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Abstract

The aim of this paper consists in to give sufficient conditions to ensure
the existence and location of the solutions of a nonlinear fully fourth order
equation with functional boundary conditions.

The arguments make use of the upper and lower solutions method, a
φ – laplacian operator and a fixed point theorem. An application of the
beam theory to a nonlinear continuous model of the human spine allows
to estimate its deformation under some loading forces.

Keywords: Fourth order functional problems, Nagumo-type condition, lower
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1 Introduction

In this paper it will be provided sufficient conditions to obtain existence and
location results for the boundary value problem composed by the equation

− (φ (u′′′(x)))′ = f(x, u(x), u′(x), u′′(x), u′′′(x)), for a. e. x ∈ I ≡ [a, b], (1)

∗With partial support of CRUP, Acção E-99/06
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with φ : R → R an increasing and continuous function such that φ(0) = 0,
f : I×R4 → R a Carathéodory function and the functional boundary conditions





u(b) = A, u′(b) = B, A, B ∈ R ,
0 = L1(u, u′, u′′, u′′(a), u′′′(a)),
0 = L2(u, u′, u′′, u′′(b), u′′′(b)),

(2)

where L1 and L2 are two continuous functions verifying some monotone condi-
tions, to be precise.

The so-called beam equations have been studied in several works but, as
far as we know, this type of fourth order fully nonlinear equation were never
considered with such general functional boundary conditions. Therefore, the
results contained in [9, 12, 13, 14, 17, 18] are improved.

Functional conditions (2) can be applied to several types of boundary value
problems, such as, separated, multi-point or integro-differential problems. In
this point of view, some cases of the four point boundary value problems of
[5, 20] are generalized, more precisely when b = d = 0. The paper [6] is also
improved, not only by the functional dependence on the boundary conditions
but also by the more general definitions assumed for lower and upper solutions,
allowing that, for example, both have the same sign.

The arguments make use of fixed point theory, lower and upper solutions
method and some techniques suggested by [2, 4, 19] for second order and [1, 3]
for third order nonlinear boundary value problems. The location part provided
by these type of results is particularly useful, for instance, to prove the existence
of positive, or negative, solutions (if the lower function is non-negative or the
upper one non-positive) or to prove the multiplicity of solutions (if it is obtained
the existence of solution in disjoint branches). Moreover, it gives some bounds
on the solution and its derivatives, which are important tools in some models,
as it is illustrated forward, for a continuous human spine model.

The second section contains some definitions and preliminary results, namely
an a priori estimation on u′′′ obtained from a Nagumo-type growth assumption.
Third section provides an auxiliary problem, with unique solution, and the main
result: an existence and location theorem. In the last section it is referred
a nonlinear model, that generalizes the classical beam equation presented in
[16], used to study the deformation of the human spine under some loading
conditions.

The results contained in this paper still hold if the explicit boundary data
in (2) are replaced by

u(a) = A, u′(a) = B

or
u(a) = A, u′(b) = B

or
u(b) = A, u′(a) = B

under small and obvious modifications.
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2 Definitions and a priori estimation

In this work it is considered a Carathéodory function f : I × R4 → R, i. e., it
satisfies the following conditions

(i) For each x ∈ R4 the function f(·, x) is measurable on I;

(ii) For a. e. t ∈ I the function f(t, ·) is continuous on R4;

(iii) For each compact set K ⊂ R4 there is a function mK ∈ L1(I) such that

|f(t, x)| ≤ mK(t) for a. e. t ∈ I and all x ∈ K.

The functional part of the boundary conditions are defined by two continuous
functions verifying the following monotonicity assumptions:

(H 1) L1 : C(I)×C(I)×C(I)×R2 → R is nondecreasing on the first, third
and fifth variables and nonincreasing on the second one.

(H 2) L2 : C(I)×C(I)×C(I)×R2 → R is nondecreasing on the first and
third variables and nonincreasing on the second and fifth ones.

Now we introduce the concept of lower and upper solutions of problem (1)
– (2).

Definition 1 A function α ∈ C3(I), such that φ ◦ α′′′ ∈ AC(I), is a lower
solution for problem (1)-(2) if it satisfies

− (φ (α′′′(x)))′ ≤ f(x, α(x), α′(x), α′′(x), α′′′(x)), for a. e. x ∈ I (3)

together with 



α(b) ≤ A, α′(b) ≥ B,
0 ≤ L1(α, α′, α′′, α′′(a), α′′′(a)),
0 ≤ L2(α, α′, α′′, α′′(b), α′′′(b)).

A function β ∈ C3(I), such that φ◦β′′′ ∈ AC(I) is an upper solution for problem
(1)-(2) if

− (φ (β′′′(x)))′ ≥ f(x, β(x), β′(x), β′′(x), β′′′(x)), for a. e. x ∈ I (4)

and 



β(b) ≥ A, β′(b) ≤ B,
0 ≥ L1(β, β′, β′′, β′′(a), β′′′(a)),
0 ≥ L2(β, β′, β′′, β′′(b), β′′′(b)).

(5)

We say that u is a solution of problem (1) – (2) if it is both a lower and an
upper solution.

To deduce existence results we will use the following variation of Schauder
fixed point theorem given in [10, Theorem 4.4.6]:

Theorem 2 Let S be a bounded, closed, non-empty, convex subset of a normed
space X and F : S → S a compact operator. Then F has a fixed point.
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To construct the set S and the compact operator F it is necessary to impose
to the nonlinear part of (1) some growth restriction defined by a Nagumo-type
condition. This condition is used in the study of boundary value problems and,
despite they are not a necessary condition to deduce existence results [8], they
cannot be avoid in general [7]. The imposed condition is the following

Definition 3 Given γj , Γj ∈ C(I) such that γj(x) ≤ Γj(x), for all x ∈ I and
j = 0, 1, 2, consider the set

E =
{
(x, y0, y1, y2, y3) ∈ I × R4 : γj(x) ≤ yj ≤ Γj(x), ∀x ∈ I, j = 0, 1, 2

}
.

A function f : I × R4 → R is said to satisfy a Nagumo-type condition in E
if there exists hE ∈ C ([0, +∞), (0, +∞)), such that

|f(x, y0, y1, y2, y3)| ≤ hE(|y3|), for a. e. (x, y0, y1, y2, y3) ∈ E, (6)

and

min





∫ φ(+∞)

φ(η)

∣∣φ−1 (s)
∣∣ p−1

p

hE(φ−1 (s))
ds ,

∫ φ(−η)

φ(−∞)

∣∣φ−1 (s)
∣∣ p−1

p

hE(φ−1 (s))
ds



 > µ

p−1
p (b− a)

1
p ,

(7)
where

η := max
{

Γ2(b)− γ2(a)
b− a

,
Γ2(a)− γ2(b)

b− a

}
, (8)

and
µ := max

x∈I
Γ2(x)−min

x∈I
γ2(x). (9)

Remark 4 As φ(R) = R is not assumed then φ(±∞) can be finite.

Next result provides an a priori bound for the third derivative of solutions
of equation (1).

Lemma 5 Consider γj , Γj ∈ C(I), j = 0, 1, 2, such that

γj(x) ≤ Γj(x), ∀ x ∈ I,

and let f : E → R be a Carathéodory function satisfying a Nagumo-type con-
dition in E. Then there exists N > 0 (depending only on γ2, Γ2 and hE) such
that for every solution u of (1) satisfying

γi(x) ≤ u(i) (x) ≤ Γi(x), i = 0, 1, 2, (10)

verifies
‖u′′′‖∞ < N.
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Proof. Consider N > 0 large enough such that N > η and

min





∫ φ(N)

φ(η)

∣∣φ−1 (s)
∣∣ p−1

p

hE(φ−1 (s))
ds ,

∫ φ(−η)

φ(−N)

∣∣φ−1 (s)
∣∣ p−1

p

hE(φ−1 (s))
ds



 > µ

p−1
p (b− a)

1
p ,

(11)
with η given in (8) and µ defined in (9).

Let u be a solution of (1) such that (10) holds. Therefore there is x0 ∈ (a, b)
such that

u′′′ (x0) =
u′′ (b)− u′′ (a)

b− a

and

−N < −η ≤ γ2(b)− Γ2(a)
b− a

≤ u′′′ (x0) ≤ Γ2(b)− γ2(a)
b− a

≤ η < N.

If |u′′′ (x)| < N for every x ∈ I the proof is finished. If not, assume that there
is x ∈ I such that u′′′(x) > N or u′′′(x) < −N. In the first case, suppose
that there exists [x1, x2] ⊂ [a, b] such that u′′′ (x2) = max {0, u′′′ (x0)} and
u′′′ (x2) ≤ u′′′ (x) ≤ u′′′ (x1) = N for every x ∈ [x1, x2] .

As f verifies the Nagumo condition then, by (6),
∣∣∣(φ (u′′′(x)))′

∣∣∣ = |f(x, u(x), u′(x), u′′(x), u′′′(x))| ≤ hE(|u′′′(x)|), ∀x ∈ [x1, x2]

and, by (7), the following contradiction with (11) is obtained

∫ φ(N)

φ(η)

∣∣φ−1 (s)
∣∣ p−1

p

hE(|φ−1 (s)|)ds ≤
∫ φ(u′′′(x1))

φ(u′′′(x2))

∣∣φ−1 (s)
∣∣ p−1

p

hE(|φ−1 (s)|)ds

=
∫ x1

x2

|u′′′(x)| p−1
p

hE(|u′′′(x)|) (φ (u′′′(x)))′ dx

≤
∫ x2

x1

|f(x, u (x) , u′(x), u′′(x), u′′′(x))|
hE(|u′′′(x)|) |u′′′(x)|

p−1
p dx

≤ (x2 − x1)
1
p [u′′(x2)− u′′(x1)]

p−1
p

≤ (b− a)
1
p µ

p−1
p .

For [x1, x2] ⊂ [a, b] such that u′′′ (x1) = max {0, u′′′ (x0)} and u′′′ (x1) ≤
u′′′ (x) ≤ u′′′ (x2) = N the arguments are similar and the same happen for the
second case.

3 Existence and location results

The first result to be presented in this section ensures the existence and unique-
ness of the solution of a suitable related problem of (1) – (2).
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Lemma 6 Consider ϕ : R→ R an increasing homeomorphism such that ϕ(0) =
0 and ϕ(R) = R, g : I → R a L1 – function and A, B, h1, h2 ∈ R. Then the
problem 



− (ϕ (u′′′(x)))′ = g(x), for a. e. x ∈ I,

u(b) = A, u′(b) = B,
u′′(a) = h1 , u′′(b) = h2,

(12)

has a unique solution given by the following expression

u(x) = A−B (b− x) +
∫ b

x

∫ b

s

v (r) dr ds,

with

v (x) := h1 +
∫ x

a

ϕ−1

(
τv −

∫ s

a

g (r) dr

)
ds

and τv ∈ R the unique solution of the equation

h2 − h1 =
∫ b

a

ϕ−1

(
τv −

∫ s

a

g (r) dr

)
ds. (13)

Proof. By the change of variable u′′(x) = v(x) it is obtained the Dirichlet
problem

− (ϕ (v′(x)))′ = g(x), for a. e. x ∈ I, v(a) = h1 , v(b) = h2. (14)

Then, for some τ ∈ R, the following identities hold

v′(x) = ϕ−1

(
τ −

∫ x

a

g (r) dr

)
,

v (x) = h1 +
∫ x

a

ϕ−1

(
τ −

∫ s

a

g (r) dr

)
ds. (15)

Now, define

h(τ) = h1 +
∫ b

a

ϕ−1

(
τ −

∫ s

a

g (r) dr

)
ds.

From the properties of function ϕ, we have that function h is continuous,
strictly increasing and satisfies h(R) = R. As consequence equation (13) has a
unique solution τv. Integrating (15) twice,

u(x) = A−B (b− x) +
∫ b

x

∫ b

s

v (r) dr ds

is the unique solution of problem (12).
Before proving the existence result, we enunciate the following lemma given

in [19, lemma 2].
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Lemma 7 For z, w ∈ C(I) such that z(x) ≤ w(x), for every x ∈ I, define

p(x, u) = max{z, min{u,w}}.
Then, for each u ∈ C1(I) the next two properties hold:

(a)
d

dx
p(x, u(x)) exists for a.e. x ∈ I.

(b) If u, um ∈ C1(I) and um → u in C1(I) then

d

dx
p(x, um(x)) → d

dx
p(x, u(x)) for a.e. x ∈ I.

Theorem 8 Assume that there is α a lower solution and β an upper solution
of problem (1)-(2) such that α′′ (x) ≤ β′′(x), for every x ∈ I. Suppose that
assumptions (H1) and (H2) hold and let f : I×R4 → R be a continuous function
satisfying a Nagumo-type condition in

E∗ =
{

(x, y0, y1, y2, y3) ∈ I × R4 : α(i)(x) ≤ yi ≤ β(i)(x), i = 0, 2,
β′ (x) ≤ y1 ≤ α′ (x)

}

and, for (x, y2, y3) ∈ I × R2 fixed, α (x) ≤ y0 ≤ β (x) , β′ (x) ≤ y1 ≤ α′ (x) ,

f (x, α (x) , α′ (x) , y2, y3) ≤ f (x, y0, y1, y2, y3) ≤ f (x, β (x) , β′ (x) , y2, y3) .
(16)

Then problem (1)-(2) has a solution u such that

α (x) ≤ u (x) ≤ β (x) , β′ (x) ≤ u′ (x) ≤ α′ (x) , α′′ (x) ≤ u′′ (x) ≤ β′′ (x) , ∀ x ∈ I.

Remark 9 Note that α′′ ≤ β′′ coupled with the definition of lower and upper
solutions imply that β′ ≤ α′ and α ≤ β.

Proof. Define the continuous truncations, for i = 0, 2,

δi (x, yi) =





β(i) (t) if yi > β(i) (x) ,
yi if α(i) (x) ≤ yi ≤ β(i) (x) ,

α(i) (x) if yi < α(i) (x) .

(17)

and

δ1 (x, y1) =





β′(t) if y1 < β′ (x) ,
y1 if β′ (x) ≤ y1 ≤ α′ (x) ,

α′ (x) if y1 > α′ (x) .
(18)

Consider
N > max {η, ‖α′′′‖∞, ‖β′′′‖∞}

satisfying condition (11), and define the homeomorphism ϕ : R→ R by

ϕ (y) =





φ (y) if |y| ≤ N,

φ(N)−φ(−N)
2N y + φ(N)+φ(−N)

2 if |y| > N.
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Let now
q(y) = max {−N, min {y, N}} (19)

and consider the modified problem composed by the differential equation

− (ϕ (u′′′(x)))′ = f

(
x, δ0 (x, u) , δ1 (x, u′) , δ2 (x, u′′) , q(

d

d t
δ2 (x, u′′))

)
≡ Fu(x)

(20)
with the boundary conditions

u(b) = A, u′(b) = B,

u′′(a) = δ2 (a, u′′(a) + L1(u, u′, u′′, u′′(a), u′′′(a))) ≡ κ1(u), (21)
u′′(b) = δ2(b, u′′(b) + L2(u, u′, u′′, u′′(b), u′′′(b))) ≡ κ2(u).

We say that u ∈ C3(I) such that φ ◦ u′′′ ∈ AC(I) is a solution of problem
(20)-(21) if it satisfies the previous five equalities. We remark that, from Lemma
7 and the definition of q, the right hand side of the equation (20) is a L1 –
function.

Step 1: Every solution of problem (20)-(21) verifies

α (x) ≤ u (x) ≤ β (x) , (22)
β′ (x) ≤ u′ (x) ≤ α′ (x) , (23)
α′′ (x) ≤ u′′ (x) ≤ β′′ (x) (24)
−N ≤ u′′′ (x) ≤ N (25)

Let u be a solution of (20)-(21). Assume, by contradiction, that (24) does not
hold. Define

max
x∈I

(u− β)′′ (x) := (u− β)′′ (x0) > 0.

As, by (21), u′′(a) ≤ β′′(a) and u′′(b) ≤ β′′(b) then x0 ∈ (a, b), u′′′(x0) = β′′′(x0)
and u′′ > β′′ on [x0, x0 + r) for some r > 0 such that u′′(x0 + r) = β′′(x0 + r).
Moreover u′′′ (x0) = β′′′ (x0).

So, by using (4), (16), (17), (19) and the choice of N , we arrive at the
following inequality on (x0, x0 + r):

− (ϕ (u′′′(x)))′ = f

(
x, δ0 (x, u) , δ1 (x, u′) , δ2 (x, u′′) , q(

d

d t
δ2 (x, u′′))

)

= f (x, δ0 (x, u) , δ1 (x, u′) , β′′ (x) , β′′′ (x))
≤ f (x, β (x) , β′ (x) , β′′ (x) , β′′′ (x))
≤ − (φ (β′′′(x)))′

= − (ϕ (β′′′(x)))′ .

This property implies that u′′′ ≥ β′′′ on (x0, x0 + r), which contradicts the
definition of r > 0.

So u′′ (x) ≤ β′′ (x) for every x ∈ I and by similar arguments it can be proved
that α′′ (x) ≤ u′′ (x) in I.
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Integrating (24), conditions (23) and (22) are easily obtained by the bound-
ary conditions of lower and upper solutions and (21).

At last, applying Lemma 5 with γj(x) = α(j)(x), Γj(x) = β(j)(x), for j =
0, 2, γ1(x) = β′(x) and Γ1(x) = α′(x), then condition (25) holds.

Step 2: Problem (20)-(21) has a solution u1(x).
Let u ∈ C3(I) be fixed. From Lemma 6 it is clear that the solutions of

problem (20)-(21) are the fixed points of the operator

T u(x) = A−B (b− x) +
∫ b

x

∫ b

s

vu (r) dr ds, (26)

with

vu (x) := κ1(u) +
∫ x

a

ϕ−1

(
τu −

∫ s

a

Fu (r) dr

)
ds

and τu ∈ R the unique solution of the equation

κ2(u)− κ1(u) =
∫ b

a

ϕ−1

(
τu −

∫ s

a

Fu (r) dr

)
ds. (27)

Note that there exists Ψ ∈ L1(I) such that

| Fu(s) |≤ Ψ(s) for a. e. s ∈ I and for all u ∈ C3(I),

and then, since κ2(u)−κ1(u) is bounded in C3(I), there exists L > 0 such that

| τu |≤ L for all u ∈ C3(I) (28)

So, we conclude that operator T (C3(I)) is bounded in C3(I).
To verify that operator T is compact in C3(I) we follow the arguments given

in [4, Theorem 2.1].
The proof follows as a direct application of Theorem 2.
Step 3: u1(x) is a solution of problem (1)-(2).
This function u1(x) will be a solution of (1)-(2) if it verifies,

α′′ (a) ≤ u′′(a) + L1(u, u′, u′′, u′′(a), u′′′(a)) ≤ β′′ (a) (29)
α′′ (b) ≤ u′′(b) + L2(u, u′, u′′, u′′(b), u′′′(b)) ≤ β′′ (a) . (30)

Suppose, by contradiction, that

u′′(a) + L1(u, u′, u′′, u′′(a), u′′′(a)) > β′′ (a) .

Thus
u′′(a) = δ2 (a, u′′(a) + L1(u, u′, u′′, u′′(a), u′′′(a))) = β′′ (a)

by (24), u′′′ (a) = u′′′ (a+) ≤ β′′′ (a+) = β′′′ (a) and, by (H1), (22), (23), (24)
and (5), it is obtained the contradiction

u′′ (a) + L1(u, u′, u′′, u′′(a), u′′′(a)) = β′′ (a) + L1(u, u′, u′′, β′′(a), u′′′(a))
≤ β′′ (a) + L1(u, u′, u′′, β′′(a), β′′′(a))
≤ β′′ (a) + L1(β, β′, β′′, β′′(a), β′′′(a))
≤ β′′ (a) .
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By analogous technique it can be proved that α′′ (a) ≤ u′′(a)+L1(u, u′, u′′, u′′(a), u′′′(a))
and (29) hold.

Inequality (30) is proved in the same way.
Now, given A, B ∈ R and q1, q2 ≥ 0, defining

L1(u, v, w, x, y) = −p1 x + q1 y + C,

L2(u, v, w, x, y) = −p2 x− q2 y + D,

we obtain, as a corollary of the previous result, the following one

Corollary 10 Suppose that there exist α, β ∈ C3(I), such that φ◦α′′′, φ◦β′′′ ∈
AC(I), satisfying inequalities (3) and (4) respectively. Moreover, if α′′ ≤ β′′ on
I and the following inequalities hold:

α(b) ≤ A ≤ β(b),

α′(b) ≥ B ≥ β′(b),

p1α
′′(a)− q1α

′′′(a) ≤ C ≤ p1β
′′(a)− q1β

′′′(a),

p2α
′′(b) + q2α

′′′(b) ≤ D ≤ p2β
′′(b) + q2β

′′′(b)

and function f satisfies the hypotheses imposed in Theorem 8, then problem
composed by (1) together with the initial - Separated boundary conditions

u(b) = A,

u′(b) = B,

p1u
′′(a)− q1u

′′′(a) = C,

p2u
′′(b) + q2u

′′′(b) = D.

has a solution u such that

α (x) ≤ u (x) ≤ β (x) , β′ (x) ≤ u′ (x) ≤ α′ (x) , α′′ (x) ≤ u′′ (x) ≤ β′′ (x) , ∀ x ∈ I.

Remark 11 Note that in this case, on the contrary to the usual situations, we
do not impose to the real constants p1 and q1 to be nonnegative.

Another particular case is given by the multi-point boundary value condi-
tions

u(b) = A, u′(b) = B, u′′(a) =
m−2∑

i=1

ai u′′(τi), u′′(b) =
n−2∑

i=1

bi u′′(ηi), (31)

where a < τ1 < τ2 < · · · < τm−2 < b, a < η1 < η2 < · · · < ηn−2 < b and ai,
bj ≥ 0 for all i ∈ {1, . . . ,m− 2} and j ∈ {1, . . . , n− 2}.

Defining

L1(u, v, w, x, y) =
m−2∑

i=1

ai w(τi)− x,

L2(u, v, w, x, y) =
n−2∑

i=1

bi w(ηi)− x
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we arrive at the following result

Corollary 12 Suppose that there exist α, β ∈ C3(I), such that φ◦α′′′, φ◦β′′′ ∈
AC(I), satisfying inequalities (3) and (4) respectively. Moreover if α′′ ≤ β′′ on
I and the following inequalities hold:

α(b) ≤ A ≤ β(b),

α′(b) ≥ B ≥ β′(b),

α′′(a) ≤
m−2∑

i=1

ai α′′(τi) ≤
m−2∑

i=1

ai β′′(τi) ≤ β′′(a),

α′′(b) ≤
n−2∑

i=1

bi α′′(ηi) ≤
n−2∑

i=1

bi β′′(ηi) ≤ β′′(b)

and function f satisfies the hypotheses imposed in Theorem 8, then problem (1),
(31) has a solution u such that

α (x) ≤ u (x) ≤ β (x) , β′ (x) ≤ u′ (x) ≤ α′ (x) , α′′ (x) ≤ u′′ (x) ≤ β′′ (x) , ∀ x ∈ I.

4 Continuous model for the human spine defor-
mation

The mechanical properties of the human spine have been studied by several
authors (see [16] and the references therein) by a continuous beam model. Of
course this type of models cannot describe certain local features of the spine.
However they are useful to analyze the overall deformation of the spine under
various loading conditions, such as, aircraft ejections and vehicle crash situa-
tions.

Furthermore the cantilever beam model correlate reasonably well some char-
acteristics or certain form of scoliosis (see [15], its references and Figure 2). In
fact the total lateral displacement, y(x), of the beam-column, with length L, is
expressed as the sum of the initial lateral displacement, y0(x), and the lateral
displacement due to the axial and transverse loads, y1(x), i.e.,

y(x) = y0(x) + y1(x).

This displacement y1(x) is modelled [16] by the differential equation

EI y
(4)
1 + P y′′1 = Q− P y′′0

where EI is the flexural rigidity of the beam-column, P the axial load and Q
the transverse load. As it is well known in the elasticity theory, this shearing
force Q is related with the third derivative of the displacement (see, for instance,
[11]). Therefore we consider the nonlinear equation

EI y
(4)
1 + P y′′1 = q(y′′′1 )− P y′′0 (32)
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Figure 1: A continuous model for a beam-spine system

with q some continuous function (Figure 1).
The boundary conditions for the unknown lateral displacement y1(x), con-

sidered here, model a cantilever beam-column on the lower end whose curvature
attains its maximal value on the left endpoint of the interval J := [−L/2, L/2]:





y1

(
L

2

)
= 0,

y′1

(
L

2

)
= 0,

y′′1

(
−L

2

)
= max

x∈J
{y′′1 (x)},

y′′1

(
L

2

)
= 0.

(33)

By defining in this case
φ (z) ≡ z,

f (x, z1, z2, z3, z4) = − P

EI
z3 +

q(z4)− P y′′0 (x)
EI

,
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Figure 2: (a) Frontal X-ray picture of the flexible waist part Th7-Th12, L1-L5 of the

spine of a patient with lumbar scoliosis, caused by a difference in leg length of 0.5 cm

and standing in an upright muscle-relaxed position. (b) Extracted contour picture of

(a).

L1(z1, z2, z3, z4, z5) = −z4 + max
x∈J

{z3(x)},

and
L2(z1, z2, z3, z4, z5) = −z4

it is immediate to verify that problem (32) – (33) is a particular case of problem
(1) – (2).

Assuming that the initial lateral displacement y0 ∈ W 2,1(J) then if the
transverse force q, the axial force P , constant EI and the beam length L verify
the following relations for x ∈ J :

min
t∈[−3aL/4,aL/4]

q(t) ≥ a

(
−EI + P

x2

2
− PL

x

4
− P

L2

10

)
+ P y′′0 (x), (34)

max
t∈[−2bL,−bL]

q(t) ≤ b

(
−EI + P

x2

2
− PL

3x

2
+ PL2

)
+ P y′′0 (x), (35)

for some b ≥ 2a/25 ≥ 0, one can verify that the functions

α (x) =
a

24
x4 − a

24
Lx3 − a

20
L2x2 + aL3x− a

2
L4

and
β (x) =

b

24
x4 − b

4
Lx3 +

b

2
L2x2 − 2bL3x + bL4
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are, respectively, lower and upper solutions of problem (32) – (33). As f verifies
a Nagumo-type condition in every set

E =
{

(x, z) ∈
[
−L

2
,
L

2

]
× R :

a

2
x2 − a

4
Lx− a

10
L2 ≤ z ≤ b

2
x2 − 3

2
bLx + b L2

}

then, by Theorem 8, there is a solution of problem (32)-(33) such that the

Figure 3: For a = 0.8, b = 0.1, L = EI = P = 1 there is a solution in the strip
bounded by lower and upper solutions of problem (32)-(33)

lateral displacement due to the axial and transverse loads verifies

a

24
x4− a

24
Lx3− a

20
L2x2+aL3x−a

2
L4 ≤ y1 (x) ≤ b

24
x4− b

4
Lx3+

b

2
L2x2−2bL3x+bL4,

b

6
x3 − 3b

4
Lx2 + b L2x− 2 b L3 ≤ y′1 (x) ≤ a

6
x3 − a

8
Lx2 − a

10
L2x + aL3

and
a

2
x2 − a

4
Lx− a

10
L2 ≤ y′′1 (x) ≤ b

2
x2 − 3

2
bLx + b L2

for every x ∈ J.
We note that small values of the transverse force q allow small values on a, b

and, therefore, on the lateral displacement of the spine y1.
As example, it can be mentioned that for a = 0.8, b = 0.1, L = EI = P = 1,

provided function q satisfies properties (34) and (35), there is a solution y∗1(x)
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of problem (32)-(33) such that

x4

30
− x3

30
− x2

25
+

4x

5
− 2

5
≤ y∗1(x) ≤ x4

240
− x3

40
+

x2

20
− x

5
+

1
10

for x ∈ J , as it is illustrated in Figure 3.
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