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Abstract

In this paper we continue investigations started in [?] concerning the
extension of the variational Strong Maximum Principle for lagrangeans
depending on the gradient through a Minkowski gauge. We essentially
enlarge the class of comparison functions, which substitute the identical
zero when the lagrangean is not longer strictly convex at the origin.

1 Introduction

The Strong Maximum Principle, a well known property of the elliptic partial
differential equations (see, e.g., [?, ?] and the bibliography therein), can be for-
mulated in the variational setting as was done by A. Cellina in 2002. Extending
the main result in [?] we consider the integral functional∫

Ω

f (ρF (∇u (x))) dx, (1.1)

where Ω ⊂ Rn is an open bounded connected domain; f : R+ → R+ ∪ {+∞},
f (0) = 0, is a lower semicontinuous convex function; F ⊂ Rn is a convex
closed bounded set with 0 ∈ intF (interior of F ), and ρF (·) is the Minkowski
functional (gauge function) associated to F ,

ρF (ξ) := inf {λ > 0 : ξ ∈ λF} . (1.2)
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In the traditional sense, the Strong Maximum Principle (SMP) for (??)
means that there is no a nonconstant continuous minimizer of this functional
on u0 (·) + W 1,1

0 (Ω) (with some Sobolev function u0 (·)), admitting its mini-
mal (maximal) value in Ω. In the case of a rotationally invariant lagrangean
(ρF (ξ) = ‖ξ‖) and n > 1 it was proven in [?] that this property is valid if and
only if the function f (·) is strictly convex and smooth at the origin, or, in other
words, if the equalities

∂f∗ (0) = {0} (1.3)

and
∂f (0) = {0} (1.4)

hold. Here, as usual, ∂f stands for the subdifferential of the function f (·)
in the sense of Convex Analysis, and f∗ (·) is the Legendre-Fenchel tranform
(conjugate) of f (·). Observe that in the case n = 1 the smoothness of f (·)
at zero (assumption (??)) is not necessary, and the SMP is valid unless the
function f (·) is not affine near the origin (the latter condition already contains
(??)).

In [?] we proved that under the same hypotheses on f (·) the Strong Maxi-
mum Principle remains valid for a general functional (??), where the gauge F is
not assumed to be either rotund, smooth or symmetric. Furthermore, we tried
to extend the SMP to the case when the condition (??) fails.

Since the SMP can be equivalently reformulated as a comparison property:

if a continuous nonnegative (nonpositive)
minimizer u (·) of the functional (??) on

u0 (·) +W 1,1
0 (Ω) touches zero at some point

x∗ ∈ Ω then necessarily u (·) ≡ 0 on Ω, (1.5)

it is obviously violated whenever the lagrangean is no longer strictly convex at
the origin (see also [?]). Nevertheless, we emphasized a class C of continuous
functions, which being themselves solutions of the variational problem can sub-
stitute in some sense the identical zero in the property (??). These functions
(further called test, or comparison, functions) depend certainly on the subdif-
ferential ∂f∗ (0) and reduce to constants when ∂f∗ (0) reduces to the singleton
{0}. In the place of the null-function in (??), clearly, any constant can stand.

In the case ∂f∗ (0) 6= {0} so extended Strong Maximum Principle for a test
function û (·) ∈ C can be given as follows:

each continuous minimizer of (??) on

u0 (·) +W 1,1
0 (Ω) such that u (x) ≥ û (x) (respectively,

u (x) ≤ û (x) ), x ∈ Ω, having the same points
of local minimum (respectively, local maximum)
as û (·) should coincide with û (·) everywhere on Ω. (1.6)
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Observe that all the functions û (·) ∈ C are written in terms of the polar set
F 0. Namely, in the simplest case of unique local minimum (local maximum)
point x0 ∈ Ω the functions û+

x0,µ (x) := µ + aρF 0 (x− x0) and û−x0,µ (x) :=
µ− aρF 0 (x0 − x) belong to C for each real µ. Here a := sup ∂f∗ (0). If instead
∂f∗ (0) = {0} (equivalently, a = 0) then we can take x0 = x∗ where x∗ is an
arbitrary ”floating” point from Ω (see (??)), and we arrive at the traditional
SMP although the property (??) is not formally applicable.

In [?] also a ”multipoint” version of the Strong Maximum Principle was
established when the comparison function û (·) is the lower (upper) envelope of
a finite number of functions û+

x0,µ (·) (respectively, û−x0,µ (·)) for various x0 ∈ Ω
and µ ∈ R. Notice that (??) takes place only for convex domains Ω ⊂ Rn (or,
at least, under a kind of star-shapeness hypothesis that can not be removed, see
[?]).

Another restriction, under which validity of the property (??) was proven, is
smoothness of the gauge function ρF (·), or, equivalently, rotundity of the polar
set F 0. In fact, one of the tools we use in the proofs is the so named modulus
of rotundity

MF 0 (r;α, β) := inf {1− ρF 0 (ξ + λ (η − ξ)) :

ξ, η ∈ ∂F 0, ρF 0 (ξ − η) ≥ r, α ≤ λ ≤ β
}

, (1.7)

which is strictly positive for all r > 0 and all 0 < α ≤ β < 1 whenever F 0 is
rotund.

In this paper we essentially enlarge the class C envolving the infinite (con-
tinuous) envelopes of the functions û±x0,µ (·) by such a way that the generalized
SMP gets an unique extremal extension principle and unifies both properties
(??) and (??). Namely, given an arbitrary function θ (·) defined on a closed
subset Γ ⊂ Ω and satisfying a natural slope condition w.r.t. F we prove in
Section 3 that the inf-convolution

u+
Γ,θ (x) := inf

y∈Γ
{θ (y) + aρF 0 (x− y)} (1.8)

(respectively, the sup-convolution

u−Γ,θ (x) := sup
y∈Γ
{θ (y)− aρF 0 (y − x)} ) (1.9)

is the only continuous minimizer u (·) of the functional (??) on u0 (·)+W 1,1
0 (Ω)

such that u (x) = θ (x) on Γ and u (x) ≥ u+
Γ,θ (x) (respectively, u (x) ≤ u−Γ,θ (x)),

x ∈ Ω. The domain Ω is always assumed to be convex.

2 Preliminaries. Auxiliary statements

In what follows we assume that

a := sup ∂f∗ (0) > 0,
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and so the second Cellina’s hypothesis (??) is automatically fulfilled. Further-
more, we introduce the nondecreasing upper semicontinuous function

ϕ (t) := sup ∂f∗ (t) .

So ϕ (0) = a and ϕ (t) < +∞ on the interior of the domain

domf∗ :=
{
t ∈ R+ : f∗ (t) < +∞

}
.

The version of SMP we wish to prove is essentially based on the following local
estimates of continuous minimizers of (??) obtained in [?] by using the dual
properties of convex sets (see, e.g., [?] or [?]), being themselves an interesting
result of Convex Analysis.

Theorem 1 Given an open bounded region Ω ⊂ Rn, n ≥ 1, and a continuous
admissible minimizer ū (·) of the functional (??) on u0 (·) + W 1,1

0 (Ω), assume
a point x̄ ∈ Ω and real numbers β > 0 and µ to be such that

ū (x) ≥ µ ∀x ∈ x̄− βF 0 ⊂ Ω

and
ū (x̄) > µ+ aβ.

Then for some η > 0 the inequality

ū (x) ≥ µ+ ϕ (η) (β − ρF 0 (x̄− x)) (2.1)

holds for all x ∈ x̄− βF 0.
Simmetrically, if a point x̄ ∈ Ω and numbers β > 0 and µ are such that

ū (x) ≤ µ ∀x ∈ x̄+ βF 0 ⊂ Ω

and
ū (x̄) < µ− aβ,

then there exists η > 0 such that

ū (x) ≤ µ− ϕ (η) (β − ρF 0 (x− x̄)) (2.2)

for all x ∈ x̄+ βF 0.

Roughly speaking, the statement above means that for each continuous ad-
missible minimizer ū (·) of (??) and for each point x̄ ∈ Ω, which is not local
extremum for ū (·), the deviation of ū (·) from the extremal level can be con-
trolled near x̄ by an affine transformation of the dual Minkowski gauge (see (??)
and (??)). Recall that admissible minimizers are those giving finite values to
functional (??).

In the case a > 0 (it is our standing assumption along with the paper) we
have the following simple consequence of this theorem.
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Corollary 1 Given Ω ⊂ Rn, n ≥ 1, and ū (·) as in Theorem 1 let us assume
that for some x0 ∈ Ω and δ > 0

ū (x) ≥ ū (x0) + aρF 0 (x− x0) ∀x ∈ x0 + δF 0 ⊂ Ω. (2.3)

Then

ū (x) = ū (x0) + aρF 0 (x− x0) ∀x ∈ x0 +
δ

‖F‖ ‖F 0‖+ 1
F 0.

Similarly, if in the place of (??)

ū (x) ≤ ū (x0)− aρF 0 (x0 − x) ∀x ∈ x0 − δF 0 ⊂ Ω (2.4)

then

ū (x) = ū (x0)− aρF 0 (x0 − x) ∀x ∈ x0 −
δ

‖F‖ ‖F 0‖+ 1
F 0.

Here ‖F‖ := sup {‖ξ‖ : ξ ∈ F} .

As standing hypotheses in what follows we assume that F ⊂ Rn is a convex
closed bounded set, 0 ∈ intF , with smooth boundary (the latter means that the
Minkowski functional ρF (ξ) is Fréchet differentiable at each ξ 6= 0), and that
Ω ⊂ Rn is an open convex bounded region.

Let us consider an arbitrary nonempty closed subset Γ ⊂ Ω and a function
θ : Γ→ R satisfying the slope condition:

θ (x)− θ (y) ≤ aσF (x− y) ∀x, y ∈ Γ, (2.5)

where
σF (ξ) := sup

v∈F
〈v, ξ〉

is the support function of F (〈·, ·〉 means the inner product in Rn). It is well
known that

•
(
F 0
)0

= F ;

• σF (ξ) = ρF 0 (ξ) whenever ξ ∈ F 0;

• the polar set F 0 is rotund (see Section 1).

We will use also the following property of the gauge function:

1

‖F‖
‖ξ‖ ≤ ρF (ξ) ≤

∥∥F 0
∥∥ ‖ξ‖ . (2.6)

Let us define now inf- and sup-convolutions of θ (·) with the gauge function
aρF 0 (·) by the formulas (??) and (??). Observe first that the function u±Γ,θ (·)
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is the minimizer of (??) on u±Γ,θ (·) +W 1,1
0 (Ω). Indeed, it is obviously Lipschitz

continuous on Ω, and for its (classic) gradient ∇u±Γ,θ existing by Rademacher’s
theorem we have that

∇u±Γ,θ (x) ∈ ∂cu±Γ,θ (x) ⊂ aF

for a.e. x ∈ Ω (see [?, Theorem 2.8.6]). Here ∂c stands for the Clarke’s subdif-
ferential of a (locally) Lipschitzean function. Consequently,

f
(
ρF

(
∇u±Γ,θ (x)

))
= 0

a.e. on Ω, and the function u±Γ,θ (·) gives to (??) the minimal possible value
zero.

Due to the slope condition (??) it follows that u±Γ,θ (x) = θ (x) for all x ∈
Γ. Moreover, u±Γ,θ (·) is the (unique) viscosity solution of the Hamilton-Jacobi
equation

± (ρF (∇u (x))− a) = 0, u |Γ = θ,

(see, e.g., [?]).
Notice that Γ can be a finite set, say {x1, x2, ..., xm} . In this case θ (·)

associates to each xi a real number θi, i = 1, ...,m, and the condition (??)
slightly strengthened (by assuming that the inequality in (??) is strict for
xi 6= xj) means that all the simplest test functions θi + aρF 0 (x− xi) (respec-
tively, θi − aρF 0 (xi − x)) are essential (not superfluous) in constructing the
respective lower or upper envelope. Then the extremal property established
below is reduced to the extended SMP (??) (see [?, Theorem 6]).

On the other hand, if θ (·) is a Lipschitz continuous function defined on a
closed convex set Γ ⊂ Ω with nonempty interior then (??) holds iff

∇θ (x) ∈ aF

for almost each (a.e.) x ∈ Γ. This immediately follows from Lebourg’s mean
value theorem (see [?, p. 41]) recalling the properties of the Clarke’s subdiffer-
ential and from the separability theorem.

Certainly, the mixed (discrete and continuous) case can be considered as
well, and all the situations are unified by the hypothesis (??).

In the particular case θ ≡ 0 ((??) is trivially fulfilled) the function u+
Γ,θ (x) is

nothing else than the minimal time necessary to achieve the closed set Γ from
the point x ∈ Ω by trajectories of the differential inclusion with the constant
convex right-hand side

−aẋ (t) ∈ F 0, (2.7)

while −u−Γ,θ (x) is, contrarily, the minimal time, for which trajectories of (??)

arrive at x starting from a point of Γ. Furthermore, if F = B is the closed unit
ball centered at the origin then the gauge function ρF 0 (·) is the euclidean norm
in Rn, and we have

u±Γ,θ (x) = ±adΓ (x)
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where dΓ (·) means the distance from a point to the set Γ.

Proving the main theorem below we essentially use the following simple prop-
erty of extremums in (??) and (??), which generalizes a well-known property of
metric projections (see [?, Lemma 1]).

Proposition 1 Given an arbitrary nonempty closed set Γ ⊂ Rn and a real-
valued function θ(·) defined on Γ let us assume that for x ∈ Rn \Γ the minimum
of y 7→ θ(y)+aρF 0(x−y) (respectively, the maximum of y 7→ θ(y)−aρF 0(y−x))
on Γ is attained at some point ȳ ∈ Γ. Then ȳ is also a minimizer of y 7→
θ(y) + aρF 0(xλ − y) (respectively, the maximizer of y 7→ θ(y) − aρF 0(y − xλ))
for all λ ∈ [0, 1], where xλ := λx+ (1− λ) ȳ.

3 Generalized Strong Maximum Principle

Now we are ready to deduce the extremal property of the functions u±Γ,θ (·)
announced above.

Theorem 2 Under all the standing hypotheses formulated in the previous sec-
tion let us assume that a continuous admissible minimizer ū (·) of functional
(??) on u0 (·) +W 1,1

0 (Ω) is such that

(i) ū (x) = u+
Γ,θ (x) = θ (x) ∀x ∈ Γ;

(ii) ū (x) ≥ u+
Γ,θ (x) ∀x ∈ Ω.

Then ū (x) ≡ u+
Γ,θ (x) on Ω.

Simmetrically, if a continuous admissible minimizer ū (·) satisfies the con-
ditions

(i)
′
ū (x) = u−Γ,θ (x) = θ (x) ∀x ∈ Γ;

(ii)
′
ū (x) ≤ u−Γ,θ (x) ∀x ∈ Ω,

then ū (x) ≡ u−Γ,θ (x) on Ω.

Proof. Let us prove the first part of Theorem only since the respective change-
ments in the symmetric case are obvious.

Given a continuous admissible minimizer ū (·) satisfying conditions (i) and
(ii) we suppose, on the contrary, that there exists x̄ ∈ Ω\Γ with ū (x̄) > u+

Γ,θ (x̄).
Let us denote by

Γ+ :=
{
x ∈ Ω : ū (x) = u+

Γ,θ (x)
}
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and claim that
u+

Γ,θ (x) = inf
y∈Γ+

{ū (y) + aρF 0 (x− y)} (3.1)

for each x ∈ Ω. Indeed, the inequality ”≥” in (??) is obvious because Γ+ ⊃ Γ
and ū (y) = θ (y), y ∈ Γ. On the other hand, given x ∈ Ω take an arbitrary
y ∈ Γ+ and due to the compactness of Γ we find y∗ ∈ Γ such that

ū (y) = θ (y∗) + aρF 0 (y − y∗) . (3.2)

Then, by triangle inequality,

ū (y) + aρF 0 (x− y) ≥ θ (y∗) + aρF 0 (x− y∗) ≥
≥ u+

Γ,θ (x) . (3.3)

Passing to infimum in (??) we prove the inequality ”≤” in (??) as well.
Since for arbitrary x, y ∈ Γ+ and for y∗ ∈ Γ satisfying (??) we have

ū (x)− ū (y) = u+
Γ,θ (x)− u+

Γ,θ (y) ≤ aρF 0 (x− y∗)− aρF 0 (y − y∗) ≤
≤ aσF (x− y) , (3.4)

we can extend the function θ : Γ→ R to the (closed) set Γ+ ⊂ Ω by setting

θ (x) = ū (x) , x ∈ Γ+,

and all the conditions on θ (·) remain valid (see (??) and (??)). So, without loss
of generality we can assume that the strict inequality

ū (x) > u+
Γ,θ (x) (3.5)

holds for all x ∈ Ω \ Γ 6= ∅.

Notice that the convex hull K := co Γ is the compact set contained in Ω
(due to the convexity of Ω). Let us choose now ε > 0 such that K ± εF 0 ⊂ Ω
and denote by

δ := 2εMF 0

(
2ε

∆
;

ε

ε+ ∆
,

∆

ε+ ∆

)
> 0,

where MF 0 is the modulus of rotundity associated to F 0 (see (??)) and

∆ := sup
ξ,η∈Ω

ρF 0 (ξ − η)

is the ρF 0 -diameter of the region Ω. Similarly as in [?] (see Step 1 in the proof
of Theorem 5) we show that

ρF 0 (y1 − x) + ρF 0 (x− y2)− ρF 0 (y1 − y2) ≥ δ (3.6)

whenever y1, y2 ∈ Γ and x ∈ Ω�
[(
K + εF 0

)
∪
(
K − εF 0

)]
. Indeed, we obvi-

ously have

ε ≤ ρ1 := ρF 0 (y1 − x) ≤ ∆ and ε ≤ ρ2 := ρF 0 (x− y2) ≤ ∆,
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and, consequently,

λ :=
ρ2

ρ1 + ρ2
∈
[

ε

ε+ ∆
,

∆

ε+ ∆

]
. (3.7)

Setting ξ1 := y1−x
ρ1

and ξ2 := x−y2
ρ2

we can write

ξ1 − ξ2 =

(
1

ρ1
+

1

ρ2

)(
ρ2

ρ1 + ρ2
y1 +

ρ1

ρ1 + ρ2
y2 − x

)
,

and hence

ρF 0 (ξ1 − ξ2) ≥
(

1

ρ1
+

1

ρ2

)
ε ≥ 2ε

∆
. (3.8)

On the other hand,

ρF 0 (y1 − x) + ρF 0 (x− y2)− ρF 0 (y1 − y2)

= (ρ1 + ρ2)

[
1− ρF 0

(
ρ1

ρ1 + ρ2
ξ1 +

ρ2

ρ1 + ρ2
ξ2

)]
≥

≥ 2ε [1− ρF 0 (ξ1 + λ (ξ2 − ξ1))] . (3.9)

Combining (??), (??), (??) and the definition of the rotundity modulus (??) we
arrive at (??).

Let us fix x̄ ∈ Ω�Γ and ȳ ∈ Γ such that

u+
Γ,θ (x̄) = θ (ȳ) + aρF 0 (x̄− ȳ) .

Then by Proposition 1 the point ȳ is also a minimizer on Γ of the function
y 7→ θ (y) + aρF 0 (xλ − y) , where xλ := λx̄+ (1− λ) ȳ, λ ∈ [0, 1], i.e.,

u+
Γ,θ (xλ) = θ (ȳ) + aρF 0 (xλ − ȳ) . (3.10)

Define now the Lipschitz continuous function

v̄ (x) := max {ū (x) ,min {θ (ȳ) + aρF 0 (x− ȳ) ,

θ (ȳ) + a (δ − ρF 0 (ȳ − x))}} (3.11)

and claim that v̄ (·) minimizes the functional (??) on the set ū (·) + W 1,1
0 (Ω).

In order to prove this we observe first that for each x ∈ Ω, x /∈ K ± εF 0, and
for each y ∈ Γ, by the slope condition (??) and by (??), the inequality

θ (y) + aρF 0 (x− y)− θ (ȳ) + aρF 0 (ȳ − x)

≥ a (ρF 0 (ȳ − x) + ρF 0 (x− y)− ρF 0 (ȳ − y)) ≥ aδ (3.12)

holds. Passing to infimum in (??) for y ∈ Γ and taking into account the basic
assumption (ii) , we have

ū (x) ≥ inf
y∈Γ
{θ (y) + aρF 0 (x− y)}

≥ θ (ȳ) + a (δ − ρF 0 (ȳ − x)) ,
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and, consequently, v̄ (x) = ū (x) for all x ∈ Ω \
[(
K + εF 0

)
∪
(
K − εF 0

)]
. In

particular, v̄ (·) ∈ ū (·) +W 1,1
0 (Ω). Furthermore, setting

Ω′ := {x ∈ Ω : v̄ (x) 6= ū (x)} ,

by the well known property of the support function, we have ∇v̄ (x) ∈ aF for
a.e. x ∈ Ω′, while ∇v̄ (x) = ∇ū (x) for a.e. x ∈ Ω�Ω′. Then∫

Ω

f (ρF (∇v̄ (x))) dx =

∫
Ω�Ω′

f (ρF (∇ū (x))) dx

≤
∫
Ω

f (ρF (∇ū (x))) dx ≤
∫
Ω

f (ρF (∇u (x))) dx

for each u (·) ∈ ū (·) +W 1,1
0 (Ω).

Finally, setting

µ := min

{
ε,

δ

(‖F‖ ‖F 0‖+ 1)
2

}
,

we see that the minimizer v̄ (·) satisfies the inequality

v̄ (x) ≥ θ (ȳ) + aρF 0 (x− ȳ) (3.13)

on ȳ + µ
(
‖F‖

∥∥F 0
∥∥+ 1

)
F 0. Indeed, it follows from (??) that

ρF 0 (x− ȳ) + ρF 0 (ȳ − x) ≤ µ
(
‖F‖

∥∥F 0
∥∥+ 1

)2 ≤ δ
whenever ρF 0 (x− ȳ) ≤ µ

(
‖F‖

∥∥F 0
∥∥+ 1

)
, implying that the minimum in (??)

is equal to θ (ȳ) + aρF 0 (x− ȳ). Since, obviously, v̄ (ȳ) = θ (ȳ), applying Corol-
lary 1 we deduce from (??) that

v̄ (x) = θ (ȳ) + aρF 0 (x− ȳ)

for all x ∈ ȳ + µF 0 ⊂ K + εF 0 ⊂ Ω. Taking into account (??), we have

ū (x) ≤ θ (ȳ) + aρF 0 (x− ȳ) , x ∈ ȳ + µF 0. (3.14)

On the other hand, for some λ0 ∈ (0, 1] the points xλ, 0 ≤ λ ≤ λ0, belong to
ȳ + µF 0. Combining now (??) for x = xλ with (??) we obtain

ū (xλ) ≤ u+
Γ,θ (xλ)

and hence (see the hypothesis (ii))

ū (xλ) = u+
Γ,θ (xλ) ,

0 ≤ λ ≤ λ0, contradicting (??).
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