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Abstract. In this paper, given f : I× (C(I))2×R2 → R a L1−Carathéodory

function, it is considered the functional fourth order equation

u(iv) (x) = f(x, u, u′, u′′ (x) , u′′′ (x))

together with the nonlinear functional boundary conditions

L0(u, u′, u′′, u (a)) = 0 = L1(u, u′, u′′, u′ (a))

L2(u, u′, u′′, u′′ (a) , u′′′ (a)) = 0 = L3(u, u′, u′′, u′′ (b) , u′′′ (b)).

Here Li, i = 0, 1, 2, 3, are continuous functions satisfying some adequate
monotonicity assumptions.

It will be proved an existence and location result in presence of non ordered

lower and upper solutions and without monotone assumptions on the right
hand side of the equation.

1. Introduction. Let us consider the problem composed by the functional equa-
tion

u(iv) (x) = f (x, u, u′, u′′ (x) , u′′′ (x)) (1)

with x ∈ I ≡ [a, b] , f : I× (C(I))
2×R2 → R a L1− Carathéodory function and the

nonlinear functional boundary conditions

L0 (u, u′, u′′, u (a)) = 0,
L1 (u, u′, u′′, u′ (a)) = 0,

L2 (u, u′, u′′, u′′ (a) , u′′′ (a)) = 0,
L3 (u, u′, u′′, u′′ (b) , u′′′ (b)) = 0,

(2)

where Li, i = 0, 1, 2, 3, are continuous functions satisfying some monotonicity as-
sumptions to be defined later.
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This type of higher order functional boundary value problems has been recently
studied in several works such that [3, 4], for third order and [2, 7], to fourth order
problems. However, to the best of our knowledge, this is the first time where the
functional dependence on the unknown function and its first derivative, is allowed,
not only in the nonlinearity f , but also in the boundary functions L0, L1, L2 and
L3. In this sense, this paper improves the results existent in the literature related
to fourth order functional problems and it generalizes, also, boundary value prob-
lems with several types of differential equations, such as, delay equations, integro-
differential or equations with maxima arguments, and many different boundary
conditions, like Lidstone, separated, multipoint or nonlocal conditions, among oth-
ers. As example, we refer the papers [1, 8, 11, 13, 14, 16, 17, 18, 19]. A detailed
list about the potentialities and some applications of functional boundary value
problems can be seen in [7].

The method used in this paper follows standard arguments in lower and upper
solutions technique, as it was suggested, for instance, in [5, 9, 12]. It is also pointed
out that this work makes use of a different technique of lower and upper solutions,
which allows two features, not covered by the existent results:

• lower and upper functions can be considered with second order derivatives well
ordered, but with the first derivative and/or the functions not ordered (see
Definition 2.1). In this case, the main theorem (Theorem 3.2), that coincides
with the classical theory if lower and upper solutions, and the corresponding
derivatives, are “well ordered”, gives the existence and the location of the
solution u, and of u′, in regions limited by a pair of functions that are obtained
by translations of the initial lower and upper solutions. Therefore the set of
admissible functions to be considered as lower and upper is hugely generalized.

• no monotone-type conditions are assumed on the nonlinearity f.

The last section contains, as example, a functional boundary value problem where
differential equation and boundary conditions have both functional dependence,
which could not be solved by the existent theory. In fact it includes an integro-
differential equation and existence and location results are obtained in presence of
non-ordered lower and upper solutions and the corresponding first derivatives.

2. Definitions and auxiliary results. In this section it will be introduced the
notations and definitions needed forward together with some auxiliary functions
useful to construct some ordered functions on the basis of the not necessarily ordered
lower and upper solutions of the referred problem.

A Nagumo-type growth condition, assumed on the nonlinear part, will be an
important tool to set an a priori bound for the third derivative of the corresponding
solutions.

In the following, W 4,1(I) denotes the usual Sobolev space in I, that is, the
subset of C3(I) functions, whose third derivative is absolutely continuous in I and
the fourth derivative belongs to L1(I).

The nonlinear part f will be a locally L1−bounded Carathéodory function, in
the following standard sense:
f(x, ·, ·, ·, ·) is continuous in (C(I))

2 × R2 for a.e. x ∈ I; f(·, η, ξ, y0, y1) is

measurable for all (η, ξ, y0, y1) ∈ (C(I))
2 × R2; and for every R > 0 there exists

ψ ∈ L1(I) and a null measure set N ⊂ I such that |f(x, η, ξ, y0, y1)| ≤ ψ(x) for all

(x, η, ξ, y0, y1) ∈ (I \N)× (C(I))
2 × R2 with ‖(η, ξ, y0, y1)‖∞ ≤ R.
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The functions Li, i = 0, 1, 2, 3, considered in boundary conditions, must verify
the following monotonicity properties:

(H0) L0, L1 : (C(I))
3 × R → R are continuous functions, nondecreasing in first,

second and third variables;
(H1) L2 : (C(I))

3×R2 → R is a continuous function, nondecreasing in first, second,
third and fifth variables;

(H2) L3 : (C(I))
3×R2 → R is a continuous function, nondecreasing in first, second

and third variables and nonincreasing in the fifth one.

The main tool to obtain the location part is the upper and lower solutions
method. However, in this case, they must be defined as a pair, which means that
it is not possible to define them independently from each other. Moreover, it is
pointed out that lower and upper functions, and the correspondent first derivatives,
are not necessarily ordered.

To introduce “some order”, it must be defined the following auxiliary functions:
For any α, β ∈W 4,1 (I) define functions αi, βi : I → R, i = 0, 1, as it follows:

α1(x) = min {α′ (a) , β′ (a)}+

∫ x

a

α′′ (s) ds, (3)

β1(x) = max {α′ (a) , β′ (a)}+

∫ x

a

β′′ (s) ds, (4)

α0(x) = min {α (a) , β (a)}+

∫ x

a

α1 (s) ds, (5)

β0(x) = max {α (a) , β (a)}+

∫ x

a

β1 (s) ds. (6)

Definition 2.1. The functions α, β ∈ W 4,1 (I) are a pair of lower and upper so-
lutions for problem (1) – (2) if α′′ ≤ β′′, on I, and the following conditions are
satisfied: For all (v, w) ∈ A := [α0, β0]× [α1, β1] , the following inequalities hold:

α(iv) (x) ≥ f (x, v, w, α′′, α′′′ (x)) , for a. e. x ∈ I, (7)

β(iv) (x) ≤ f (x, v, w, β′′, β′′′ (x)) , for a. e. x ∈ I, (8)

L0 (α0, α1, α
′′, α0 (a)) ≥ 0 ≥ L0 (β0, β1, β

′′, β0 (a))
L1 (α0, α1, α

′′, α1 (a)) ≥ 0 ≥ L1 (β0, β1, β
′′, β1 (a))

L2 (α0, α1, α
′′, α′′ (a) , α′′′ (a)) ≥ 0 ≥ L2 (β0, β1, β

′′, β′′ (a) , β′′′ (a))
L3 (α0, α1, α

′′, α′′ (b) , α′′′ (b)) ≥ 0 ≥ L3 (β0, β1, β
′′, β′′ (b) , β′′′ (b)) .

(9)

The Nagumo-type condition is given by next definition:

Definition 2.2. Consider Γi, γi ∈ L1 (I) , i = 0, 1, 2, such that γi (x) ≤ Γi (x) ,
∀ x ∈ I, and the set

E =

{
(x, z0, z1, y2, y3) ∈ I × (C (I))

2 × R2 : γ0 (x) ≤ z0 (x) ≤ Γ0 (x) ,
γ1 (x) ≤ z1(x) ≤ Γ1 (x) , α′′(x) ≤ y2 ≤ β′′(x)

}
.

A function f : I × (C (I))
2 × R2 → R is said to verify a Nagumo-type condition

in E if there exists ϕE ∈ C ([0,+∞) , (0,+∞)) such that

|f (x, y0, y1, y2, y3)| ≤ ϕE (|y3|) , (10)

for every (x, y0, y1, y2, y3) ∈ E, and∫ +∞

r

t

ϕE (t)
dt > max

x∈I
Γ2 (x)−min

x∈I
γ2 (x) , (11)
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where r ≥ 0 is given by

r := max

{
Γ2 (b)− γ2 (a)

b− a
,

Γ2 (a)− γ2 (b)

b− a

}
.

Next result gives an a priori estimate for the third derivative of all possible
solutions of (1).

Lemma 2.3. There exists R > 0 such that for every L1−Carathéodory function
f : I × (C (I))

2×R2 → R satisfying (10) and (11) and every solution u of (1) such
that

γi (x) ≤ u(i) (x) ≤ Γi (x) , ∀ x ∈ I, (12)

for i = 0, 1, 2, we have ‖u′′′‖ < R. Moreover the constant R depends only on the
functions ϕ and γi, Γi (i = 0, 1, 2) and not on the boundary conditions.

Proof. The proof is similar to [3, Lemma 2.1].

3. Existence and location result. In this section it is provided an existence and
location theorem for the problem (1) – (2). More precisely, sufficient conditions are
given for, not only the existence of a solution u, but also to have information about
the location of u, u′, u′′ and u′′′.

The arguments of the proof require the following lemma, given on [15, Lemma
2]:

Lemma 3.1. For z, w ∈ C1(I) such that z(x) ≤ w(x), for every x ∈ I, define

q(x, u) = max{z(x),min{u,w(x)}}.

Then, for each u ∈ C1(I) the next two properties hold:

(a)
d

dx
q(x, u(x)) exists for a.e. x ∈ I.

(b) If u, um ∈ C1(I) and um → u in C1(I) then

d

dx
q(x, um(x))→ d

dx
q(x, u(x)) for a.e. x ∈ I.

Now, we are in a position to prove the main result of this paper.

Theorem 3.2. Assume that there exists a pair (α, β) of lower and upper solutions
of problem (1) – (2), such that conditions (H0), (H1) and (H2) hold.

If f : I × (C (I))
2 ×R2 → R is a L1−Carathéodory function, satisfying a Nagumo-

type condition in

E∗ =

{
(x, z0, z1, y2, y3) ∈ I × (C (I))

2 × R2 : α0 (x) ≤ z0 (x) ≤ β0 (x) ,
α1 (x) ≤ z1(x) ≤ β1 (x) , α′′(x) ≤ y2 ≤ β′′(x)

}
,

then problem (1) – (2) has at least one solution u such that

α0 (x) ≤ u (x) ≤ β0 (x) , α1 (x) ≤ u′ (x) ≤ β1 (x) , α′′ (x) ≤ u′′ (x) ≤ β′′ (x) ,

for every x ∈ I, and |u′′′ (x)| ≤ K, ∀ x ∈ I, where

K = max
x∈I
{R, |α′′′ (x)| , |β′′′ (x)|} (13)

and R > 0 is given by Lemma 2.3 referred to the set E∗.
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Proof. Define the continuous functions

δi (x, yi) = max {αi (x) ,min {yi, βi (x)}} , for i = 0, 1, (14)

δ2 (x, y2) = max {α′′ (x) ,min {y2, β
′′ (x)}}

and
q (z) = max {−K,min {z,K}} for all z ∈ R.

Consider the modified problem composed by the equation

u(iv) (x) = f

(
x, δ0 (·, u) , δ1 (·, u′) , δ2 (x, u′′(x)) , q

(
d

dx
(δ2 (x, u′′(x)))

))
(15)

and the boundary conditions

u (a) = δ0 (a, u (a) + L0 (u, u′, u′′, u (a))) ,
u′ (a) = δ1 (a, u′ (a) + L1 (u, u′, u′′, u′ (a))) ,
u′′ (a) = δ2 (a, u′′ (a) + L2 (u, u′, u′′, u′′ (a) , u′′′ (a))) ,
u′′ (b) = δ2 (b, u′′ (b) + L3 (u, u′, u′′, u′′ (b) , u′′′ (b))) .

(16)

The proof will be proved by following several steps:

Step 1 - Every solution u of problem (15) – (16), satisfies α′′ (x) ≤ u′′ (x) ≤
β′′ (x), α1 (x) ≤ u′ (x) ≤ β1 (x) , α0 (x) ≤ u (x) ≤ β0 (x) and |u′′′ (x)| < K, for every
x ∈ I, with K > 0 given in (13).

Let u be a solution of the modified problem (15) – (16). Assume, by contradiction,
that there exists x ∈ I such that α′′ (x) > u′′ (x) and let x0 ∈ I be such that

min
x∈I

(u− α)
′′

(x) = (u− α)
′′

(x0) < 0.

As, by (16), u′′ (a) ≥ α′′ (a) and u′′ (b) ≥ α′′ (b), then x0 ∈ (a, b) . So, there is
(x1, x2) ⊂ (a, b) such that x0 ∈ (x1, x2) and

u′′ (x) < α′′ (x) ,∀x ∈ (x1, x2), (u− α)
′′

(x1) = (u− α)
′′

(x2) = 0. (17)

Therefore, for all x ∈ (x1, x2) it is satisfied that δ2 (x, u′′ (x)) = α′′ (x) and
d
dxδ2(x, u′′(x)) = α′′′(x). Now, since for all u ∈ C1(I) we have that (δ0 (·, u) , δ1
(·, u′)) ∈ A, we deduce

u(iv) (x) = f

(
x, δ0 (·, u) , δ1 (·, u′) , δ2 (x, u′′(x)) , q

(
d

dx
(δ2 (x, u′′(x)))

))
= f (x, δ0 (·, u) , δ1 (·, u′) , α′′ (x) , α′′′ (x)) ≤ α(iv) (x) , for a.e. x ∈

(x1, x2).

In consequence we deduce that function (u− α)′′′ is monotone nonincreasing on
the interval (x1, x2). From the fact that (u− α)′′′(x0) = 0, we know that (u− α)′′

is monotone nonincreasing too on (x0, x2), which contradicts the definitions of x0

and x2.
The inequality u′′(x) ≤ β′′(x) in I, can be proved in same way and, so,

α′′ (x) ≤ u′′ (x) ≤ β′′ (x) , ∀ x ∈ I. (18)

By (16) and (3), the following inequalities hold for every x ∈ I,

u′ (x) = u′ (a) +

∫ x

a

u′′ (s) ds

≥ α1 (a) +

∫ x

a

α′′ (s) ds = min {α′ (a) , β′ (a)}+

∫ x

a

α′′ (s) ds = α1 (x) .

Analogously, it can be obtained u′ (x) ≤ β1 (x) , for all x ∈ I.
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On the other hand, by using (16), (5) and (6), the following inequalities are
fulfilled:

u (x) ≥ α0 (a) +

∫ x

a

α1 (s) ds = min {α (a) , β (a)}+

∫ x

a

α1 (s) ds = α0 (x) .

The inequality u (x) ≤ β0 (x) for every x ∈ I is deduced in the same way.
Applying previous bounds in Lemma 2.3, for K given by (13), it is obtained the

a priori bound |u′′′ (x)| < K, for x ∈ I. For details, see [3, Lemma 2.1].

Step 2 - Problem (15) – (16) has at least one solution.

For λ ∈ [0, 1] let us consider the homotopic problem given by

u(iv) (x) = λf

(
x, δ0 (·, u) , δ1 (·, u′) , δ2 (x, u′′(x)) , q

(
d

dx
(δ2 (x, u′′ (x)))

))
(19)

and the boundary conditions

u (a) = λδ0 (a, u (a) + L0 (u, u′, u′′, u (a))) ≡ λLA,
u′ (a) = λδ1 (a, u′ (a) + L1 (u, u′, u′′, u′ (a))) ≡ λLB ,
u′′ (a) = λδ2 (a, u′′ (a) + L2 (u, u′, u′′, u′′ (a) , u′′′ (a))) ≡ λLC ,
u′′ (b) = λδ2 (b, u′′ (b) + L3 (u, u′, u′′, u′′ (b) , u′′′ (b))) ≡ λLD.

(20)

Let us consider the norms in C3 (I) and in L1 (I)× R4, respectively,

‖v‖C3 = max {‖v‖∞ , ‖v′‖∞ , ‖v′′‖∞ , ‖v′′′‖∞}

and

|(h, h1, h2, h3, h4)| = max {‖h‖L1 ,max {|h1| , |h2| , |h3| , |h4|}} .
Define the operators L : W 4,1 (I) ⊂ C3 (I)→ L1 (I)× R4 by

Lu (x) =
(
u(iv) (x) , u (a) , u′ (a) , u′′ (a) , u′′ (b)

)
, x ∈ I,

and, for λ ∈ [0, 1] , Nλ : C3 (I)→ L1 (I)× R4 by

Nλu (x) =

(
λf
(
x, δ0 (·, u) , δ1 (·, u′) , δ2 (x, u′′(x)) , q

(
d
dx (δ2 (x, u′′ (x)))

))
,

LA, LB , LC , LD

)
Since L0, L1, L2 and L3 are continuous and f is a L1− Carathéodory func-

tion, then, from Lemma 3.1, Nλ is continuous (see [6, Theorem 3.5] for details).
Moreover, as L−1 is compact, it can be defined the completely continuous operator
Tλ : C3 (I)→ C3 (I) by Tλu = L−1Nλ (u). It is obvious that the fixed points of op-
erator Tλ coincide with the solutions of problem (19) – (20). As Nλu is bounded in
L1 (I)×R4 and uniformly bounded in C3 (I), we have that any solution of the prob-
lem (19 ) – (20), verifies the following a priori bound ‖u‖C3 ≤

∥∥L−1
∥∥ |Nλ (u)| ≤ K̄,

for some K̄ > 0 independent of λ.
In the set Ω =

{
u ∈ C3 (I) : ‖u‖C3 < K̄ + 1

}
the degree d (I − Tλ,Ω, 0) is well

defined for every λ ∈ [0, 1] and, by the invariance under homotopy, d (I − T0,Ω, 0) =
d (I − T1,Ω, 0) .

As the equation x = T0 (x) is equivalent to the problem

u(iv) (x) = 0, x ∈ I, u (a) = u′ (a) = u′′ (a) = u′′ (b) = 0,

which has only the trivial solution, then d (I − T0,Ω, 0) = ±1. So by degree theory,
the equation x = T 1 (x) has at least one solution, that is, the problem (15) – (16)
has at least one solution in Ω.

Step 3 - Every solution u of problem (15) – (16) is a solution of (1) – (2).
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Let u be a solution of the modified problem (15) – (16). By previous steps,
function u fulfills equation (1). So, it will be enough to prove the following four
inequalities:

α0 (a) ≤ u (a) + L0 (u, u′, u′′, u (a)) ≤ β0 (a) ,
α1 (a) ≤ u′ (a) + L1 (u, u′, u′′, u′ (a)) ≤ β1 (a) ,
α′′ (a) ≤ u′′ (a) + L2 (u, u′, u′′, u′′ (a) , u′′′ (a)) ≤ β′′ (a) ,
α′′ (b) ≤ u′′ (b) + L3 (u, u′, u′′, u′′ (b) , u′′′ (b)) ≤ β′′ (b) .

Assume that

u (a) + L0 (u, u′, u′′, u (a)) > β0 (a) . (21)

Then, by (16), u (a) = β0 (a) and, by (H0) and previous steps, it is obtained the
following contradiction with (21):

u (a) + L0 (u, u′, u′′, u (a)) ≤ β0 (a) + L0 (β0, β1, β
′′, β0 (a)) ≤ β0 (a) .

Applying similar arguments it can be proved that α0(a) ≤ u (a)+L0 (u, u′, u′′, u (a))
and α1 (a) ≤ u′ (a)+L1 (u, u′, u′′, u′ (a)) ≤ β1 (a) . For the third case assume, again
by contradiction, that

u′′ (a) + L2 (u, u′, u′′, u′′ (a) , u′′′ (a)) > β′′ (a) . (22)

By (16), u′′ (a) = β′′ (a) and, as u′′ ≤ β′′ in I, then u′′′ (a) ≤ β′′′ (a) and, by (H1)
and (9), it is achieved this contradiction with (22):

u′′ (a) + L2 (u, u′, u′′, u′′ (a) , u′′′ (a)) ≤ β′′ (a) + L2 (β0, β1, β
′′, β′′ (a) , β′′′ (a))

≤ β′′ (a) .

The same technique yields the two last inequalities.

As a corollary of the previous existence and location theorem, we deduce the
following result for multipoint boundary value problems.

Corollary 1. Assume that there exist α, β ∈ W 4,1(I) satisfying the following
inequalities:

α′′(x) ≤ β′′(x), for all x ∈ I,

α(iv) (x)− f (x, v, w, α′′(x), α′′′ (x)) ≥ 0 ≥ β(iv) (x)− f (x, v, w, β′′(x), β′′′ (x))

for a. e. x ∈ I and all (v, w) ∈ A,

α0 (a) ≤
m0

1∑
i=1

a0
i α0(ξ0

i ) +

m0
2∑

i=1

b0i α1(ρ0
i ) +

m0
3∑

i=1

c0i α
′′(ζ0

i ),

α1 (a) ≤
m1

1∑
i=1

a1
i α0(ξ1

i ) +

m1
2∑

i=1

b1i α1(ρ1
i ) +

m1
3∑

i=1

c1i α
′′(ζ1

i ),
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α′′ (a) ≤
m2

1∑
i=1

a2
i α0(ξ2

i ) +

m2
2∑

i=1

b2i α1(ρ2
i ) +

m2
3∑

i=1

c2i α
′′(ζ2

i ) + c α′′′(a),

α′′ (b) ≤
m3

1∑
i=1

a3
i α0(ξ3

i ) +

m3
2∑

i=1

b3i α1(ρ3
i ) +

m3
3∑

i=1

c3i α
′′(ζ3

i )− dα′′′(b),

β0 (a) ≥
m0

1∑
i=1

a0
i β0(ξ0

i ) +

m0
2∑

i=1

b0i β1(ρ0
i ) +

m0
3∑

i=1

c0i β
′′(ζ0

i ),

β1 (a) ≥
m1

1∑
i=1

a1
i β0(ξ1

i ) +

m1
2∑

i=1

b1i β1(ρ1
i ) +

m1
3∑

i=1

c1i β
′′(ζ1

i ),

β′′ (a) ≥
m2

1∑
i=1

a2
i β0(ξ2

i ) +

m2
2∑

i=1

b2i β1(ρ2
i ) +

m2
3∑

i=1

c2i β
′′(ζ2

i ) + c β′′′(a),

β′′ (b) ≥
m3

1∑
i=1

a3
i β0(ξ3

i ) +

m3
2∑

i=1

b3i β1(ρ3
i ) +

m3
3∑

i=1

c3i β
′′(ζ3

i )− d β′′′(b),

with mj
k ∈ N for k = 1, 2, 3 and j = 0, 1, 2, 3, a ≤ ξj1 < ξj2 < ... < ξj

mj
k

≤ b, a ≤

ρj1 < ρj2 < ... < ρj
mj

k

≤ b, a ≤ ζj1 < ζj2 < ... < ζj
mj

k

≤ b, and c, d, aji , b
j
i and cji non-

negative constants.
If f is a L1−Carathéodory function, satisfying a Nagumo-type condition in E∗,

then problem

u(iv) (x) = f (x, u, u′, u′′(x), u′′′ (x)) for a. e. x ∈ I,

u (a) =

m0
1∑

i=1

a0
i u(ξ0

i ) +

m0
2∑

i=1

b0i u
′(ρ0

i ) +

m0
3∑

i=1

c0i u
′′(ζ0

i ),

u′ (a) =

m1
1∑

i=1

a1
i u(ξ1

i ) +

m1
2∑

i=1

b1i u
′(ρ1

i ) +

m1
3∑

i=1

c1i u
′′(ζ1

i ),

u′′ (a) =

m2
1∑

i=1

a2
i u(ξ2

i ) +

m2
2∑

i=1

b2i u
′(ρ2

i ) +

m2
3∑

i=1

c2i u
′′(ζ2

i ) + c u′′′(a),

u′′ (b) =

m3
1∑

i=1

a3
i u(ξ3

i ) +

m3
2∑

i=1

b3i u
′(ρ3

i ) +

m3
3∑

i=1

c3i u
′′(ζ3

i )− d u′′′(b).

has at least one solution u such that α0 (x) ≤ u (x) ≤ β0 (x), α1 (x) ≤ u′ (x) ≤
β1 (x), α′′ (x) ≤ u′′ (x) ≤ β′′ (x), for every x ∈ I.

Proof. The proof is a direct consequence of Theorem 3.2. In this case it is enough
to define the following functions:

L0(u, v, w, z) = −z +

m0
1∑

i=1

a0
i u(ξ0

i ) +

m0
2∑

i=1

b0i v(ρ0
i ) +

m0
3∑

i=1

c0i w(ζ0
i ),
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L1(u, v, w, z) = −z +

m1
1∑

i=1

a1
i u(ξ1

i ) +

m1
2∑

i=1

b1i v(ρ1
i ) +

m1
3∑

i=1

c1i w(ζ1
i ),

L2(u, v, w, z, p) = −z +

m2
1∑

i=1

a2
i u(ξ2

i ) +

m2
2∑

i=1

b2i v(ρ2
i ) +

m2
3∑

i=1

c2i w(ζ2
i ) + c p,

L3(u, v, w, z, p) = −z +

m3
1∑

i=1

a3
i u(ξ3

i ) +

m3
2∑

i=1

b3i v(ρ3
i ) +

m3
3∑

i=1

c3i w(ζ3
i )− d p.

4. Example. This section contains a functional problem composed by an integro-
differential equation with functional boundary conditions, which solvability is proved
in presence of non-ordered lower and upper solutions. We remark that such fact
was not possible with the results in the current literature. This example does not
model any particular problem arising in real phenomena. Our purpose consists on
emphasize the powerful of the developed theory in this paper by showing what kind
of problems we can deal with.

Consider, for x ∈ [0, 1], the fourth order equation

u(iv) (x) =

∫ x

0

u (s) ds+ max
x∈[0,1]

{u′ (x)}+ 2u′′ (x)− (u′′′ (x) + 1)
2
3 , (23)

coupled with the boundary value conditions
∞∑
i=1

ai u(ξi) +
∞∑
i=1

bi u
′(ςi) + ηu(0) = 0,

max
x∈[0,1]

u(x) + min
x∈[0,1]

u′(x) + max
x∈[0,1]

u′′(x)− 11u′(0) = 0,

∫ 1

0
u (s) ds− 3u′′(0) = 0, max

x∈[0,1]
u(x)− 2u′′(1) = 0,

(24)

with 0 ≤ ξi, ςi ≤ 1, i ∈ N,
∞∑
i=1

ai,
∞∑
i=1

bi are nonnegative series convergent to a and b,

respectively, and η ≤ −3a− 10
3 b ≤ 0. Considering as auxiliary functions

α1 (x) = −2x− 1

2
, α0 (x) = −x2 − x

2
− 3

4
,

β1 (x) = 2x+
1

2
, β0 (x) = x2 +

x

2
+

3

4
,

one can verify that functions α (x) = −x2 + x
2 + 3

4 and β (x) = x2 − x
2 −

3
4 are,

respectively, lower and upper solutions for the problem (23) – (24), with

f (x, y0, y1, y2, y3) =

∫ x

0

y0(s)ds+ max
x∈[0,1]

{y1(x)}+ 2 y2(x)− (y3(x) + 1)
2
3 ,

L0 (z1, z2, z3, z4) =

∞∑
i=1

ai z1(ξi) +

∞∑
i=1

bi z2(ςi) + η z4,

L1 (z1, z2, z3, z4) = max
x∈[0,1]

z1 + min
x∈[0,1]

z2 + max
x∈[0,1]

z3 − 11 z4,

L2 (z1, z2, z3, z4, z5) =

∫ 1

0

z1 (s) ds− 3 z4, L3 (z1, z2, z3, z4, z5) = max
x∈[0,1]

z1 − 2 z4.
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As f is continuous and satisfies (10) and (11) for ϕE∗ (y3) = 47
6 + (y3 + 1)

2
3 in

E∗ =

(x, y0, y1, y2, y3) ∈ [0, 1]× R4 :
−x2 − x

2 −
3
4 ≤ y0 ≤ x2 + x

2 + 3
4

−2x− 1
2 ≤ y1 ≤ 2x+ 1

2
−2 ≤ y2 ≤ 2

 ,

by Theorem 3.2, there is a nontrivial solution u for problem (23) – (24) such that

−x2− x
2
− 3

4
≤ u (x) ≤ x2 +

x

2
+

3

4
, −2x− 1

2
≤ u′ (x) ≤ 2x+

1

2
, −2 ≤ u′′ (x) ≤ 2,

for all x ∈ [0, 1] .

REFERENCES

[1] Z. Bai, The upper and lower solution method for some fourth-order boundary value problems,

Nonlinear Anal. 67 (2007), 1704–1709.
[2] A. Cabada, F. Minhós, Fully nonlinear fourth order equations with functional boundary con-

ditions, J. Math. Anal. Appl., 340/1 (2008) 239–251.

[3] A. Cabada, F. Minhós, A. I. Santos, Solvability for a third order discontinuous fully equation
with functional boundary conditions J. Math. Anal. Appl., 322 (2006) 735–748.

[4] A. Cabada, M. R. Grossinho, F. Minhós, On the Solvability of some Discontinuous Third
Order Nonlinear Differential Equations with Two Point Boundary Conditions, J. Math. Anal.

Appl. 285 (2003) 174–190.

[5] A. Cabada, M. R. Grossinho, F. Minhós, Extremal solutions for third-order nonlinear prob-
lems with upper and lower solutions in reversed order, Nonlinear Anal. 62 (2005) 1109–1121.

[6] A. Cabada, D. O’Regan, R. L. Pouso, Second order problems with functional conditions

including Sturm Liouville and multipoint conditions, Math. Nachr. 281, (2008) 1254–1263.
[7] A. Cabada, R. Pouso, F. Minhós, Extremal solutions to fourth-order functional boundary

value problems including multipoint condition, Nonlinear Anal.: Real World Appl., 10 (2009)

2157–2170.
[8] H. Feng, D. Ji, W. Ge, Existence and uniqueness of solutions for a fourth-order boundary

value problem, Nonlinear Anal., 70 (2009) 3761–3566.

[9] D. Franco, D. O’Regan, J. Perán, Fourth-order problems with nonlinear boundary conditions,
J. Comput. Appl. Math. 174 (2005) 315–327.

[10] J. R. Graef, L. Kong, B. Yang, Existence of solutions for a higher order multi-point boundary
value problems, Result. Math. 53 (2009), 77–101.

[11] D. Ma, X. Yang, Upper and lower solution method for fourth-order four-point boundary value

problems, J. Comput. Appl. Math., 223 (2009), 543–551.
[12] F. Minhós, T. Gyulov, A. I. Santos, Lower and upper solutions for a fully nonlinear beam

equations, Nonlinear Anal., 71 (2009) 281–292.

[13] H. Pang, W. Ge, Existence results for some fourth order multi-point boundary value problem,
Math. Comput. Model., 49 (2009) 1319-1325.

[14] C. V. Pao, Y. M. Wang, Fourth-order boundary value problems with multi-point boundary
conditions, Comm. Appl. Nonlin. Anal., 16 (2009), 1–22.

[15] M. X. Wang, A. Cabada, J. J. Nieto, Monotone method for nonlinear second order periodic
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