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Abstract/Resumo : 
In this paper, we develop a new immunization model based on a parametric specification of the term 
structure of interest rates. The model extends traditional duration analysis to account for both parallel and 
non-parallel term structure shifts that have an economic meaning. Contrary to most interest rate risk 
models, we analyse both first-order and second-order conditions for bond portfolio immunization and 
conclude that the key to successful protection will be to build up a bond portfolio such that the gradient of 
its future value is zero, and such that its Hessian matrix is positive semidefinite.  In addition, we provide 
explicit formulae for new parametric interest rate risk measures and present alternative approaches to 
implement the immunization strategy. Furthermore, we provide useful expressions for the sensitivity of 
interest rate risk measures to changes in term structure shape parameters. 
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1 Introduction

Immunization, which may be de�ned as the protection of the nominal value of a portfolio (or

the net value of a �rm) against changes in the term structure of interest rates, is a well-known

area of portfolio management. Immunization allows the setting up and management of a bond

portfolio in such a way that this portfolio reaches a predetermined goal. This goal can either

be to guarantee a set of future payments, to obtain a certain rate of return for the investment

or, in certain cases, to replicate the performance of a bond market index. Immunization models

(also known as interest-rate risk or duration models) control risk through duration and convexity

measures, which capture the sensitivity of bond returns to changes in one or more interest rate

risk factors.

The traditional approach to immunization employs duration measures derived analytically

from prior assumptions regarding speci�c changes in the term structure of interest rates.1 Un-

fortunately, in this case the e¤ectiveness of the strategy is compromised, since the investment is

protected only against the particular type of interest rate change assumed. Fong and Vasicek

(1983, 1984) developed the M-Squared model in order to minimize the immunization risk due to

non-parallel (slope) shifts in the term structure of interest rates. The authors show in particular

that by setting the duration of a bond portfolio equal to its planning horizon and by minimizing a

quadratic cash �ow dispersion measure, the immunization risk due to adverse term structure shifts

can be reduced.2 More recently, new immunization risk (dispersion) measures were proposed by

Nawalkha and Chambers (1996), Balbás and Ibáñez (1998) and Balbás et al.(2002).

In recent years researchers have redirected their attention towards the development of alterna-

tive formulations which try to capture more e¤ectively the interest rate risk faced by �xed-income

portfolios, without relying on any particular assumptions as to the type of stochastic process which

governs interest rate movements. A popular approach is to assume that interest rate changes can

be accurately described by shifts in the level of a limited number of segments (vertices or yield

1For example, the duration measure developed by Fisher and Weil (1971) assumes a parallel and instantaneous

shift in the term structure of interest rates. Non-parallel shifts were proposed by Bierwag (1977), Khang (1979)

and Babbel (1983) or, in an equilibrium setting, by Cox et al. (1979), Ingersoll et al. (1978), Brennan and Schwartz

(1983), Nelson and Schaefer (1983) and Wu (2000), among others.
2Nawalkha and Chambers (1997) and Nawalkha, Soto and Zhang (2003) derive a multiple-factor extension to

the M-Squared model termed M-Vector Model.
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curve drivers) into which the term structure is subdivided, generalizing then the concepts of dura-

tion and convexity to a multivariate context by considering the portfolio�s joint exposure to these

key rates. Speci�cally, we refer to the directional duration and to the partial duration models

of Reitano (1990, 1991a, 1991b, 1992), to the key-rate duration model of Ho (1992) and to the

reshaping duration model suggested by Kla¤ky et al.. (1992). In these models, the direction of

interest rate shifts can be set on an a priori basis, or can be based on real data. In the latter

case, the historical movements in the term structure of interest rates are used to identify a limited

number of state variables, observable or not, which govern the yield curve.3

An alternative line of attack to the problem of immunization involves the use of parametric

duration models. In this kind of formulation, which has its roots in the work of Cooper (1977),

all that is assumed is that at each moment in time, the term structure of interest rates adheres

to a particular functional form, which expresses itself as a function of time and a limited number

of shape parameters. In this line of thought, provided that the mathematical function �ts most

yield curves accurately all interest rate movements can be expressed in terms of changes in one

or more shape parameters that characterize this function. In other words, it is apparent that in

this kind of models, the interest rate risk uncertainty is re�ected by the unknown nature of future

parameter values. Di¤erentiating the bond price with respect to each shape parameter we obtain

a vector of parametric interest rate risk measures. Choosing a particular functional form obviously

involves some pricing errors. The di¤erence is that in this case the errors can be quanti�ed and

controlled systematically, as long as we are able to choose the appropriate speci�cation for the

yield curve, in which by �appropriate�we mean the speci�cation that minimizes immunization

risk.

Since the work of Cooper, there has been little research in this area. Garbade (1985), Chambers

et al. (1988) and Prisman and Shores (1988) assume that a polynomial may be used to �t the

term structure of interest rates as a �rst step to derive a vector of interest rate risk measures -

termed a duration vector -, in which each element basically corresponds to the moment of order

k of a bond4. Although simple, the use of polynomial functions to estimate the yield curve has

been subject to great criticism, since it can lead to forward curves that exhibit undesirable (and

3See, for example, Gultekin and Rogalski (1984), Elton et al. (1990), Garbade (1986), Litterman and

Scheinkman (1991), Knez et al. (1994), D�Ecclesia and Zenios (1994), Barber and Copper (1996) and Bravo

and Silva (2005).
4The moment of order k of a bond is de�ned as the weighted average of the kth power of its times of payments,

the weights being the shares of the bond�s cash �ows in present value in the bond�s present value. Chambers et al.

3



unrealistic) properties for long maturities, namely high instability. In Willner (1996), the actual

yield curve risk exposure of a bond portfolio is decomposed using the Nelson and Siegel (1987)

parametrization of the yield curve, a mathematical function that expresses interest rates in terms

of four parameters and is compatible with standard increasing, decreasing, �at and inverted yield

curve shapes.

In this paper, we develop a new immunization model based on the Svensson (1994) speci�cation

of the yield curve. The model is parametric by nature, i.e., the interest rate risk factors correspond

to the parameters of the mathematical function used to represent the yield curve. Furthermore it

adopts a multivariate setting, being compatible with both parallel and non-parallel term structure

shifts. Since we do not impose any previous assumptions as to the way the yield curve changes, the

model is applicable in virtually all yield curve environments. In addition, the model is intuitive

and relatively easy to apply.

This paper is related to Willner (1996), but there are some important di¤erences. First, we

adopt Svensson�s parametrization instead of Nelson and Siegel�s mathematical function. As shown

by Svensson (1994), the extended form allows more �exibility in the yield curve estimation, in

particular in the short-term end of the yield curve. In addition, the model assumes that every

movement in the term structure of interest rates can be approximated by changes in a small

number of factors and that these factors can be directly interpreted as representing parallel, slope

and curvature shifts in the yield curve. Second, contrary to Willner and most interest rate risk

models, we formally analyze both �rst-order and second-order conditions for bond portfolio im-

munization, emphasizing that the key to successful immunization will be to build up a portfolio

such that the gradient of its future value is zero, and such that its Hessian matrix is positive

semide�nite. Moreover, we provide explicit formulae for new parametric interest rate risk mea-

sures and present alternative approaches to implement the immunization strategy. Finally, we

extend previous analysis on the sensitivity of a bond�s duration to changes in the yield to maturity

by developing useful expressions for the sensitivity of parametric interest rate risk measures to

changes in term structure shape parameters.

The paper is organized as follows. In Section 2, we brie�y characterize Svensson�s speci�cation

of the yield curve and theoretically justify its use in the context of the immunization problem.

(1988) perform immunization tests for the U.S. market over single-and multi-period horizons and conclude that

the improvement in the immunization performance is considerable when at least four interest rate risk measures

are added.

4



In Section 3, we introduce the concepts of parametric duration and parametric convexity and

formally derive �rst-order and second-order conditions for immunization. We show that it is

impossible to achieve immunization simply by meeting �rst-order conditions and that second-

order conditions must be addressed appropriately. In Section 4, we provide simple expressions

for the sensitivity of parametric interest rate risk measures to changes in term structure shape

parameters. Section 5 summarizes the main conclusions of the paper.

2 Term Structure Speci�cation

The Svensson (1994) model is a parametric model which assumes that the instantaneous forward

rate, f(t; a):

f(t; a) = a0 + a1

�
exp

�
� t

a4

��
+ a2

�
t

a4
exp

�
� t

a4

��
+ a3

�
t

a5
exp

�
� t

a5

��
; (1)

is a function of both the time to maturity t and a (line) vector of parameters a = (a0; a1; a2; a3; a4; a5)

to be estimated, with (a0; a4; a5) > 0. To increase the �exibility of the curves and to improve

the �t, Svensson extended Nelson and Siegel�s functional form by adding a potential extra hump

in the forward curve. It is well known that the Nelson-Siegel method admits the existence of

only one extremum and one point of in�ection in the concavity. This means that when there are

disturbances in the money market that lead to curves with two local extrema, the �t in the short

segment of the yield curve turns out to be very poor. Given its higher adjustment capacity, the

Svensson model has proven to be more adequate in estimating the term structure of interest rates

and it is widely used by practitioners and major central banks.5

The parameters in the forward rate function are estimated by solving a non-linear optimization

procedure to data observed on a trade day, which consists of minimizing the sum of squared yield

(or price) deviations between observed and theoretical yields (or prices) as estimated with the

model. The optimization problem can be solved using either a grid search procedure or a partial

estimation technique6. In most practical applications, �tting was found to be relatively insensitive

5The Bank of International Settlements (1999) notes that ten Central Banks (of twelve surveyed) routinely use

either the Nelson and Siegel (1987) and/or the Svensson (1994) model as their primary method for analyzing the

yield curve. See Bravo (2001), Barrett et al. (1995), Diebold and Li (2003) for other uses of the NS model.
6For more details on the estimation process see, for example, Nelson and Siegel (1987), BIS (1999) and Bolder

and Stréliski (1999).
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to changes in parameters a4 and a5 (e.g. Barrett et al., 1995, Willner, 1996 and Diebold and Li,

2003). Without loss of generality, we will follow standard practise and assume at any stage that

these parameters are �xed at prespeci�ed values. Note also that by setting a3 equal to zero in

(1), we obtain the Nelson and Siegel forward rate function.

Regardless of their popularity, the Nelson-Siegel-Svensson family of curves has been criticized

because of two theoretical shortcomings. The �rst, pointed out by Björk and Christensen (1999)

and Filipovic (1999, 2000), is that models �tted sequentially to cross-sectional data are not inter-

temporally consistent with the dynamics of a given interest rate model. Björk and Christensen

(1999) prove, for instance, that the Nelson-Siegel family of curves is inconsistent with the Ho-

Lee interest rate model and with the Hull-White extension of the Vasicek model. This feature

weakens the validity of the model for applications that involve a time-series context. It can be

shown, however, that a simple manifold expansion (i.e. the addition of appropriate functions

of maturity) is su¢ cient to make the Nelson and Siegel model consistent with given interest

rate models, particularly with the generalized Vasicek short rate model.7 Nonetheless, these

adjustments impose additional constraints on the estimation of the models to cross-sectional

data, thus leading to a non-trivial deterioration of the �tting performance when compared with

that provided by the Nelson-Siegel-Svensson family of curves. On the other hand, it is not

obvious to us that the use of arbitrage-free models is necessary or desirable for accomplishing good

immunization performance. Indeed, if the theoretical superiority of equilibrium term structure

models is unquestionable, when compared to traditional immunizing duration models, the truth

is that a number of papers, such as Ingersoll (1983), Nelson and Schaefer (1983) and Brennan and

Schwartz (1983), have shown that their immunization performance is rather similar. In addition,

Brandt and Yaron (2003) prove that typical no-arbitrage models are actually time-inconsistent

because their parameters are assumed constant for pricing purposes, even though the parameters

change each time the model is recalibrated to data observed on a given date. Moreover, recent

studies (e.g. Du¢ e, 2002 and Dai and Singleton, 2002) have shown that a¢ ne no-arbitrage models

can produce poor forecasts.

The second theoretical shortcoming is that these models apparently lack a fundamental eco-

nomic foundation, which leads researchers to be cautious when interpreting the parameters in

conjunction with economic variables, and may explain why their use has been limited to cross-

sectional applications, namely, yield-curve �tting and interest rate risk management. An ex-

7See Björk and Christensen (1999), Filipovic (2000) and Krippner (2005a).
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ception is given by Diebold and Li (2003), who use variations on the Nelson-Siegel framework

to model the entire yield curve on an inter-temporally basis as a three-dimensional parameter

evolving dynamically.8 The authors prove, �rst, that the model is consistent with standard styl-

ized facts regarding the yield curve and, second, that the three-time varying parameters may be

roughly interpreted as factors corresponding to level, slope and curvature, a result consistent with

previous studies on this subject.9

From (1), the continuously compounded zero-coupon curve r(t; a) can be derived, noting that

r(t; a) = 1
t

R t
0
f(t; a)dt:

r(t; a) = a0 + a1
a4
t

�
1� e�

t
a4

�
+ a2

a4
t

�
1� e�

t
a4

�
1 +

t

a4

��
+ a3

a5
t

�
1� e�

t
a5

�
1 +

t

a5

��
; (2)

whereas the discount function d(t; a) is de�ned as:

d(t; a) = exp [�r(t; a)t] : (3)

Each parameter in (1) has a particular impact on the shape of the forward rate curve. Para-

meter a0, which represents the asymptotic value of f(t; a) (i.e., limt!1 f(t; a) = a0), can actually

be regarded as a long-term (consol) interest rate. Parameter a1 de�nes the speed with which

the curve tends towards its long-term value. The yield curve will be upward sloping if a1 < 0

and downward-sloping if a1 > 0. The higher the absolute value of a1 the steeper the yield curve.

Notice also that the sum of a0 and a1 corresponds to the instantaneous forward rate with an in�n-

itesimal maturity (limt!0f(t; a) = a0 + a1), i.e., it de�nes the intercept of the curve. Parameters

a2 and a3 have similar signi�cance and in�uence the shape of the yield curve. They determine

the magnitude and the direction of the �rst and second humps, respectively. For example, if a2

is positive, a hump will occur at a4 whereas, if a2 is negative, a U-shape value will emerge at a4.

Parameters a4 and a5, which are always positive, have similar roles and de�ne the position of the

�rst and second humps, respectively.

The Svensson model is very intuitive since parameters a0, a1, a2 and a3 (the interest rate

factors) can directly be linked to parallel displacements, slope changes and curvature shifts in the

8See also Krippner (2005b).
9See, for instance, Litterman and Scheinkman (1991), Barber and Copper (1996), Knez et al. (1994), D�Ecclesia

and Zenios (1994) and Bravo and Silva (2005).
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yield curve, given that scale coe¢ cients are �xed. To perceive this behavior, Figure 1 displays

the sensitivity Sk =
@f(t;a)
@ak

of forward rates to each parameter ak, for k = 0; :::; 3.

[Insert Figure 1, about here]

As can be seen, the sensitivity of forward rates with respect to the consol rate is constant

across the whole maturity spectrum, which means that it can actually be regarded as a level

factor. In other words, the level factor S0 fundamentally represents a parallel displacement in

the term structure of interest rates. The sensitivity of interest rates to changes in parameter a1

shows a descending shape, �rst larger for shorter maturities, then declining exponentially toward

zero as maturity increases. In this sense, factor S1 is a slope factor and represents changes in the

steepness of the yield curve. Finally, factors S2 and S3 have di¤erent impacts on intermediate

rates as opposed to extreme maturities (short and long), reaching a maximum on those points (a4

and a5, respectively) where the yield curve has humps. Hence, these factors may be interpreted

as curvature factors. In brief, the Svensson model assumes that: (i) every movement in the term

structure of interest rates can be approximated by changes in only four factors; (ii) these factors

take familiar shapes, that is parallel shifts, changes in steepness, and changes in the curvature of

the yield curve.

3 Constructing Immunized Portfolios

Consider an investor who has a position in a number L of default-free bonds. Let clt denote the

nominal cash �ow (in monetary units) received from bond l (l = 1; :::; L) at time t (t = 1; :::; N).

Let t = 0 be the current date, and H a known, �nite investment horizon, measured in years.

Assuming that the initial term structure is known and described by the parametric function (2),

which assigns a spot rate to each payment date t, the present value of bond l, Bl0(a), is given by:

Bl0(a) =
NX
t=1

clt exp [�r(t; a)t] =

=
NX
t=1

clte
�
�
a0+a1

a4
t

�
1�e�

t
a4

�
+a2

a4
t

�
1�e�

t
a4

�
1+ t

a4

��
+a3

a5
t

�
1�e�

t
a5

�
1+ t

a5

���
t
; (4)
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where we have stressed the functional relationship between the bond price Bl(a) and the initial

vector a = (a0; a1; a2; a3; a4; a5)
T of parameters of the forward rate function. Let nl represent the

number of type l bonds in the portfolio. In this case, the present value (at time 0) of this bond

portfolio, P0(a), is given by:

P0(a) =
LX
l=1

nlB
l
0(a) =

LX
l=1

NX
t=1

nlclt exp [�r(t; a)t] =

=
LX
l=1

NX
t=1

nlclte
�
�
a0+a1

a4
t

�
1�e�

t
a4

�
+a2

a4
t

�
1�e�

t
a4

�
1+ t

a4

��
+a3

a5
t

�
1�e�

t
a5

�
1+ t

a5

���
t

(5)

For simplicity of exposition, consider now that the investor is interested only in his wealth

position at some future time H (where H might represent, for example, the due date on a single

liability payment). The value of this portfolio at time H, under the expectations hypothesis of

the term structure assuming no change in the yield curve, PH(a), will be:

PH(a) = P0(a) exp [r(H; a)H] =

=

"
LX
l=1

NX
t=1

nlclt exp [�r(t; a)t]
#
exp [r(H; a)H] (6)

Suppose now that at time � , immediately after the investor purchased the portfolio, the spot

rate function has undergone a variation, which may be viewed here as a vector dA of multiple

random shifts and represent both parallel and nonparallel shifts, such that the new term structure,

represented again by Svensson�s model, is r� (t;A) = r(t; a+ dA ):

r� (t;A) = A0 + A1
A4
t

�
1� e�

t
A4

�
+ A2

A4
t

�
1� e�

t
A4

�
1 +

t

A4

��
+A3

A5
t

�
1� e�

t
A5

�
1 +

t

A5

��
; (7)

where A = (A0; :::; A5)
T denotes the new vector of coe¢ cients of the spot rate function estimated

at time � . The new terminal value of the portfolio, PH(A), keeps the same form as above, except

that vector A now replaces the initial vector of parameters a:

PH(A) =

"
LX
l=1

NX
t=1

nlclt exp [�r(t;A)t]
#
exp [r(H;A)H] (8)
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The traditional de�nition of immunization (e.g. Fisher and Weil, 1971) for the case of a single

liability establishes that a portfolio of default-free bonds is said to be immunized against any type

of interest rate shifts if its accumulated value at the end of the planning horizon is at least as

great as the target value, where the target value is de�ned as the portfolio value at the horizon

date under the scenario of no change in the spot (and forward) rates. Stated more formally, by

immunization we mean selection of a bond portfolio such that the actual future value of the income

stream PH(A) at time H will exceed the initially expected value PH(a), i.e., PH(A) � PH(a) (or

equivalently, �PH = PH(A) � PH(a) � 0), if the interest rates r(t;A) shift to their new value

r� (t;A).

Under the assumption that interest rates only change by a parallel shift, the main conclusion

of Fisher and Weil was that immunization is achieved when the duration of the portfolio is set

equal to the length of the investment horizon. The assumption that interest rates can change

only by a parallel shift is very restrictive and can carry serious risks. In this paper we o¤er a more

generalized approach to immunization by deriving the conditions under which the investment is

protected against both parallel and non-parallel yield curve shifts.

3.1 First-Order Conditions

Let PH(A) be a multivariate price function, assumed to be twice continuously di¤erentiable. The

idea is to use a Taylor series expansion of PH(A) around the initial vector of parameters in order

to evaluate the necessary and su¢ cient conditions for a local minimum of PH(A) at A = a.

For most practical applications, an expansion up to the second order is su¢ cient to obtain a

reasonable approximation. The quadratic approximation for (8) is then given by:10

dPH(A) = PH(A)� PH(a) = rPH(a)T � da+
1

2
daT � r2PH(a) � da+R2(a;dA), (9)

where dA = (dai)
T
i=0;:::;5 denotes the (column) vector of variations of parameters a, � denotes the

inner product of two vectors and R2(a;dA) represents the remaining terms of the series. Terms

rPH(A) and r2PH(A) represent, respectively, the gradient vector and the Hessian matrix of

PH(A) at A = a. Alternatively, if we divide (9) by PH(A); we obtain the percentage change in

the terminal value of the bond portfolio:

10Note that the change in the portfolio value resulting from the passage of time is ignored here due to its

deterministic nature.
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dPH(A)

PH(A)
=

1

PH(A)
rPH(a)T � da+

1

2
daT � 1

PH(A)
r2PH(a) � da+R�2(a;dA); (10)

where R�2(a;dA) = R2(a;dA)=PH(A): Let now ct =
PL

l=1 nlclt denote the total nominal cash �ows

received by the holder of the portfolio at time t. To determine the nature of the horizon value near

the origin, we compute the �rst-order partial derivative of (8) with respect to Ak (k = 0; :::; 5):

This yields the generic element of the gradient vector @PH(A)
@Ak

:

@PH(A)

@Ak
=

NX
t=1

cte
[r(H;A)H�r(t;A)t]

�
H
@r(H;A)

@Ak
� t@r(t;A)

@Ak

�
(11)

= PH(A)

�
H
@r(H;A)

@Ak

�
�
"
NX
t=1

tcte
[r(H;A)H�r(t;A)t]@r(t;A)

@Ak

#

which, after dividing by PH(A), can be written as:

1

PH(A)

@PH(A)

@Ak
= H

@r(H;A)

@Ak
� 1

P0(A)

"
NX
t=1

tcte
�r(t;A)t@r(t;A)

@Ak

#
(12)

In anticipation of combining (12) and (10), we introduce new de�nitions for parametric interest

rate risk measures.

De�nition 1 The parametric duration of a bond is a measure of �rst-order sensitivity of bond

prices to changes in interest rates as given by modi�cations in parameters Ak (k = 0; :::; 5). For

bond l, the parametric duration is denoted D(l)(k;A), and is de�ned, for Bl0(A) 6= 0, as follows:

D(l)(k;A) = � 1

Bl0(A)

@Bl0(A)

@Ak

=
1

Bl0(A)

"
NX
t=1

tclte
�r(t;A)t@r(t;A)

@Ak

#
. (13)

De�nition 2 Let wl =
nlB

l
0(A)

P0(A)
denote the percentage of portfolio invested in bond l, such thatPL

l=1wl = 1. The parametric duration of a bond portfolio is a measure of �rst-order sensitivity of a

bond portfolio to changes in interest rates as given by modi�cations in parameters Ak (k = 0; :::; 5):

It is calculated as the weighted average of the parametric durations of the bonds making up the
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portfolio, the weights being the shares of each bond in the portfolio. Denoted D(P )(k;A), it is

de�ned, for P0(A) 6= 0, as follows:

D(P )(k;A) = � 1

P0(A)

@P0(A)

@Ak

=
LX
l=1

wlD
(l)(k;A). (14)

Each equation in (13) represents a bond�s interest rate risk measure for a particular type of

shift in the yield curve. For instance, the �rst element, D(l)(0;A), is de�ned as:

D(l)(0;A) =
1

Bl0(A)

"
NX
t=1

tclte
�r(t;A)t

#
(15)

and corresponds to the traditional Fisher-Weil duration measure. It is de�ned as the weighted

average of the times of payment of all the cash�ows generated by the bond, the weights being the

shares of the bond�s cash�ows in the bond�s present value, and captures the sensitivity of bond

returns to changes in the consol factor a0, i.e., the responsiveness of bond returns to height shifts

in the term structure of interest rates. The second element, D(l)(1;A), is de�ned as:

D(l)(1;A) =
1

Bl0(A)

"
NX
t=1

clte
�r(t;A)t

�
1� e�

t
a4

�
a4

#
(16)

and captures the sensitivity of bond returns to changes in parameter a1, that is, to changes in the

slope of the yield curve. The third, D(l)(2;A), and fourth, D(l)(3;A), elements of the duration

vector summarize the sensitivity of bond returns to changes in the curvature parameters a2 and

a3, and are de�ned as:

D(l)(2;A) =
1

Bl0(A)

(
NX
t=1

clte
�r(t;A)t

�
1� e�

t
a4

�
1 +

t

a4

��
a4

)
(17)

and

D(l)(3;A) =
1

Bl0(A)

(
NX
t=1

clte
�r(t;A)t

�
1� e�

t
a5

�
1 +

t

a5

��
a5

)
(18)

respectively. Finally, The fourth, D(l)(4;A), and �fth, D(l)(5;A), elements of the duration

vector summarize the sensitivity of bond returns to changes in the location parameters a4 and

a5, and are de�ned as
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D(l)(4;A) =
1

Bl0(A)

(
NX
t=1

clte
�r(t;A)t

��a1
t
+
a2
t

�
(1� e�

t
a4 )�

�
a1
a4
+
a2
a4

�
e
� t
a4 � a2

t

a24
e
� t
a4

�)
(19)

and

D(l)(5;A) =
1

Bl0(A)

(
NX
t=1

clte
�r(t;A)t

�
a3
t

�
1� e�

t
a5

�
1 +

t

a5
� t2

a25

���)
(20)

respectively. Taking this into account, the generic element of the gradient vector (12) can be

simpli�ed to

1

PH(A)

@PH(A)

@Ak
= H

@r(H;A)

@Ak
�D(P )(k;A) (21)

Let us now address �rst-order conditions for bond portfolio immunization. For simplicity of

exposition, we assume that parameters a4 and a5 are �xed at prespeci�ed values.11 We know

from standard optimization theory that if a function partial di¤erentiable has an extremum at

an interior point, then all �rst-order derivatives are required to be zero.12 In other words, setting

the gradient vector equal to zero is a necessary (but clearly insu¢ cient) condition for an interior

local minimum. From (21) this is equivalent to a fourth-dimensional vector of the form:

D(P )(k;A) = H
@r(H;A)

@Ak
(k = 0; :::; 3). (22)

Each of the conditions in (22) de�nes an immunization condition for a di¤erent type of yield

curve shift. For instance, selecting a bond portfolio such that its D(P )(0;A) is set equal to the

planning horizon H protects the investment against a parallel shift in the yield curve. In other

words, the traditional approach to immunization can be considered, to some extend, a particular

case of the parametric model. Similarly, immunization against slope shifts is attained if the

condition D(P )(1;A) = a4

h
1� exp(�H

a4
)
i
is ful�lled. Finally, appropriate protection against

changes in the curvature of the term structure is obtained by choosing a portfolio�s composition

such that D(P )(2;A) = a4

h
1� e�

H
a4

�
1 + H

a4

�i
and D(P )(3;A) = a5

h
1� e�

H
a5

�
1 + H

a5

�i
.

11The approach can easily be expanded to admit changes in the location of the humps of the forward curve.
12See, for example, Apostol (1969).
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To sum up, from equation (22) two implications follow immediately. First, the vector of

parametric duration measures is determined only by the structure of the bond portfolio and can

therefore be controlled by the portfolio manager. Second, given that convexity conditions are

respected and a su¢ cient number of bonds are available (i.e. L � 4 or L � 5, if we include

the initial self-�nancing constraint), complete immunization against interest rate changes (both

parallel and non-parallel) can be achieved by selecting a bond portfolio such that all of the �rst-

order immunization constraints are satis�ed. Note that the investor can always adopt a more

active role in the immunization strategy by choosing, deliberately, to satisfy only some of the

conditions in (22). He can, for example, use the principal components analysis to select those

interest rate shifts that are more likely, or account most for the volatility of the yield curve and

then engage in the appropriate immunization strategy. Alternatively, investors may try to obtain

a yield pick-up and at the same time to be risk-neutral against to changes in the level and/or the

yield curve by engaging in butter�y trades.

In those cases where there is more than one bond portfolio satisfying all of the immunization

constraints, a particular objective function might be considered. For example, Chambers et al.

(1988) argue that an acceptable portfolio construction criterion would be to minimize the sum

of squared weights, i.e., Min
PL

l=1w
2
l . According to them, this will lead to a diversi�ed portfolio

that minimizes the impact of unsystematic risk caused by transitory pricing errors.

Finally, note that similar to Prisman and Shores (1988), except for the trivial case where a

single zero coupon bond maturing on the planning horizon composes the portfolio13, the solution

to the immunization constraints given in equation (22) requires short positions in some bonds,

i.e., any immunized portfolio must have both positive and negative cash �ows. The non-monotone

nature of the cash �ow structure makes the existence of local minima at A = a more problematic.

In particular, we will see below that �most��rst-order immunized portfolios yield a horizon value

which is not locally convex with respect to perturbations in the yield curve parameters.

3.2 Second-Order Conditions

We know from standard optimization theory that setting the gradient vector rPH(A) equal to

zero is a necessary, but insu¢ cient, condition for a minimum of PH(A) at A = a. Let us now

13Paradoxically, the existence of such a bond would mean that the immunization strategy is unnecessary.
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address second-order conditions and their implications for portfolio construction. For a local

minimum of PH(A) at A = a, second-order conditions stipulate that to equations (22) we must

add those corresponding to a positive semide�nite Hessian matrix for PH(A). The generic element

of the Hessian matrix, 
km(A) =
@2PH(A)
@Ak@Am

, is derived from (11) by taking the partial derivative

with respect to Am (m = 0; :::; 3):14


km(A) =
@

@Am

(
NX
t=1

cte
[r(H;A)H�r(t;A)t]

�
H
@r(H;A)

@Ak
� t@r(t;A)

@Ak

�)

=

NX
t=1

cte
[r(H;A)H�r(t;A)t]

�
H
@r(H;A)

@Ak
� t@r(t;A)

@Ak

� �
H
@r(H;A)

@Am
� t@r(t;A)

@Am

�
(23)

To simplify notation, let:

qt = ct exp [r(H;A)H � r(t;A)t] (t = 1; :::; N) (24)

represent the cash �ow received from portfolio at time t expressed in future value. From (23),


km(A) is then:


km(A) =

NX
t=1

qt

�
H2@r(H;A)

@Ak

@r(H;A)

@Am
�H@r(H;A)

@Ak
t
@r(t;A)

@Am
�

�H@r(H;A)
@Am

t
@r(t;A)

@Ak
+ t2

@r(t;A)

@Ak

@r(t;A)

@Am

�
(k;m = 0; :::; 3)

or the equivalent:


km(A) = H2

�
@r(H;A)

@Ak

��
@r(H;A)

@Am

� NX
t=1

qt �H
@r(H;A)

@Ak

NX
t=1

tqt
@r(t;A)

@Am
�

�H@r(H;A)
@Am

NX
t=1

tqt
@r(t;A)

@Ak
+

NX
t=1

t2qt
@r(t;A)

@Ak

@r(t;A)

@Am
(k;m = 0; :::; 3) (25)

Dividing both term in (23) by PH(A) we obtain:

14In Equation (23), we have made use of the fact that all second-order cross partial derivatives are zero, i.e.,
@

@Am

�
@2r(�;A)
@Ak

�
= 0; m = 0; :::; 3:
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1

PH(A)

@2PH(A)

@Ak@Am
= H2

�
@r(H;A)

@Ak

��
@r(H;A)

@Am

�
�H@r(H;A)

@Ak

(
1

P0(A)

"
NX
t=1

tcte
�r(t;A)t@r(t;A)

@Am

#)
�

�H@r(H;A)
@Am

(
1

P0(A)

"
NX
t=1

tcte
�r(t;A)t@r(t;A)

@Ak

#)
+

+
1

P0(A)

"
NX
t=1

t2cte
�r(t;A)t

�
@r(t;A)

@Ak

��
@r(t;A)

@Am

�#
(26)

where in (26), we have made use of the fact that
PN

t=1 qt = PH(A) = P0(A)e
r(H;A)H . We are now

in a condition to introduce the essential de�nitions of parametric convexity of a bond and of a

bond portfolio.

De�nition 3 The parametric convexity of a bond is a measure of second-order sensitivity of

bond prices to changes in interest rates as given by modi�cations in parameters Ak and Am

(k;m = 0; :::; 3). For bond l, the parametric convexity is denoted C(l)(k;m;A), and is equal, for

Bl0(A) 6= 0, to:

C(l)(k;m;A) =
1

Bl0(A)

@2Bl0(A)

@Ak@Am

=
1

Bl0(A)

"
NX
t=1

t2clte
�r(t;A)t

�
@r(t;A)

@Ak

��
@r(t;A)

@Am

�#
(27)

De�nition 4 Let wl =
nlB

l
0(A)

P0(A)
denote the percentage of portfolio invested in bond l, such thatPL

l=1wl = 1. The parametric convexity of a bond portfolio is a measure of second-order sensitivity

of a bond portfolio to changes in interest rates as given by modi�cations in parameters Ak and

Am (k;m = 0; :::; 3). It is calculated as the weighted average of the parametric convexities of the

bonds making up the portfolio, the weights being the shares of each bond in the portfolio. Denoted

C(P )(k;m;A), is equal, for P0(A) 6= 0, to:

C(P )(k;m;A) =
1

P0(A)

@2P0(A)

@Ak@Am

=

LX
l=1

wlC
(l)(k;m;A) (28)
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To simplify notation, let C(l)k;m(A) = C(l)(k;m;A). Each equation in (27) measures second-

order e¤ects for a particular type of shift in the term structure. For instance, the equation for

C
(l)
0;0(A) is de�ned as:

C
(l)
0;0(A) =

1

Bl0(A)

@2Bl0(A)

@A20
=

1

Bl0(A)

"
NX
t=1

t2clte
�r(t;A)t

#
. (29)

Surprisingly, or not, the parametric model provides a second-order sensitivity measure of the

bond�s price to changes in the level coe¢ cient of the yield curve that is similar to the traditional

(continuously compounded) de�nition of convexity.15 We can then conclude, once again, that

the traditional approach to immunization can be considered a particular case of the parametric

model. Second-order e¤ects caused by shifts in the slope parameter a1 only can now be quanti�ed

by using:

C
(l)
1;1(A) =

1

Bl0(A)

"
NX
t=1

clte
�r(t;A)t

�
1� e�

t
a4

�2
a24

#
,

and so on. The complete set of de�nitions can be found in the Appendix. Substituting (28) and

(14) in (26) yields:

1

PH(A)

@2PH(A)

@Ak@Am
= H2

�
@r(H;A)

@Ak

��
@r(H;A)

@Am

�
�H

�
@r(H;A)

@Ak

�
D(P )(k;A)�

�H
�
@r(H;A)

@Am

�
D(P )(m;A) + C(P )(k;m;A) (30)

From the �rst order conditions (22) for bond portfolio immunization, we know that:

D(P )(k;A) = H
@r(H;A)

@Ak
(k = 0; :::; 3) (31)

which is also valid when k is replaced by m (m = 0; :::; 3). Substituting this expression in (30),

the generic element of the Hessian matrix at A = a becomes (k;m = 0; :::; 3):

1

PH(A)

@2PH(A)

@Ak@Am
= H2

�
@r(H;A)

@Ak

��
@r(H;A)

@Am

�
� 2H2

�
@r(H;A)

@Ak

��
H
@r(H;A)

@Am

�
+ C(P )(k;m;A)

= C(P )(k;m;A)�H2

�
@r(H;A)

@Ak

��
@r(H;A)

@Am

�
(32)

15See, for example, Lacey and Nawalkha (1993).
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Let !km denote the di¤erence:

!km(A) = C
(P )(k;m;A)�H2

�
@r(H;A)

@Ak

��
@r(H;A)

@Am

�
(k;m = 0; :::; 3) (33)

Each element in (33) has a clear interpretation, since it de�nes the di¤erence between the

parametric convexity of a bond portfolio and the sensitivity of the perfect immunization asset

(i.e. of a zero coupon maturing on the horizon date) to changes in the yield curve shape para-

meters.16 That is, each element in (33) represents the extent to which second-order interest rate

risk measures deviate from the target. This is not surprising since from equation (32), we observe

that all elements 
km(A) of the Hessian matrix r2PH(A) are those of the matrix � = [!km]
3
k;m=0.

This means that the discussion of the positive semide�niteness of r2PH(A) reduces to that of

the symmetric matrix �. At least two alternative methodologies can be used to determine the

sign de�niteness of the Hessian matrix: The determinantal test approach and the eigenvalue

test approach. We will show how both can be used in the context of immunization.

3.2.1 The Determinantal Test Approach

Let us focus �rst on the use of the determinantal test approach. Let � be a square (n � n)

symmetric matrix of the form:

� =

26666664
!00 !01 ::: !0k

!10 !11 ::: !1k

::: ::: :::

!k0 !k1 ::: !kk

37777775 ; !ij = !ji; i 6= j

with n = 4: The jth order leading principal minors of the matrix �; denoted Dj (j = 1; :::; 4);

are the determinants of the submatrices formed by deleting the entries in the last n� j rows and

columns of �: Given �; we may also de�ne the jth order principal minors of �, denoted jDjj,

as the determinants of the submatrices formed by deleting the entries in the n� j rows and the

corresponding n � j columns of �. Following these de�nitions, the criteria for semide�niteness
16Note also that we can interpret wkm(A) as a sort of �generalized variance�since its expression is analogous

to the formula V ar(X) = E(X2)� (E(X))2.
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requires that for � to be positive semide�nite, all of its principal minors of order j must be non-

negative, i.e., jDjj � 0.17 Let us consider now the implications of this result for bond portfolio

immunization. The �rst-order principal minors of �, jDi
1j (i = 1; :::; 4) are:

��D1
1

�� = !00 and
��D2

1

�� = !11 and
��D3

1

�� = !22 and
��D4

1

�� = !33, (34)

which must all be positive or zero. From the de�nitions of !00, !11, !22 and !33 above, we

can observe that its sign is determined by the portfolio structure and cannot, unfortunately, be

determined without ambiguity. The task is even more di¢ cult when we recall that matching

�rst-order conditions requires short positions in some bonds. Consequently, since the positive

de�niteness ofr2PH(A) cannot be guaranteed by �rst-order conditions, we are forced to conclude

that setting the gradient vector rPH(A) equal to zero is not su¢ cient to protect the investment

against changes in the yield curve. This means that second-order conditions play an important

role in the immunization problem and need to be addressed in a convenient way.

To ensure the positive semide�niteness of �; we need then to impose certain restrictions on

the portfolio�s composition. Assume, for instance, that !00 = !11 = !22 = 0. The second-order

principal minors of �, jDi
2j (i = 1; :::; 6), are de�ned as:

��D1
2

�� =
������ !00 !01

!10 !11

������ =
������ 0 !01

!01 0

������ and
��D2

2

�� =
������ !00 !02

!20 !22

������ =
������ 0 !02

!02 0

������
��D3

2

�� =
������ !00 !03

!30 !33

������ =
������ 0 !03

!03 !33

������ and
��D4

2

�� =
������ !11 !12

!21 !22

������ =
������ 0 !12

!12 0

������
��D5

2

�� =
������ !11 !13

!31 !33

������ =
������ 0 !13

!13 !33

������ and
��D6

2

�� =
������ !22 !23

!32 !33

������ =
������ 0 !23

!23 !33

������ . (35)

From (35), we observe that the determinants jD1
2j, jD2

2j and jD3
2j are equal to� (!01)

2, � (!02)2

and � (!03)2, respectively, which are all negative, thus violating the conditions for positive semi-

de�niteness. For these minors to be positive or zero !01, !02 and !03 must all be set equal to

zero. Similarly, from (35) we note that the values of jD4
2j, jD5

2j and jD6
2j are all negative and equal

to � (!12)2, � (!13)2 and � (!23)2, respectively. Using the same argument, in order to ensure

the positive semide�niteness of �; we need to select a bond portfolio such that the entries !12,

17See Takayama (1990) and references therein for an extensive discussion of the determinantal test for second-

order necessary conditions for a minimum.
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!13 and !23 are all equal to zero. Let us now turn to the third-order principal minors of �, jDi
3j

(i = 1; :::; 4). They can be written as:

��D1
3

�� =
���������
!00 !01 !02

!10 !11 !12

!20 !21 !22

��������� =
���������
0 0 0

0 0 0

0 0 0

���������
��D2

3

�� =
���������
!00 !01 !03

!10 !11 !13

!30 !31 !33

��������� =
���������
0 0 0

0 0 0

0 0 !33

���������
��D3

3

�� =
���������
!00 !02 !03

!20 !22 !23

!30 !32 !33

��������� =
���������
0 0 0

0 0 0

0 0 !33

���������
��D4

3

�� =
���������
!11 !12 !13

!21 !22 !23

!31 !32 !33

��������� =
���������
0 0 0

0 0 0

0 0 !33

��������� , (36)

and, as can be seen above, their values are all equal to zero. Finally, by de�nition, the fourth-order

principal minor of �, jD4j, is equal to the determinant of �. Therefore, we have

jD4j =

������������

!00 !01 !02 !03

!10 !11 !12 !13

!20 !21 !22 !23

!30 !31 !32 !33

������������
=

������������

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 !33

������������
, (37)

which is also equal to zero. To sum up, in order to guarantee the positive semide�niteness of �;

we need to select a bond portfolio such that all entries !km are equal to zero, except one, equal

to !33 = C(P )(3; 3;A)�
n
a5

h
1� e�

H
a2

�
1 + H

a5

�io2
, which must be set to an arbitrary positive

value U . Accordingly, whereas �rst-order conditions for bond portfolio immunization imply the

following k + 1 (k = 0; :::; 3) restrictions:

D(P )(k;A) = H
@r(H;A)

@Ak
,

second-order conditions entail the subsequent equations

20



C(P )(k;m;A) =

8<: H2
�
@r(H;A)
@Ak

��
@r(H;A)
@Am

�
+ U , k = m = 3

H2
�
@r(H;A)
@Ak

��
@r(H;A)
@Am

�
, other cases

, (38)

to which the self-�nancing constraint may be added. The solution to the above immunization

problem requires a considerable number of di¤erent bonds (L � 14 or L � 15, if we include

the initial self-�nancing constraint) in the portfolio. Given that a su¢ cient number of bonds

are available, it is theoretically possible to immunize a bond portfolio against both parallel and

non-parallel interest rate shifts. Standard optimization techniques may be used to determine the

immunizing portfolio. Let us now come back to the Hessian matrix. From (38), it reduces to:

r2PH(A)

PH(A)
=

26666664
0 ::: 0

::: :::

0 0

0 ::: 0 U

37777775 . (39)

The associated quadratic form is then:

dAT

26666664
0 ::: 0

::: :::

0 0

0 ::: 0 U

37777775 dA =U � (dA3)2. (40)

Taking into account both �rst-order and second-order conditions for immunization, the per-

centage change in the terminal value of the bond portfolio can be expressed in the following

manner:

dPH(A)

PH(A)
=
1

2
U � (dA3)2 +R�2(a;dA); (41)

whereR�2(a;dA) represents again the remaining terms of the Taylor series. Given that by de�nition

R�2(a;dA) ! 0 as dA ! 0, we can always choose a value U such that dPH(A)
PH(A)

> 0, i.e., we

can always choose a value U such that dPH(A)
PH(A)

is convex at a; whatever the magnitude of the

displacement of A, dA.
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3.2.2 The Eigenvalue Test Approach

As we mentioned before, the solution to the immunization problem requires a considerable number

of di¤erent bonds in the portfolio. While for large investment banks this is not a major problem,

since they usually hold and manage many di¤erent bonds in several markets, for small investors

based in emerging markets, this may pose a serious obstacle when it comes to implement the

strategy. In these cases, the investor may opt to select a bond portfolio that matches �rst-order

conditions for immunization and then evaluate the su¢ ciency of these conditions on a particular

basis, using an alternative test to determine the sign-de�niteness of the quadratic form: the

Eigenvalue Test. Recall that at a stationary point we have rPH(A)
PH(A)

= 0, which means that the

Taylor expansion in (10) reduces to:

dPH(A)

PH(A)
=
1

2
dAT � r

2PH(A)

PH(A)
� dA+R�2(a;dA) (42)

Let S = r2PH(A)
PH(A)

be a n � n symmetric matrix. From standard linear algebra, we know that

because S is symmetric, is has real eigenvalues, f�ng, and n independent unit eigenvectors, f�ng,

which are mutually orthogonal. Let V denote the a n � n matrix with f�ng as column vectors.

By construction, V is an orthogonal matrix, VT = V�1. Changing coordinates to the f�ng basis,

let dA = Vy. Substituting into (42), we obtain:

dATSdA = yT (VTSV)y

=
4X
n=1

�ny
2
n, (43)

We also know that S is positive-de�nite (resp. negative de�nite) i¤ all its eigenvalues are

positive (resp. negative). In other words, if S is positive-de�nite (resp. negative de�nite), we can

conclude that dPH(A)
PH(A)

has a minimum (resp. maximum) at the stationary point. In Section 3.2.1

we were able to conclude that unless additional restrictions on portfolio structure are imposed,

we cannot guarantee that the hessian matrix is positive semide�nite. As a result, the possibility

of getting both positive and negative eigenvalues from the spectral decomposition of matrix S

cannot be disregarded. In other words, the possibility of obtaining negative eigenvalues means
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that for certain �directions�(interest rate shifts) the portfolio�s horizon value will not be convex

at A = a and the investor is thus exposed to interest rate risk.

Taking this into account, the solution to the immunization problem must be evaluated on a

particular basis. For this, we now propose a three-step procedure to �nd bond portfolios that

satisfy both �rst-order and second-order immunization conditions.

Step 1 - Select a bond portfolio that matches the gradient conditions for immunization, as

de�ned in (22);

Step 2 - Calculate the eigenvalues of S in order to assess if �rst-order conditions are su¢ cient

to guarantee that dPH(A)
PH(A)

has a minimum at the stationary point derived. First-order conditions

will be su¢ cient i¤ all of the eigenvalues of the hessian matrix are positive;

Step 3 - If �rst-order conditions are not su¢ cient, i.e., if not all of the eigenvalues of the

Hessian matrix are positive, we recommend a type of �second-best� strategy. Since there is

usually more than one bond portfolio satisfying �rst-order conditions, repeat Steps 1 and 2 for all

of the candidate solutions and select the bond portfolio that most closely matches the conditions

for a minimum. Since negative eigenvalues represent yield curve displacements for which the

portfolio�s horizon value is not convex, we think that a reasonable criterion for selecting an

acceptable portfolio will be to minimize the impact of those yield curve directions. In this sense,

we recommend a choose of candidate solution for which the sum of the absolute value of the

negative eigenvalues is minimum, i.e., the one for which the quantity
P

�n<0
j�nj is minimum. To

implement the procedure, standard optimization algorithms may be used.

4 Interest Rate Sensitivity Of Bond Risk Measures

In this section, we derive a simple expression for the sensitivity of parametric durations to changes

in term structure shape parameters. Portfolio managers are often required to maintain target

levels of interest rate risk exposure, both for assets and liabilities. From standard duration theory,

we know that the duration of a bond changes as time passes, not only because the bond approaches

maturity, but mainly due to changes in the yield curve. In volatile interest rate environments,

interest rate risk measures can change rapidly as a result of modi�cations in the shape of the

term structure of interest rates. For portfolio managers, this is a subject of major interest since

maintaining the portfolio exposure up to a desired level requires frequent portfolio rebalancing.
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To do so, it is of great interest to understand how interest rate risk measures themselves change

with modi�cations in the yield curve.

The sensitivity of a bond�s duration to changes in the bond�s yield to maturity has been

extensively analyzed in the literature (e.g. Bierwag, 1987). In spite of this, it is well known

that the usefulness of this analysis is limited when yield curves are not �at and non-parallel term

structure shifts may occur. In this section, we extend previous research by investigating the

sensitivity of parametric duration measures to a wider a range of yield curve movements.

Consider again the de�nition of parametric duration presented in (13):

D(l)(k;A) =
1

Bl0(A)

NX
t=1

tcte
�r(t;A)t@r(t;A)

@Ak
(k = 0; :::; 3). (44)

Di¤erentiating with respect to Am (m = 0; :::; 3) yields:
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=
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(45)

(46)

Substituting the de�nitions of parametric duration and parametric convexity in equation (46)

yields:

@D(k;A)

@Am
= D(k;A)D(m;A)� C(k;m;A) (k;m = 0; :::; 3) (47)

24



Equation (47) provides a general expression for the sensitivity of interest rate risk measures

(parametric duration measures) to changes in interest rates as given by modi�cations in yield

curve parameters. For any combination of term structure shifts the sensitivity of parametric

duration is computed as a product of two duration measures minus the corresponding parametric

convexity. To have a broader understanding of the signi�cance of equation (47), consider the

following cases of interest.

Case 1: Let k = 0 and m = 0. From (47) we have:

@D(0;A)

@A0
= [D(0;A)]2 � C0;0(A) (48)

Therefore, the sensitivity of traditional Fisher-Weil duration to changes in the level of the

yield curve is equal to duration squared minus the traditional convexity measure. Note also that

if gradient conditions for immunization against shifts in A0 are satis�ed (i.e., if D(0;A) = H), the

sensitivity @D(0;A)
@A0

can be written as the negative of the popular M-squared dispersion measure

(M2) proposed by Fisher and Weil (1983, 1984), i.e.,

@D(0;A)

@A0
= �

�
C0;0(A)� (D(0;A))2

�
= �M2 (49)

Case 2: Let k = 0 and m = 1. Then:

@D(0;A)

@A1
= D(0;A)D(1;A)� C0;1(A) (50)

Hence, the sensitivity of traditional Fisher-Weil duration to changes in the slope parameter of

the yield curve is equal to the product of duration and D(1;A) minus C0;1(A). Generalizing the

above examples, we can estimate the combined e¤ects produced by changes in the term structure

level, slope and curvature on interest rate risk measures using the concept of total di¤erential:

�D(k;A) �
3X

m=0

@D(k;A)

@Am
�Am

�
3X

m=0

[D(k;A)D(m;A)� C(k;m;A)]�Am (51)
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5 Conclusion

Traditionally, the study of the interest-rate sensitivity of the price of a portfolio of assets or lia-

bilities has been performed using single factor models from which simple expressions for duration

and convexity have been derived. In general, the ability of such models to predict price sensitivity

or to achieve immunization is dependent on the validity of yield curve assumptions. In this sense,

the classical duration analysis can greatly understate price sensitivity when non-parallel term

structure shifts occur.

In this paper, we have developed a general multivariate duration and convexity analysis that

does not depend on previous statements as to the way in which the yield curve moves. Di¤erently,

the model links interest rate risk factors to the parameters of the Svensson speci�cation of the

yield curve and is valid in virtually all yield curve environments. The model extends classical

duration and convexity analysis to include yield curve shifts that are not parallel. The concepts

of parametric duration and parametric convexity provide, in this context, natural �rst-order and

second-order sensitivity measures of bond or bond portfolio prices to changes in interest rates.

Moreover, the interest rate risk measures derived quantify the sensitivity of the portfolio to yield

curve shifts that have an economic �meaning�, namely, changes in the level, slope and curvature

of the yield curve.

Contrary to most interest rate risk models we emphasize the importance of second-order con-

ditions for bond portfolio immunization. In concrete, we show that it is impossible to achieve

immunization simply by meeting �rst-order conditions and that the key to successful immuniza-

tion will be to build up a portfolio such that the gradient of its future value is zero, and such

that its Hessian matrix is positive semide�nite. We present two alternative methods to determine

the sign de�niteness of the Hessian matrix: the determinantal test and the eigenvalue test, em-

phasizing the advantages and shortcomings of both methods. Finally, we analyse the sensitivity

of parametric interest rate risk measures to changes in term structure shape parameters, o¤ering

�xed-income portfolio managers a powerful new tool with which to assess the combined e¤ects of

changes in the term structure level, slope and curvature on interest rate risk measures.

Future research should investigate the empirical performance of the parametric model when

compared with that obtained with alternative single- and multiple-factor duration matching

strategies.
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Appendix: Formulae for Parametric Convexity

First recall that

r(t;A) = a0+ a1
a4
t

�
1� e�

t
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1 +

t
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��
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�
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t
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t
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��
. (52)

The general expression for the parametric convexity of a bond, C(l)(k;m;A), is given by

C(l)(k;m;A) =
1
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, k;m = 0; :::; 3. (53)

Di¤erentiating equation (52) with respect to Ak (k = 0; :::; 3) and substituting in (53) we

obtain the following complete set of formulas for parametric convexity:
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Table 1: Formulae for Parametric Convexity
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Figure 1: Sensitivity of forward rates to the parameters of the Svensson mathematical function;

these sensitivities are obtained by �xing parameter values equal to a4 = 3 and a5 = 5.
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