A 1 [−1, . . . , 3] 9 17 33
Experience B 1 [−3, . . . , 5] 9 17 33
Experience C 1 [−7, . . . , 9] 9 17 33
Experience D 1.5 [−0.5, . . . , 3.5] 9 17 33
Experience E 1.5 [−2.5, . . . , 5.5] 9 17 33
Experience F 1.5 [−6.5, . . . , 9.5] 9 17 33
Experience G 0.5 [−1.5, . . . , 2.5] 9 17 33
Experience H 0.5 [−3.5, . . . , 4.5] 9 17 33
Experience I 0.5 [−7.5, . . . , 8.5] 9 17 33

Gauss–Markov assumptions, and we found that the hypothesis of normality, no autocorrelation
and homocedasticity are not rejected for any of the 47 estimated regressions.4 This suggests that,
in this particular case, OLS is adequate and thus it seems sensible to use GME and compare it
with OLS.

Considering the power utility function, an agent is risk neutral when r = 1, risk averse when
r > 1 and risk lover when r < 1. Since we do not know a priori the agent’s attitude toward risk,
the value r = 1 is a natural candidate to be the center of the support vector of the GME estimator.
Therefore, our first estimations use a support vector centered in 1. However, it is interesting to
analyze whether the GME results are sensitive to changes in the support center. Thus, we also
compute the GME estimators with support vectors centered in 1.5 and centered in 0.5. In other
words, we consider three alternative types of support vectors: (i) centered in 1; (ii) centered in 1.5
and (iii) centered in 0.5. The first scenario is based on economic theory, the last two alternatives
are used to test the robustness of the GME estimator. In addition, we are also interested in testing
the sensitivity of our results to changes in the width of the support vector (we run experiments with
width equal to 4, 8 and 16) and to changes in the number of support points (we run experiments
with M = 9, M = 17 and M = 33). Thus, for each support vector center, we consider 9 different
experiments, which leads to a total of 27 experiments.5 Table 1 summarizes the information about
the experiments performed in this paper.

To define the error support vector, we followed Campbell and Carter Hill [5]. We used the
standard deviation of the dependent variable (Y ), which equal to 0.345, the ±3σ rule of Golan
et al. [10] and Campbell and Carter Hill [5] results on the error support of v′

i = [−1, −0.5, 0, 0.5, 1],
with J = 5. In order to undertake inference procedures, we follow Mittelhammer et al. [20]
considerations about the derivation of the standard errors for all the parameters estimated.

All the participants show a positive and statistically significant r in both estimation methods.6

Figure 1 compares GME and OLS estimators for each of the 47 regressions, for the support vectors
centered in 1. The results show that the GME estimates do not differ very much from the OLS
estimates in terms of signs and magnitudes for all the support vectors. It is important to mention
that as the width of the support vector increases, the difference between the GME and the OLS
estimates becomes smaller, independent of the number of points in each support vector. Increasing
the width of the support vector means that we are allowing the parameter to take values in a larger
interval, which implies that we are giving less information to the problem. A wider support vector
implies that the GME estimator will be more determined by data constraints than by the prior
information, which explains why the GME estimator becomes closer to the OLS estimator. On
the other hand, as we will see in the next section, assuming a less informative prior decreases the
precision of the GME estimator.

As mentioned above we computed the GME estimator using support vectors centered in 1, 1.5
and 0.5. The main goal of these experiments is to evaluate the impact on the GME estimators of a
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228 C. Pires et al.

Figure 1. OLS estimator versus GME estimator for all the 47 participants for the support vectors centered
in 1.

possibly biased support vector. In fact, these experiments include a 50% positive (and negative)
bias with respect to the support vector based on theory and centered in 1. If the results of the GME
estimator change a lot when the support vector center varies, then the GME estimator would not
be robust.

The comparison of the results for the different experiments shows that the GME estimator did
not change in a significant way when we move the center of the support vector from 1 to 1.5 or to
0.5. We observe a slight increase in the values of the parameter when the center is 1.5, especially
for the smallest width of the support vector. However, this increase is almost nil for the support
vectors with larger width. Similarly, there is a slight decrease in the parameter estimates when
the support vector is centered in 0.5, but this decrease almost vanishes when we consider wider
support vectors. In fact, for wider support vectors (which means a less informative prior) the
results are almost insensitive to the center of the support vector and are very close to the OLS
results (Figure 2). Once more, the number of points in the support vector does not influence in a
significant way the results.

According to the results obtained, we can say that GME estimates are very close to OLS
estimates, and also that GME estimates do not change much as we change the parameter support
(note that for most of the individual regressions the changes are infinitesimal). This means that
an uninformative support vector would produce results consistent with OLS.

The strong similarities between the two estimates evidence the potentialities of the GME esti-
mator, since it is a more general method without assumptions about the theoretical distributions
of the errors.
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Figure 2. OLS estimator versus GME estimator for all the 47 participants for the support vectors with
width = 16 centered in 1, 1.5 and 0.5.

The standard errors of the GME estimator were estimated using the approach of Mittelhammer
et al. [20]. Figure 3 shows the obtained values for the standard errors for the C = 1 and M = 9
experiments and OLS. There are not significant differences in the experiments with different
number of element in the support vector. The results point to a slight increase in the standard
errors as we increase the width of the support vector. This pattern also holds in the experiments
centered in 1.5 and 0.5, which do not differ in terms of interpretation.

In order to compare the standard errors of the GME estimator and the standard errors of the
OLS estimator,we tested the hypothesis of equal mean of the standard errors using the t-Students
test and the Wilconxon test. The null of equality of the means and medians of the standard
errors (H0 : μσβ̂GME

= μσβ̂OLS
) is not rejected in any experiment, which reveals the small difference

between the efficiency of the estimators under consideration.
The next section examines the precision of the GME estimator through the use of a bootstrap.

3.2 Confidence intervals

In order to compare the precision of the GME and OLS estimators, we construct confidence
intervals. We use a bootstrap to obtain interval estimates for the GME and the OLS estimator,
estimating standard errors by resampling the original data. There are several studies that use
bootstrap methods to estimate standard errors. For example Horowitz [16] presents a bootstrap
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Figure 3. Standard errors of the GME parameter of interest (r) for the experiments centered in 1 and OLS.

method for computing confidence intervals where the t-statistics is obtained from the resampled
data and the interval estimates are computed as r̂ ± tcSr̂ , where tc is the bootstrap t-statistics and Sr̂

is the asymptotic standard error of the estimator. Since we do not know the asymptotic distribution
of the GME estimator, we follow the approach used by Mooney and Duval [21] and by Campbell
and Carter Hill [5], who used the percentile method to obtain the confidence intervals. It should
be noted that we also used the percentile approach to estimate the confidence intervals for the
OLS estimators. There are two reasons behind our choice: (i) the t-statistic would not be correct if
the errors are not normally distributed and (ii) for comparison purposes, it seems more adequate
to use the same procedure for the two estimators, OLS and GME.

The confidence intervals for GME and OLS were estimated by resampling from the original
data and estimating the model T = 2000 times. We then order the resulting estimates and find the
0.05th, 2.5th, 5th, 95th, 97.5th and 99.5th percentiles and construct the confidence intervals with
90%, 95% and 99% confidence level.

In order to simplify the exposition, and since there are no substantial differences between the
several experiments performed, we will only exhibit the results for the experiments A, B and C
(all of them centered in 1) using M = 9 points.

As we can see from Figure 4, the GME interval estimates have almost always smaller width than
the OLS interval estimates, since most of the differences are negative for all the support vectors we
used. This may be a sign of higher precision of the GME estimator. We may note that as we increase
the width of the support vector, the precision of the GME estimates becomes smaller, which implies
that the difference in the precision of GME and OLS estimators decreases. Another interesting
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Figure 4. Difference of width between the confidence intervals of the GME and the OLS estimates (calculated
by: WidthGME − WidthOLS). Support vectors centered in 1, A – Support vector [−1, . . . , 3], B – Support
vector [−3, . . . , 5] and C – Support vector [−7, . . . , 9].

thing, is the fact that, all the confidence intervals (for GME and OLS estimators) include only
positive numbers, excluding the zero in all circumstances (even for a confidence level of 99%).
This means that all the parameters estimated (through GME and OLS) are statistically significant
at the 1% level of significance, confirming the results obtained in the previous subsection.

4. Conclusions

When utility elicitation methods are used to obtain data on the decision-maker’s preferences, it is
very likely that the number of observations generated is small. However, with such small samples
the use of traditional estimation and inference techniques may not be adequate. Moreover, previous
studies have shown that with small samples the GME estimator outperforms OLS. This suggests
that GME might be well suited to estimate utility function when data are obtained through utility
elicitation methods.

In this paper we compare the performance of the GME with OLS in estimating von Neumann and
Morgenstern utility functions. We used data from Abdellaoui et al. [2], who elicited preferences
for 47 individuals. An interesting contribution of this paper is that it provides evidence on the
comparative performance of GME and OLS under small samples using real data. Thus, our paper
complements previous results, that used Monte Carlo simulations, on the comparison of the GME
with OLS.

We reached several interesting conclusions. First, the two estimators do not differ much and
their difference becomes smaller as we increase the width of the parameter support vector used
in the GME estimation. It is well known that GME combines prior information with observed
data. A wider support vector corresponds to less informative priors, so the GME estimator gives
more weight to the data and hence it is closer to OLS. Second, the GME is more precise than
OLS leading to less wide confidence intervals, but the difference between the width of the two
confidence intervals decreases as we use less- informative support vectors. Since GME is a biased
estimator, these results show an interesting trade-off between bias and precision of the GME
estimator. Using a less-informative support vector decreases the bias but it also decreases the
precision of the GME estimator. Thus whenever we have prior information about the interval
where the parameter varies we should use it, since it enables us to reduce the width of the support
vector and consequently increase the precision of the GME estimator. On the other hand, if we
have no prior information, one should use a wide support vector. In this case GME still outperforms
OLS in terms of precision, but the difference in their relative performance is small.

Our results suggest that GME is an interesting alternative to OLS in the estimation of utility
functions using data obtained through utility elicitation methods. Mittelhammer et al. [20] show
that GME outperforms OLS in small samples in terms of the mean square error. Our results show
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that the GME estimators have lower variance, which is consistent with GME having a lower mean
square error. It should be mentioned that the advantage of using GME is higher if one has good
prior information. In the case of the utility functions estimation, one can use utility theory to
choose the center of the support vector of the risk aversion parameter, giving additional support
to the use of GME. Another advantage of GME is that it does not require assumptions about the
theoretical distributions of the errors.

One important contribution of our work is that it is the first one to apply GME in the estimation of
utility functions. Previous literature applied the ME principle to the estimation of utility functions,
without imposing a functional form for the utility function. In this study we applied GME to
estimate a particular functional form of the utility function. This approach has the advantage of
estimating a differentiable utility function, which may be an important feature in solving decision
problems.

One possible direction for future work would be to take into account the fact that the utilities are
normalized between zero and one. In other words, it would be interesting to use GME to estimate
a fractional regression model. Another possible extension would be to explore the choice of the
utility functional form using GME.
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Notes

1. The use of utility elicitation methods presents other difficulties. First, different methods of utility elicitation yield
different results. Thus, one needs to be careful in designing the elicitation method. Second, the methods of elicitation
and validation of results are sometimes difficult to implement.

2. We used normalized data for comparative effects. Utility values are between 0 (worst outcome) and 1 (best outcome).
Income values are also normalized between 0 (lowest income) and 1 (highest income). This explains why the
regression does not include an intercept term. Note that the observation corresponding to the lowest income was
not considered in the estimation as ln0 cannot be computed.

3. It is important to mention that the existence of small samples is not the only circumstance when GME can be
used with econometric and statistical advantages. See, for instance, Fraser [8] that has large samples but where the
existence of multicollinearity justifies the use of GME. On the other hand, Mittelhammer et al. [20] show that the
quality of the GME estimates often perform better than OLS, in several Monte Carlo experiments for small and
large samples.

4. It should be noted that, with such small number of observations, the power of the normality tests is small.
5. Note that we use the same support vector for all the individuals.
6. Considering the large number of experiments and regressions we present most of our results graphically. To provide

an example, the appendix presents a table with the results of 3 of our 27 experiments. The remaining results are not
included in the paper; however, they are available from the authors upon request.
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Appendix

This appendix lists some results obtained in this paper. Since the total amount of results is con-
siderable and thus difficult to present completely in the paper, we provide the results for three
representative experiments: A, D and G for M = 9. These results refer to the experiments with
the smallest widths. All remaining results are available from the authors upon request (Table A1).D

ow
nl

oa
de

d 
by

 [
b-

on
: B

ib
lio

te
ca

 d
o 

co
nh

ec
im

en
to

 o
nl

in
e 

U
E

vo
ra

] 
at

 0
3:

29
 3

0 
O

ct
ob

er
 2

01
3 

http://ideas.repec.org/f/pmi493.html
http://papers.ssrn.com


234 C. Pires et al.

Table A1. Results for the r estimator, standard-deviation and t-Student statistics for the experiments A, D
and G with M = 9.

D
ow

nl
oa

de
d 

by
 [

b-
on

: B
ib

lio
te

ca
 d

o 
co

nh
ec

im
en

to
 o

nl
in

e 
U

E
vo

ra
] 

at
 0

3:
29

 3
0 

O
ct

ob
er

 2
01

3 


