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Resumo/ Abstract: 
 
In this paper we propose a general framework to deal with datasets where a binary outcome is subject 
to misclassification and, for some sampling units, neither the error-prone variable of interest nor the 
covariates are recorded. A model to describe the observed data is for-malized and eficient likelihood-
based generalized method of moments (GMM) estimators are suggested. These estimators merely 
require the formulation of the conditional distribution of the latent outcome given the covariates. The 
conditional probabilities which describe the error and the nonresponse mechanisms are estimated 
simultaneously with the parameters of inter-est. In a small Monte Carlo simulation study our GMM 
estimators revealed a very promising performance. 
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1 Introduction

In this paper we propose a general framework to deal with datasets where a binary outcome is

subject to misclassification and, for some sampling units, neither the error-prone variable of interest

nor the covariates are recorded. Specifically, we address a situation where misclassification is due

to the nature of the variable of interest and, thus, may be described by the conditional probability

of the observable outcome given its true value. On the other hand, we consider that nonresponse

depends on the error-prone alternative revealed and define a missing data mechanism in terms of

the conditional probability of a response indicator given the error-prone outcome. One variable

which is usually affected by measurement error and nonresponse is income [see, for example,

Peracchi (2002)]. Assume that the aim is modelling the probability of being poor conditional on a

set of covariates. Due to the problems in the measurement of income, the poverty status will suffer

from misclassification and nonresponse. It is reasonable to assume that the sampling units first

decide whether to report or not the correct income and, then, taking into account the response

they provide, decide if they give back the questionnaire or not.

We consider a framework where, besides the contaminated incomplete sample, also an inde-

pendent supplementary random sample (SRS) from the same population, consisting of individual

observations of all covariates, is available. The motivation for addressing this setting is twofold.

First, all the procedures may be straightforwardly simplified for cases where the latter dataset is

not available. Second, the presence of the SRS allow us to cope with the case where a given error-

prone outcome is never observed. In absence of misclassification, this problem was addressed by

analogy with choice-based (CB) sampling by Lancaster and Imbens (1996), who consider a situa-

tion where in the main sample all units choose alternative 1. In this paper we extend their analysis

for the case where some of the observed subjects have actually chosen alternative 0 instead of the

reported outcome 1.

To the best of our knowledge, the problem of misclassification has not been analysed in presence

of nonignorable nonresponse yet, since all papers dealing with misclassification issues assume that

there are no missing data; see, for example, Hausman, Abrevaya and Scott-Morton (1998) for

random samples (RS) and Ramalho (2003) for CB samples. On the other hand, the literature on

nonresponse assumes that, in the available dataset, all the variables are correctly measured; see,

inter alia, the textbooks by Little and Rubin (1987) and Schafer (1997) and the recent proposal

by Ramalho and Smith (2003) who deal with random samples subject to several patterns of

nonignorable nonresponse when the variable of interest is discrete, which include as particular

case the situation considered by Lancaster and Imbens (1996).

The main contribution of this paper is the extension of Ramalho and Smith’s (2003) method-
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ology for nonignorable nonresponse to handle also misclassification, which is done in a similar way

to that employed by Ramalho (2002) to adapt Imbens’ (1992) estimators for CB samples to deal

with this class of measurement error. We start by formalizing a model adequate to describe the

observed data in terms of the latent structural model and the conditional probabilities which de-

fine the mechanisms of misclassification and nonresponse. This setting is then utilized to analyze

the distortions imposed by both sampling issues in the structural model and in other probabili-

ties of interest, and to develop efficient likelihood-based generalized method of moments (GMM)

estimators for both the parameters of interest and the conditional probabilities which govern the

willingness to misreport and to participate in the survey.

The layout of this paper is as follows. Section 2 formalizes a regression model appropriate

to deal with misclassification and nonresponse. Efficient GMM estimators for this model are

developed in section 3. Section 4 presents some particular cases of interest. Section 5 reports

some Monte Carlo evidence on the performance in practice of some of the proposed estimators.

Finally, section 6 concludes. Some technical proofs are relegated to the appendix.

2 A regression model accounting for misclassification and nonre-

sponse

Let Y ∗ be a binary response variable and X a vector of k exogenous variables defined on Y∗ ×X ,
Y∗= {0, 1}. Employing also the supercript ”*” to denote the latent version of all probabilities and
densities, the population joint density function of Y ∗ and X may be written as

f∗ (y∗, x) = Pr∗ (y∗|x, θ) f (x) , (1)

where the marginal density function f (x) forX is unknown and Pr∗ (y∗|x, θ) is known up to the pa-
rameter vector θ. For example, Pr∗ (y∗ = 1|x, θ) = Φ (xθ) in probit models and Pr∗ (y∗ = 1|x, θ) =³
1 + e−x0θ

´−1
in logit models. Our interest is consistent estimation of and inference on the pa-

rameter vector θ. The marginal probability of observing an individual for which Y ∗ = y∗ in

the population is Q∗y∗ =
R
X Pr

∗ (y∗|x, θ) f (x)dx, with P1
y∗=0Q

∗
y∗ = 1. For simplicity, we denote

Q∗1 = Q∗ and Q∗0 = 1−Q∗.

2.1 Incorporating misclassification

In presence of misclassification, let Y represent the binary observable outcome, Y = {0, 1}. We
assume that, conditional on the latent response, the reported outcome is independent of the

individual characteristics X, that is after controlling for Y ∗, X does not affect Y . Hence, the error
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model is described by the conditional probability

Pr (Y = y|Y ∗ = y∗, x) = Pr (Y = y|Y ∗ = y∗) = αyy∗ , (2)

0 ≤ α
yy∗ ≤ 1 and

P1
y=0 αyy∗ = 1. For each outcome Y = y there is one conditional misclassification

probability and one conditional probability of correct classification, obtained when Y 6= Y ∗ and

Y = Y ∗, respectively. Given that
P1

y=0 αyy∗ = 1, only the two misclassification probabilities,

contained in the vector α = (α10, α01), are required to define the error mechanism. Similarly to

Hausman, Abrevaya and Scott-Morton (1998), we adopt the identification condition α10+α01 < 1,

which implies that the probability that a given value Y = y is misreported is smaller than that of

being correctly classified, that is, α
yy∗ < αyy for Y 6= Y ∗.

In this setup, the conditional probability of the observable variable Y given X and the marginal

probability of Y may be written as, respectively,

Pr (y|x, θ, α) =
1X

y∗=0
αyy∗ Pr

∗ (y∗|x, θ) , (3)

and

Qy =
1X

y∗=0
αyy∗Q

∗
y∗ . (4)

Unless misclassification is absent, such that α10 = α01 = 0 and Y = Y ∗, (3) and (4) differ from

their error-free counterparts Pr∗ (y∗|x, θ) and Q∗y∗ . Thus, even under the assumption of RS, this

sort of measurement error is nonignorable for likelihood-based inference, in the sense that the use

of the likelihood function Pr∗ (y∗|x, θ) yields inconsistent estimators for θ. As the error mechanism
is defined by the two misclassification probabilities contained in α, the traditional approach is to

estimate α jointly with θ by maximum likelihood based on the contaminated likelihood function in

(3); see Hausman, Abrevaya and Scott-Morton (1998).1 Similarly, in this paper, we also propose

the estimation of α together with the parameters estimated in the nonresponse problem.

2.2 Incorporating nonignorable nonresponse

Assume that a random sample of size N on Y and X is to be collected, but only n individuals

accept to participate in the survey. The n sampling units for which (Y,X) is recorded form the

so-called complete sample, in which n =
P1

y=0 ny =
P1

y∗=0 n
∗
y∗ , where ny is the number of fully

observed subjects reporting Y = y and n∗y∗ is the (unknown) number of individuals in the sample

for which Y ∗ = y∗. Assume also that an independent SRS of all covariates of size m is drawn from

1These authors also suggest alternative estimation methods where neither the error model nor the conditional

distribution Y ∗ given X need to be specified; see also Abrevaya and Hausman (1999).
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the population of interest and define Nm = N +m and nm = n+m. The SRS is not affected by

misclassification, as only the covariates, which are assumed to be error-free, are measured.

While ny, n and m are observable in all cases, n∗y∗ is always unknown, and the total number

of individuals involved in the main survey, N , may or may not be known. Throughout this paper

we formalize all the models assuming knowledge on N because, when this information is available,

its inclusion is the estimation procedures improves inference on the parameters of interest; see

Li and Qin (1998) for a discussion of several examples of biased data where the incorporation of

this information improves likelihood-based inference. Moreover, all results are straightforwardly

adapted for the case where that information is not available (see section 4).

Define the binary indicators R, which takes the value 1 if (Y,X) is observed or 0 otherwise,

and S, which takes the value 1 or 0 when the sampling unit belongs to, respectively, the main

or the supplementary dataset. We assume that the mechanism which describes the missingness

pattern is defined by

Pr (R = 1|Y = y, Y ∗ = y∗, x) = Pr (R = 1|Y = y) = δy, (5)

where 0 ≤ δy ≤ 1. This formulation implies that, conditional on Y , the willingness to respond

is independent of both the individual characteristics contained in X and the true outcome Y ∗.

Thus, (5) describes cases in which Y ∗ and X have a similar influence over the reported outcome

Y and the willingness to participate in the survey. Note also that due to the independence of the

main and the supplementary samples, Pr (R = 1|Y = y, Y ∗ = y∗, x, S = 1) = δy.

In this framework, the contaminated data are said to be missing completely at random (MCAR),

according to the definition of Little and Rubin (1987), when δ1 = δ0 = Pr (R = 1). This yields

a complete error-prone sample in which nonresponse is ignorable for likelihood-based inference,

since, as shown in the next subsection, the formulation of the likelihood function merely has to

take misclassification into account.

An interesting situation where our mechanisms of misclassification and nonresponse are likely

to hold, at least approximately, is that considered by Nicoletti (2003). This author analyses some

methods to deal with the presence of several patterns of missing data in income in a wave of the

European Comunity Household Panel (ECHP), when modelling the poverty status. In a situation

where each houlsehold is taken as a sampling unit, he distinguishes three types of nonresponse.

Household unit nonresponse, which arises when the questionnaire of the houlsehold is not given

back, personal unit nonresponse, when some of the members of the household do not give back their

questionnaire, and personal iten nonresponse, when some members of the houlsehold do not reveal

their income. Our framework is appropriate to deal with this case. In fact, the first individuals

obviously generate nonresponse of the kind we consider in this paper. The problem of the two
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last groups of sampling units generates misclassification in the poverty status of the household.

Concerning the mechanism of misclassification, it is reasonable to assume that, conditional on

the true poverty status, the observed outcome is independent of other charactristics which may

be used as regressors, as household complosition, for example. Moreover, it is likely that the

willingness to give back the questionnaire is explained by the observed income, since the reported

value for income may lead the household head not to return the questionnaire, namely if there is

some personal nonresponse.

2.3 Formulating the model by analogy with CB sampling

Similarly to Ramalho and Smith (2003) in absence of misclassification, we handle the missing

data problems of interest by analogy with the CB sampling framework. For each of the two

observable outcomes Y , we reinterpret as strata the set of respondents and the set of nonrespon-

dents. The proportion of each stratum of respondents and nonrespondents in the population

is the same, Qy, and in the sample is, respectively, Hy = Pr (Y = y,R = 1, S = 1) and Hnr
y =

Pr (Y = y,R = 0, S = 1). Additionally, the SRS form another stratum with proportion 1 in the

population and HS = Pr (S = 0) in the sample. Thus, the conditional probability in (5) may be

expressed as

δy =
Hy

Qy (1−HS)
, (6)

from which it is clear that the data are MCAR only if the ratio Hy

Qy
is constant across all Y ; see

Ramalho and Smith (2003) for details. The proportions Hy and HS may be easily estimated as

Ĥy =
ny
Nm

and ĤS =
m
Nm
.2 Qy is, in principle, unknown, although in some cases there may exist

an available estimate for this probability. When this aggregate information is available, similarly

to what is usually done in the literature for CB sampling, we assume that is was obtained from

a large random sample, for example a census, and deal with it as if it was exact. Alternatively

we may have an estimate for the error-free version of this probability, Q∗, and this information

is also assumed to be exact. The estimators suggested in the next section do not require prior

information on Q or Q∗. However, when one of these probabilities is known, this information may

be incorporated in the estimation procedure to improve inference.

To conclude this section, it is interesting to note that, due to misclassification, the conditional

2Note that, although HS remains unaffected by the mismeasurement, the proportion of a given latent outcome in

the sample, H∗y∗ = Pr (Y
∗ = y∗, R = 1, S = 1), differs from Hy. In fact, H∗y∗ is written as H

∗
y∗ = Q∗y∗

1
y=0

Hy
Qy

αyy∗

and could be estimated as Ĥ∗y∗ =
n∗y∗
Nm

if n∗y∗ , the number of individuals in the sample for which Y
∗ = y∗, was known.
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probability of response given the true outcome Y ∗,

Pr (R = 1|Y ∗ = y∗) =
1X

y=0

δyαyy∗ = ηy∗ , (7)

differs from δy in (5). The two probabilities only become identical when either misclassification

is absent, such that α10 = α01 = 0, or the data are MCAR, in which case δy = ηy∗ = Pr (R = 1).

On the other hand, due to nonignorable nonresponse, the conditional probability of observing Y

given Y ∗ among the respondents, PrS (Y = y|Y ∗ = y∗, R = 1), is not simply α
yy∗ . In fact, from

the sampling joint probability of observing (Y, Y ∗, R = 1, S = 1),

PrS (Y = y, Y ∗ = y,R = 1, S = 1) = Q∗y∗αyy∗δy (1−HS) , (8)

we may straightforwardly obtain

PrS (Y = y|Y ∗ = y,R = 1, S = 1) =
PrS (Y = y, Y ∗ = y,R = 1, S = 1)

PrS (Y ∗ = y,R = 1, S = 1)

=
Q∗y∗αyy∗δy (1−HS)

Q∗y∗ (1−HS)
P1

y=0 αyy∗δy

=
α
yy∗δyP1

y=0 αyy∗δy

= PrS (Y = y|Y ∗ = y,R = 1) = '
yy∗ , (9)

which only when the data are MCAR, such that δy is constant for all Y , is reduced to αyy∗ .

2.4 Observed data likelihood functions

The observed data likelihood functions of interest to analyze the problem of nonignorable nonre-

sponse with misclassification are derived by analogy with Ramalho and Smith (2003), with the

difference that here we deal with error-prone data. Consider the observable V = (Y,X,R, S).

Taking into account that one observes (Y,X,R = 1, S = 1), (R = 0, S = 1), and (X,S = 0) for,

respectively, respondents, nonrespondents and units of the SRS, the likelihood function for an

individual in the available dataset is

l (v) =
h
h (y, x, r = 1, s = 1)r Pr (r = 0, s = 1)1−r

is
h (x, s = 0)1−s

=

½·
Hy

Qy
Pr (y|x, θ, α) f (x)

¸r
(1−HS −H1 −H0)

1−r
¾s

[HSf (x)]
1−s . (10)

The information concerning the main sample is associated to indicator S. The contribution of

respondents, indexed by R, is the likelihood function of the error-prone complete data. This is

the only component of (10) affected by misclassification, since the error-prone variable of interest

is only measured for respondent individuals. Note that when data are MCAR, such that Hy

Qy
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is constant for all Y , this likelihood function reduces to the joint density function of (Y,X),

f (y, x) = Pr (y|x, θ, α) f (x). In this case, the failure of participation of some sampling units may
be ignored and inference may be based on Pr (y|x, θ, α) of (3), since f (x) factors out from the

resulting log-likelihood function. From (10), it is also clear that the component associated with

(1−R) merely includes the information on the size of the initial main sample N , since nothing else

is known about the nonparticipant units. Finally, the term indexed by (1− S) is the contribution

of the individuals of the SRS for which only X is measured.

The GMM estimators we suggest in the next section will be based on likelihood (10). However,

two other likelihood functions are relevant to characterize the problem in analysis: the joint

probability of (R,S) and the marginal density of the covariates in the sample, given by, respectively,

Pr (R = r, S = s) =

*Z
X

1X
y=0

Hy

Qy
Pr (y|x, θ, α) f (x)dx

r

(1−HS −H1 −H0)
1−r
Es ·

HS

Z
X
f (x) dx

¸1−s
=

h
(H1 +H0)

r (1−HS −H1 −H0)
1−r
is
H1−s
S (11)

and

h (x) =
1X

s=0

1X
r=0


 1X
y=0

Hy

Qy
Pr (y|x, θ, α) f (x)

r (1−HS −H1 −H0)
1−r


s

[HSf (x)]
1−s

= f (x)

HS +
1X

y=0

Hy

Qy
Pr (y|x, θ, α)

+ 1−HS −H1 −H0. (12)

Because (11) [(12)] does not depend (depends) on θ and α, the indicators R and S (the covariates)

are (not) ancillary for these parameters vectors. Thus, the analysis must be conditional on R

and S and not on X. The next section describes an estimation procedure which yields estimators

conditional on R and S, even though the likelihood (10) is not conditional on these indicators.

Moreover, although the analysis is not conditional on X, the specification of f (x) is circumvented.

3 Generalized method of moments estimation

In this section we derive likelihood-based GMM estimators which merely require the specification

of the structural model Pr∗ (y∗|x, θ). All the procedures are similar to those suggested by Ramalho
and Smith (2003) for nonresponse, but a further vector, α, is incorporated in the parameters of

interest. The main consequence is that, analogously to what happens when no missing data is

present, large samples sizes are required to estimate properly the misclassification probabilities;

see, for example, the discussion in Copas (1988).
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The vector of parameters of interest is, thus, ϕ = (H, θ, α,Q∗), with H = (H0, H1,HS), for

cases where the marginal choice probabilities Q and Q∗ are unknown, or simply ϕ = (H, θ, α),

when one of those probabilities is known. Note that the parameter vector H, which could be

estimated separately from Ĥy =
ny
Nm

and ĤS =
m
Nm
, is estimated together with the remaining

parameters of interest in order to condition the analysis on the ancillary statistics Ĥy and ĤS ; for

a discussion on this procedure of conditioning the analysis on ancillary statistics, see Imbens and

Lancaster (1996).

In order to avoid the specification of f (x), assume that the covariates follow a discrete dis-

tribution with L points of support xl, l = 1, 2..., L, and associated probability mass parameters

Pr
¡
X = xl

¢
= πl, πl > 0, l = 1, 2..., L. The resultant log-likelihood function based on (10),

L (H, θ, π) =
NmX
i=1

siri

"
lnHyi + lnPr

³
yi|xli , θ, α

´
− ln

LX
l=1

πl Pr
³
yi|xl, θ, α

´
+ lnπli

#
+

NmX
i=1

si (1− ri) ln (1−HSi −H1i −H0i) +
NmX
i=1

(1− si) (lnHSi + lnπli) , (13)

is maximized with respect to the vector of parameters (H, θ, α, π) subject to the restrictionPL
l=1 πl = 1. From the first order conditions of (13), we may define the following estimating

functions,

g (v, ϕ)Ht
= srI(y=t) −Ht (14)

g (v, ϕ)HS
= 1− s−HS (15)

g (v, ϕ)θ = p

½
sr

y − P

P (1− P )
− [1− s (1− r)]

R

B

¾
(16)

g (v, ϕ)αyy∗ = [y − Pr∗ (y∗|x, θ)]
½
sr

y − P

P (1− P )
− [1− s (1− r)]

R

B

¾
(17)

g (v, ϕ)Q∗ = α10 + (1− α10 − α01)Q
∗ − [1− s (1− r)]

P

B
, (18)

where t = {0, 1}, P = Pr (Y = 1|x, θ, α), p = ∇θP , R = H1
Q − H0

1−Q , B = HS +
H0
1−Q + RP . Note

that (14)-(18) do not depend on πl, which no longer needs to be estimated, and Q∗ was introduced

in the vector of parameters of interest ϕ; for details on the derivation of (14)-(18), see appendix

A.

The unknown parameters present in the set of estimating equations resulting from (14)-(18)

may be estimated by GMM. The objective function to be minimized isΥN (ϕ) = gN (v, ϕ)
0WNgN (v, ϕ)

0,

where gNm (v, ϕ) =
1

Nm

PNm
i=1 g (vi, ϕ) is the sample counterpart of the moment conditionsE [g (v, ϕ)]

= 0, with E [.] denoting expectation taken over l (v) of (10), and WN is a positive semi-definite

weighting matrix. Assume that the usual regularity conditions required for GMM estimation are
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meet; see Newey and McFadden (1994, Theorems 2.6, 3.4). The resulting optimal estimator, ϕ̂, ob-

tained from choosing WN = Ψ
−1
N , where ΨN is a consistent estimator of Ψ = E

£
g (v, ϕ) g (v, ϕ)0

¤
,

is consistent for the true value ϕ0 and satisfies

p
Nm

¡
ϕ̂− ϕ0

¢ d→ N
h
0,
¡
G0Ψ−1G

¢−1i
, (19)

where d→ denotes convergence in distribution and G = E
£∇ϕg (v, ϕ)

0¤. Asymptotic efficiency, in
the semiparametric sense, can also be proved by an analogous demonstration to that of Imbens

(1992, Theorem 3.3); see appendix B. When both Q∗ and Q are unknown, ϕ̂ =
³
Ĥ, θ̂, α̂, Q̂∗

´
is a just-identified estimator. Otherwise, when there is prior knowledge on either Q∗ or Q, that

information is replaced in (14)-(18) [note that Q = α10 + (1− α10 − α01)Q
∗] and merely ϕ̂ =³

Ĥ, θ̂, α̂
´
needs to be estimated, which yields an overidentified GMM estimator.

4 Particular cases

The framework developed previously may be simplified in a number of ways. Furthermore, it nests

many of the estimators previously proposed in the literature on misclassification, nonresponse, and

CB sampling.

4.1 Unknown N

Consider that the initial sample sizeN is unknown or this information is not used in the estimation.

As now only the respondents and units of the SRS are accounted for, we need to set R = 1, replace

Nm by nm in all calculations and results, and, since HS+H0+H1 = 1, suppress one of the moment

indicators for H0, H1 or HS .3 If we consider that none of the sampling units for which Y = 0

respond and all subjects for which Y = 1 reveal (Y,X), we obtain a generalization to handle

misclassification of Lancaster and Imbens’ (1996) estimators for case-control studies with missing

controls. Indeed, now Y is set to 1, nm = n1 + m, and, as H0 = 0 and HS + H1 = 1, both

g (v, ϕ)H0
and either g (v, ϕ)H1

or g (v, ϕ)HS
are suppressed. Interestingly, in this case δ1 = 1

and δ0 = 0 but, due to misclassification, the probabilities of observing an individual for which

the true outcome is Y ∗ = 1 and Y ∗ = 0 is, respectively, η1 = α11 and η0 = α10 [see equation

(7)]. Moreover, the probability of misclassification among the respondents is '10 = 1 ['01 = 0],

reflecting the fact that all the individuals for which Y ∗ = 0 and Y = 1 are included in the sample

[none of the individuals for which Y ∗ = 1 and Y = 0 is observed].

3 In terms of model specification, besides these simplifications, one has to take into account that now, as Hy =

Pr (Y = y, S = 1|R = 1) and Hnr
y = 0, the relation (6) is no longer valid.

10



4.2 Absence of the supplementary random sample

When a SRS is not available, we set S = 1, HS = 0, replace Nm by N , and eliminate g (v, ϕ)HS
. In

this framework, there are two particular cases of interest. First, Ramalho’s (2002) estimators for

CB samples subject to misclassification are obtained from this setting by considering N unknown

and implementing similar modifications to those suggested in the previous paragraph: set R = 1,

replace N by n, and eliminate either g (v, ϕ)H0
or g (v, ϕ)H1

. Second, consider the case where

the conditional probability of the latent variable of interest given the covariates is a logit model

including an intercept term, such that Pr∗ (y∗ = 1|x, θ) =
³
1 + e−x0θ

´−1
, where θ = (θ0, θ1),

with θ0 defined as an intercept term. As the nonresponse mechanism depends only on Y , in

absence of misclassification the ML RS estimator could be used with the complete dataset for

consistent estimation of the slope parameter vector θ1; see, for example, Ramalho and Smith

(2003). Similarly, by an analogous demonstration to that of Caudill and Cosslett (2004) for CBS,

it can be shown that nonresponse is also ignorable when the variable of interest is error-prone. In

simple terms, this is due to the fact that, in the complete error-prone data, the probability of Y

given X,4

PrS (y|x,R = 1, θ, α, δ) =
PrS (y, x,R = 1, θ, α, δ)

PrS (x,R = 1, θ, α, δ)

=

P1
y∗=0 δjαjy∗ Pr

∗ (y∗|x, θ) f (x)P1
y=0

P1
y∗=0 δyαyy∗ Pr

∗ (y∗|x, θ) f (x)

=
δj
³
αj0e

−x0θ + αj1
´

δ0 (α00e−x
0θ + α01) + δ1 (α10e−x

0θ + α11)

=
δj
³
αj0e

−x0θ + αj1
´

P1
y=0 δyαy0e

−x0θ +
P1

y=0 δyαy1

=

δjαj0
'0

'0
'1

e−x0θ + δjαj1
'1

1 +
'0
'1

e−x0θ
(20)

=
ωj0

'0
'1

e−x0θ + ωj1

1 +
'0
'1

e−x0θ
(21)

is identical to the error-prone conditional probability of observing the outcome Y given X

Pr (y = j|x, θ, α) = αj0e
−x0θ + αj1
1 + e−x0θ

(22)

with θ0 replaced by γ = θ0− ln '0
'1
and αyy∗ replaced by 'yy∗

'0
'1
. Thus, for consistent estimation

of θ1, one may utilize the simple likelihood (22), where only the problem of misclassification is

accounted for, with the complete dataset.

4Note that, to obtain (20), we make ω0 =
1
y=0 δyαy0, ω1 =

1
y=0 δyαy1, divide and multiply the first and the

second term of the numerator by, respectively, ω0 and ω1, and, then, divide all the resulting terms by ω1.
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4.3 Absence of misclassification

Ramalho and Smith’s (2003) estimators for total nonresponse when a SRS of covariates is available,

the ones we extended in this paper to handle misclassification, arise when α10 = α01 = 0 and

g (v, ϕ)αyy∗ are eliminated. The same simplification applied to our generalization of Lancaster and

Imbens’ (1996) estimators yield their original proposal.5

5 A Monte Carlo simulation study

This section analyzes the performance of the estimation method proposed in this paper in cases

where Y ∗ given X is described by a logit model, the main sample only contains individuals who

reported 1, and a SRS is available. The number of individuals choosing 0, n0, and, consequently,

the size of the main sample, N , are assumed to be unknown. As in absence of misclassification

Lancaster and Imbens’ (1996) estimator would be appropriate to deal with this dataset, we repli-

cated two of their Monte Carlo experimental designs with two adaptations. First, we admitted the

possibility that some of the observed subjects have chosen alternative 0 instead of the reported

outcome 1. Second, in order to be able to handle misclassification, we considered a much larger

sample size (nm = 5000).

The covariates X were generated from a bivariate normal distribution with zero means, unit

variances and zero correlation. In the two experimental designs, designated as A and B, the

vector of parameters of interest θ contained in Pr∗ (y∗ = 1|x, θ) =
³
1 + e−x0θ

´−1
, where θ =

(θ0, θ1, θ2) with θ0 defined as an intercept term, was set equal to, respectively, (0.0, 2.0, 0.5) and

(−1.89, 1.0, 1.0), producing a proportion of individuals choosing alternative Y ∗ = 1 of Q∗ = 0.50
and Q∗ = 0.20. In both designs the weight of the main and the supplementary sample is the same,

such that H1 = HS = 0.5 (and H0 = 0), n = n1 = 2500 and m = 2500, and the misclassification

probabilities are α10 = α01 = ᾱ = {0.02, 0.05, 0.20}. In all experiments we assumed that the
marginal probabilities Q∗ and Q are unknown. So, two GMM estimators were compared, namelly

Lancaster and Imbens’ (1996) estimator and its modified version for misclassification developed in

this paper, which are denoted by LIE and MLIE, respectively. The vector of parameters estimated

in each case is, respectively, ϕ = (H1, θ, Q∗) and ϕ = (H1, θ, ᾱ,Q
∗).

Table 1 contains the mean and the median bias in percentage terms and the standard deviation

5Note that the simplified version of moment indicators (14) and (18) does not coincide with the moment indicators

proposed by Lancaster and Imbens (1996). In effect, their proposals are g (v, ϕ)LIH1
= H1 − H1

QBP and g (v, ϕ)LIQ =

− 1
Q y − H1

QBP . However, the former uses an alternative consistent estimator for Ĥ1, 1
n1+m

n1+m
i=1

H1i
QiBi

Pi, instead

of n1
n1+m

. The latter is proportional to g (v, ϕ)Q, because it may be written as g (v, ϕ)
LI
Q = − 1

Q
H
Q g (v, ϕ)Q +

g (v, ϕ)H1
.
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across 1000 replications of the slope estimates. The number of replications that failed to converge

(F.C.) is also reported, since it was very large for ᾱ = 0.2, mainly in LIE, which ignore the presence

of misclassification. This problem is more serious in design B, similarly to the results reported by

Lancaster and Imbens (1996). The justification presented by these authors for this fact is also valid

in presence of misclassification: as the main sample merely contains units for which Y = 1 and

the SRS when Q is small contains mainly units that would report Y = 0, the level of overlapping

of the two samples is very small. The available dataset is, thus, near a CB sampling design in

which one stratum includes individuals that reveal Y = 1 and other includes individuals reporting

Y = 0, a situation where the problems of identification of the intercept term and the marginal

choice probabilities are well known; see Manski and Lerman (1977), who first discussed this issue.

Table 1 about here

The behaviour of MLIE in terms of mean and median bias is very promising, namely for the

two smallest misclassification probabilities, where the worst distortion for the slope parameters is

1.3% (for the mean of θ2, in design B, when ᾱ = 0.02). Naturally, the performance decays with the

highest level of misclassification, but even in these cases the median bias is smaller than 4.1%.6 On

the other hand, as expected, in all cases the biases in LIE are far larger than those presented by

our modified estimators, the divergence being increased when the probability of misclassification

gets large. With regard to the standard deviation across the replications, it is always substantially

larger in MLIE, specially for ᾱ = 0.20, as these estimators capture the additional variability

induced by the measurement error.

Thus, the overall performance of MLIE is very satisfactory, namely when the probability

of misclassification is moderate. Obviously, when the amount of measurement error grows, the

quality of our modified estimators worsens, mainly due to the increment in both the dispersion

of the estimates and the failures of convergence. However, even in these cases, the behaviour of

MLIE is far better than that of the uncorrected estimators.

6 Conclusion

In this paper we proposed a general framework to deal with the presence of misclassification and

missing data in datasets where the variable of interest is binary. By modifying the setup usually

employed with CB sampling, we specified the regression model of interest in terms of the struc-

6Note that in design A, the results for α = 0.2 were negatively affected by the presence of 4 replications where

the estimate for θ1 was larger than 30. Eliminating these replications, the mean bias for θ1 and θ2 is reduced to,

respectively, 8.0% and 9.3% and their standard deviations across the replications are 0.713 and 0.240.
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tural model and the conditional probabilities which define the mechanisms of misclassification

and nonresponse. This formulation emphasized the distortions imposed by both sampling issues

over the parametric model maintained in the population of interest, which, obviously, cause the

inconsistency of all the likelihood-based estimators which ignore both or one of the sampling prob-

lems. The model for the observed data was also utilized to derive efficient GMM estimators. The

performance in practice of some of these estimators was assessed through a small Monte Carlo

simulation study. The results were very promising, particularly when the amount of misclassifica-

tion was moderate.

Appendix A: derivation of the moment indicators

The maximization of the log-likelihood (13) with respect to (H, θ, α, π) yields the following

first order conditions:

s
³
Ĥ, θ̂, π̂

´
Ht

=
NmX
i=1

siI(yi=t)

µ
ri

Ĥt

− 1− ri

1− ĤS − Ĥ0 − Ĥ1

¶
= 0 (23)

s
³
Ĥ, θ̂, π̂

´
HS

=
NmX
i=1

I(si=0)

·
1− si

ĤS

− si (1− ri)

1− ĤS − Ĥ0 − Ĥ1

¸
= 0 (24)

s
³
Ĥ, θ̂, π̂

´
θ

=
NmX
i=1

siri

∇θ lnPr
³
yi|xli , θ̂, α̂

´
−
PL

l=1 π̂l∇θ Pr
³
yi|xl, θ̂, α̂

´
PL

l=1 π̂l Pr
³
yi|xl, θ̂, α̂

´
 = 0 (25)

s
³
Ĥ, θ̂, π̂

´
αyy∗

=
NmX
i=1

siri

∇αyy∗ lnPr
³
yi|xli , θ̂, α̂

´
−
PL

l=1 π̂l∇αyy∗ Pr
³
yi|xl, θ̂, α̂

´
PL

l=1 π̂l Pr
³
yi|xl, θ̂, α̂

´
 = 0 (26)

s
³
Ĥ, θ̂, π̂

´
πz

=
NmX
i=1

siri

I(li=z)
π̂z

−
Pr
³
yi|xz, θ̂, α̂

´
PL

l=1 π̂l Pr
³
yi|xz, θ̂, α̂

´
+ (1− si)

I(li=z)
π̂z

− µ̂ = 0 (27)
s
³
Ĥ, θ̂, π̂

´
µ

=
LX
l=1

π̂l − 1 = 0, (28)

where t = {0, 1}, z = {1, ..., L}, I(s=t) takes the value 1 for s = t and 0 for s 6= t, ∇β denotes

derivative with respect to β, and µ is the Lagrange multiplier associated with the restrictionPL
l=1 πl = 1.

In order to transform the system (23)-(28) into (14)-(18), we first multiply all the terms in
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(27) by π̂z and sum over z, to obtain

µ̂ =
1

Nm

NmX
i=1

siri

PL
z=1 π̂zI(li=z)

π̂z
−
PL

z=1 π̂z Pr
³
yi|xz, θ̂, α̂

´
PL

l=1 π̂l Pr
³
yi|xl, θ̂, α̂

´


+
1

Nm

NmX
i=1

(1− si)

PL
z=1 π̂zI(li=z)

π̂z

=
m

Nm
= ĤS.

Taking into account that the maximum likelihood estimator for Qy may be written from (4) as

Q̂y =
PL

l=1 π̂l Pr
³
y|xl, θ̂, α̂

´
and replacing µ̂ by ĤS in (27), yields

π̂z =
1

Nm

NmX
i=1

[1− si (1− ri)] I(li=z)

ĤS +
1

Nm

NmX
i=1

siri

Q̂yi

Pr
³
yi|xz, θ̂, α̂

´
−1

=
1

Nm

NmX
i=1

[1− si (1− ri)] I(li=z)

ĤS +
1X

y=0

Ĥy

Q̂y

Pr
³
y|xz, θ̂, α̂

´−1

=
1

Nm

NmX
i=1

[1− si (1− ri)] I(li=z)

"
ĤS +

Ĥ0

1− Q̂
+

Ã
Ĥ1

Q̂
− Ĥ0

1− Q̂

!
Pr
³
y = 1|xz, θ̂, α̂

´#−1
.(29)

Then, π̂l is substituted in both the last terms of (25) and (26). As the calculations are similar,

only those for (25) are presented:

NmX
i=1

siri

Q̂yi

LX
l=1

π̂l∇θ Pr
³
yi|xl, θ̂, α̂

´
=

=
NmX
i=1

siri

Q̂yi

LX
l=1

1

Nm

NmX
j=1

[1− sj (1− rj)] I(lj=l)

ĤS +
Ĥ0

1−Q̂ +
³
Ĥ1

Q̂
− Ĥ0

1−Q̂

´
Pr
³
y = 1|xz, θ̂, α̂

´∇θ Pr
³
yi|xl, θ̂, α̂

´

=
NmX
i=1

siri

Q̂yi

1

Nm

NmX
j=1

1− sj (1− rj)

ĤS +
Ĥ0

1−Q̂ +
³
Ĥ1

Q̂
− Ĥ0

1−Q̂

´
Pr
³
y = 1|xz, θ̂, α̂

´∇θ Pr
³
yi|xl, θ̂, α̂

´

=
NmX
j=1

1− sj (1− rj)

ĤS +
Ĥ0

1−Q̂ +
³
Ĥ1

Q̂
− Ĥ0

1−Q̂

´
Pr
³
y = 1|xz, θ̂, α̂

´ 1

Nm

NmX
i=1

siri

Q̂yi

∇θ Pr
³
yi|xl, θ̂, α̂

´

=
NmX
j=1

1− sj (1− rj)

ĤS +
Ĥ0

1−Q̂ +
³
Ĥ1

Q̂
− Ĥ0

1−Q̂

´
Pr
³
y = 1|xz, θ̂, α̂

´ 1X
y=0

Ĥy

Q̂y

∇θ Pr
³
y|xl, θ̂, α̂

´

=
NmX
j=1

[1− sj (1− rj)]
³
Ĥ1

Q̂
− Ĥ0

1−Q̂

´
∇θ Pr

³
y = 1|xl, θ̂, α̂

´
ĤS +

Ĥ0

1−Q̂ +
³
Ĥ1

Q̂
− Ĥ0

1−Q̂

´
Pr
³
y = 1|xz, θ̂, α̂

´ .

As the transformed versions of (25) and (26) depend on Q which may be unknown for the re-

searcher, an estimating function for this probability is required. Similarly to Imbens (1992) pro-

cedure for CB sampling, we use the definition of the maximum likelihood estimator for Q with π̂l
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replaced by the estimator given in (29)

Q̂ =
LX
l=1

1

Nm

NmX
i=1

[1− sj (1− rj)] I(li=l) Pr
³
yi = 1|xl, θ̂, α̂

´
ĤS +

Ĥ0

1−Q̂ +
³
Ĥ1

Q̂
− Ĥ0

1−Q̂

´
Pr
³
y = 1|xz, θ̂, α̂

´
=

1

Nm

NmX
i=1

[1− sj (1− rj)] Pr
³
yi = 1|xl, θ̂, α̂

´
ĤS +

Ĥ0

1−Q̂ +
³
Ĥ1

Q̂
− Ĥ0

1−Q̂

´
Pr
³
y = 1|xz, θ̂, α̂

´ .
To obtain moment indicator (18) Q̂ is written from (4) as Q̂ = α̂10 +(1− α̂10 − α̂01) Q̂

∗. This last

substitution allow us to deal with both cases where we have information on Q̂ and Q̂∗.

Appendix B: efficiency of the generalized method of moments
estimators

Similarly to Imbens (1992), the efficiency of the GMM estimators proposed previously is proved

by showing that the Cramér-Rao lower bounds associated with a sequence of parametric models

which satisfy the same regularity conditions as our model, converges to the asymptotic covariance

matrix of our semiparametric estimators.

To construct the sequence of parametric models for any ε > 0, partition X into Lε subsets Xl
where, for l 6= m, Xl ∩ Xm = ∅ and, if x, z ∈ Xl, then |x− z| < ε. Define φlx = 1 if x ∈ Xl and
0 otherwise, and fε (x) = f (x)

hPLε
l=1 φlx

R
Xl f (x) dx

i−1
, such that f (x,') = fε (x)

PLε
l=1 φlx'l,

where 'l = Pr (x ∈ Xl) =
R
Xl f (x) dx and fε (x) is a known function.

The parametric model indexed by ε, which results from substituting f (x,') in (10), is

lε (v) =

("
Hy

Pr (y|x, θ, α) fε (x)
PLε

l=1 φlx'lPLε
l=1'l

R
Xl Pr (y|x, θ, α) fε (x)φlxdx

#r
(1−HS −H1 −H0)

1−r
)s

Ã
HSfε (x)

LεX
l=1

φlx'l

!1−s
,

which, as fε (x) is a known function, depend on the unknown vector of parameters (H, θ, α, φlx).

Constructing the log-likelihood function, taking the first order derivatives and noting that the max-

imum likelihood estimator for Q is written from (4) as Q̂y =
PLε

l=1'l

R
Xl Pr

³
y|x, θ̂, α̂

´
fε (x)φlxdx,

the dependence on 'l can be removed following the same procedure described in Appendix A to

remove dependence on π̂l in the system (23)-(28). The resultant moment indicators are

gε (v, ϕ)Hy
= srI(y=t) −Ht

gε (v, ϕ)HS
= 1− s−HS

gε (v, ϕ)θε = srp
y − P

P (1− P )
−
[1− s (1− r)]

³
H1
Q − H0

1−Q
´PLε

l=1 φlx
R
Xl pfε (x) dx

HS +
H0
1−Q +

³
H1
Q − H0

1−Q
´PLε

l=1 φlx
R
Xl Pfε (x)dx
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gε (v, ϕ)αyy∗ε
= [y − Pr∗ (y∗|x, θ)]

½
sr

y − P

P (1− P )
−
[1− s (1− r)]

³
H1
Q − H0

1−Q
´PLε

l=1 φlx
R
Xl pfε (x) dx

HS +
H0
1−Q +

³
H1
Q − H0

1−Q
´PLε

l=1 φlx
R
Xl Pfε (x)dx


gε (v, ϕ)Q∗ε = α10 + (1− α10 − α01)Q

∗ − [(1− s) r + s]
PLε

l=1 φlx
R
Xl Pfε (x)dx

HS +
H0
1−Q +

³
H1
Q − H0

1−Q
´PLε

l=1 φlx
R
Xl Pfε (x) dx

.

To compare the asymptotic covariance matrix of this parametric estimator with that of our

semiparametric estimator, defineEε (P ) =
PLε

l=1 φlx
R
Xl Pfε (x)dx andEε (p), Eε (∇θθ0P ), Eε (∇αα0P )

and Eε (∇θα0P ) similarly. Hence, it is clear that these systems correspond to, respectively, (14)-

(18) with P and p replaced by their expectations.

Assuming that P , ∇θP , ∇θθ0P , ∇αα0P and ∇θα0P are continuously differentiable with respect

to x, there is uniform convergence of Eε (P ), Eε (p), Eε (∇θθ0P ), Eε (∇αα0P ) and Eε (∇θα0P ) to

P , p, ∇θθ0P , ∇αα0P and ∇θα0P , respectively. Thus, the limits of Ψε = Eε [gε (v, ϕ) gε (v, ϕ)
0¤ and

Gε = Eε

£∇ϕgε (v, ϕ)
0¤ equal those of Ψ and G and the covariance matrix,

¡
GεΨ

−1
ε G0ε

¢−1, the
Cramér-Rao bound, converges to

¡
GΨ−1G0

¢−1, which implies that our semiparametric estimators
are efficient.
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Table 1: Summary statistics for GMM estimators from 1000 replications

θdesign A=(0.0,2.0,0.5), θdesign B=(-1.89,1.0,1.0)

θ̂1 θ̂2

Design ᾱ Estimator F. C. Bias St. D. Bias St. D.

Mean Med. Mean Med.

A .02 LIE 0 -.129 -.132 .150 -.128 -.132 .071

MLIE 4 -.006 -.001 .321 .002 -.008 .119

.05 LIE 1 -.275 -.277 .133 -.272 -.240 .068

MLIE 7 .010 .005 .338 .012 .004 .116

.20 LIE 63 -.647 -.651 .105 -.646 -.650 .055

MLIE 13 .166 .041 2.850 .188 .020 .799

B .02 LIE 5 -.069 -.073 .069 -.067 -.066 .065

MLIE 9 .009 -.005 .423 .013 -.003 .449

.05 LIE 5 -.166 -.169 .065 -.163 -.163 .062

MLIE 9 .005 .006 .255 .011 .009 .272

.20 LIE 363 -.467 -.472 .043 -.465 -.468 .041

MLIE 66 .026 .023 .586 .018 .026 .414
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