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Abstract

Historically, actuaries have been calculating premiums and mathematical reserves us-

ing a deterministic approach, by considering a deterministic mortality intensity, which is
a function of the age only, extracted from available (static) life tables and by setting a ‡at

("best estimate") interest rate to discount cash ‡ows over time. Since neither the mor-
tality intensity nor interest rates are actually deterministic, life insurance companies and

pension funds are exposed to both …nancial and mortality (systematic and unsystematic)
risks when pricing and reserving for any kind of long-term living bene…ts, particularly on
annuities and pensions. In this paper, we assume that an appropriate description of the

demographic risks requires the use of stochastic models. In particular, we assume that
the random evolution of the stochastic force of mortality of an individual can be modelled

by using doubly stochastic processes. The model is then embedded into the well know
a¢ne-jump framework, widely used in the term structure literature, in order to derive

closed-form solutions for the survival probability. We show that stochastic mortality mod-
els provide an adequate framework for the development of longevity risk hedging tools,
namely mortality-linked contracts such as longevity bonds or mortality derivatives.

JEL Code: G22

Keywords: stochastic mortality intensity; longevity risk; a¢ne models; pro-

jected lifetables.

¤University of Évora - Department of Economics and CIEF / CEFAGE-UE, Largo dos Cole-
giais, N. 2, 7000-803, Évora/Portugal, Tel.: +351 266 740894 / Fax: +351 266 742494, E-Mail:
jbravo@uevora.pt. Paper prepared for presentation at the Sixth Workshop on the "Consequences
of longevity risks on pension systems and labor markets", Université Paris-Dauphine, Paris 3th-
4th April 2008

1

mailto:jbravo@uevora.pt


1 Introduction

Longevity risk, i.e., the risk that members of some reference population might live

longer, on average, than anticipated, has recently emerged as one of the largest

sources of risk faced by life insurance companies, pension funds, annuity providers,

life settlement investors and a number of other potential players in the marketplace

for this risk. For example, given the uncertainty about future developments in

mortality and life expectancy, pension funds and annuity providers run the risk

that the net present value of their pension promises and annuity payments will

turn out higher than expected, as they will have to pay out a periodic sum of

income that will last for an uncertain life span.

This risk is ampli…ed by the current problems in state-run social security

systems. Given the long-term demographic trends observed in most developed

countries (with low fertility rates and an ageing population), salaries and wages

earned by active workers will have to …nance the pensions of a growing number

of retiree, making traditional pay-as-you-go social security systems unsustain-

able. This will most likely force public pensions systems to moderate bene…t

promises in the future, reducing state-provided pension income. Additionally,

the market trend away from de…ned-bene…t corporate pension schemes towards

de…ned-contribution plans and the move towards funded pension systems means

that “Second Pillar” employer-related pension bene…ts will inevitably become

more uncertain too. Moreover, traditional family networks in which the younger

members of a family were encouraged to take care of the older ones, are being

broken down by the extended mobility of the workforce.

In a scenario of unknown longevity, retirees can reduce the risk of exhausting

assets before passing away by consuming less per year, but such a tactic then

increases the chance that they might die with too much wealth left unconsumed.

In other words, dying with too little wealth is undesirable, but having too much

wealth is also undesirable, since it represents foregone consumption opportunities.

In this scenario, individuals will have to become more self-reliant and will wish to

diversify their sources of income in retirement, assigning in particular a greater

weight to private solutions, namely annuities. As a consequence, annuity providers

will face an increasing longevity risk.

These trends in mortality lead to the use of projected survival models when

pricing and reserving for life annuities and other long-term living bene…ts. A

number of di¤erent projection models have been proposed and are actually used in

actuarial practice. In spite of this, the future mortality trend is actually random
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and hence, whatever kind of model is adopted, systematic deviations from the

forecasted mortality may take place.

The risk of systematic deviations is di¤erent in nature from that of random

‡uctuations around the trend, a well-known type of risk in the insurance business,

in both the life and the non-life insurance areas. E¤ectively, the risk of systematic

deviations arises from either a “model” or a “parameter” risk, which are unques-

tionably non-pooling risks. Long-term trends observed in mortality a¤ect both

young and old ages. Although the terms “longevity risk” and “mortality risk” are

very often used indistinctly, by longevity risk we mean the risk that members of

some reference population might live longer, on average, than anticipated.

Longevity risk is a critical problem both because of the uncertainty of longevity

projections, on one hand, and because of the huge amounts of liabilities at risk,

on the other. Life annuities are probably the most important insurance product

concerned by the longevity risk, but this risk should also be carefully considered

when dealing with other long-term living bene…ts, insurance covers (particularly

within the area of health insurance) and other retail products such as reverse

mortgages. Additionally, many life insurers and reinsurers globally have become

nervous about their exposure to catastrophic mortality events. This has resulted

in the issuance of several bonds transferring mortality catastrophe risk to in-

vestors.

Despite its signi…cance, traditionally life companies and pension sponsors were

short of solutions to manage longevity risk. Until recently, hedging strategies

were limited to product redesign (e.g., participating annuities), to the adoption of

conservative pricing policies, to the actuarial management of an insurer’s surplus

(internal capital) and, in some cases, to the use of prospective lifetables.

In order for a market for hedging of longevity risk to develop there are several

prerequisites. These include the development of generally accepted technology

and models to quantify the risk and the successful design and implementation of

…nancial products and markets to hedge the risk. There has been a signi…cant

increase in research addressing these issues in recent years, namely those involv-

ing the securitization of risks, new capital market solutions and new reinsurance

treaties.

In this paper, we assume that an appropriate description of the demographic

risks requires the use of stochastic models. In particular, we assume that the

random evolution of the stochastic force of mortality of an individual can be

modelled by using doubly stochastic processes. The model is then embedded into

the well know a¢ne-jump framework, widely used in the term structure literature,
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in order to derive closed-form solutions for the survival probability. We show that

stochastic mortality models provide an adequate framework for the development of

longevity risk hedging tools, namely mortality-linked contracts such as longevity

bonds or mortality derivatives. The paper is organized as follows. In Section 2 we

brie‡y review both the traditional “dynamic approach” and the new “stochastic

mortality approach”. In Section 3 we use doubly stochastic processes in order to

model the random evolution of the stochastic force of mortality in a manner that

is common in the credit risk literature. The model is then embedded into the well

know a¢ne-jump term structure framework, widely used in the term structure

or credit risk literature, in order to derive closed-form solutions for the survival

probability. In Section 4 we calibrate the model to the Portuguese projected

lifetables. Results indicate that the model is ‡exible enough to accommodate the

rectangularization phenomena and that jumps seem to be an appropriate way to

describe the random variations observed in mortality. Section 5 concludes.

2 Modeling mortality and longevity risk

One of the key conditions for the development of longevity-linked products and

markets and for the hedging of longevity risk is the development of generally

agreed market models for risk measurement. Whereas traditional market risks

such as equity market, interest rate, exchange rate, credit and commodity risks

have well consolidated methodologies for quantifying risk-based capital and for

establishing market prices, longevity and mortality risk has historically been a

very opaque risk. For a long time, only demographers, actuaries and insurance

companies showed any interest in measuring and managing this risk, mainly for

pricing purposes. A number of explanations can be given for this, particularly

the fact that it is a non-…nancial risk that has been measured and analyzed in

a di¤erent way from …nancial risks, generally adopting deterministic or scenario

based approaches.

Historically, actuaries have been calculating premiums and mathematical re-

serves using a deterministic approach, by considering a deterministic mortality

intensity, which is a function of the age only, extracted from available (static)

lifetables and by setting a ‡at (“best estimate”) interest rate to discount cash

‡ows over time. Since neither the mortality intensity nor interest rates are ac-

tually deterministic, life insurance companies are exposed to both …nancial and

mortality (systematic and unsystematic) risks when pricing and reserving for any

kind of long-term living bene…ts, particularly on annuities. In particular, the cal-
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culation of expected present values requires an appropriate mortality projection

in order to avoid signi…cant underestimation of future costs.

In order to protect the company from mortality improvements, actuaries have

di¤erent solutions, among them to resort to projected (dynamic or prospective)

lifetables, i.e., lifetables including a forecast of future trends of mortality instead

of static lifetables. Static lifetables are obtained using data collected during a

speci…c period (1 to 4 years) whereas dynamic lifetables incorporate mortality

projections. To illustrate the problems with this approach, consider a female

individual born in 2006. Her mother is 30-year-old and her grand-mother 60.

To estimate the life expectancy of the newborn, the death probability at age

30 will be her mother’s one and at age 60 her grand-mother’s one, observed in

2006. This means that in a situation where longevity is increasing, static lifetables

underestimate lifelengths and thus premiums relating to life insurance contracts.

Conversely, dynamic lifetables will project mortality into the future accounting

for longevity improvements.

Since the future mortality is actually unknown, there is enormous likelihood

that future death rates will turn out to be di¤erent from the projected ones, and

so a better assessment of longevity risk would be one that consists of both a mean

estimate and a measure of uncertainty. Such assessment can only be performed

using stochastic models to describe both demographic and …nancial risks. In this

section, we brie‡y review both the traditional “dynamic approach” and the new

“stochastic mortality approach”.

2.1 Discrete-time dynamic approach

Although the subject of estimating future levels of mortality has received enor-

mous attention lately, actuarial models of mortality and life tables for pricing

and projecting pension and related life product cash ‡ows have been developed

over centuries. Tuljapurkar and Boe (1998), Tabeau (2001), GAD (2001), Pitacco

(2004), Wong-Fupuy and Haberman (2004), Booth (2006) and Bravo (2007) pro-

vide a detailed review of historical patterns in mortality and longevity forecasting

models.

In such a sensitive issue, there are a number of di¤erent opinions regarding

how long people will live in the future. Some argue that lifespans will continue

to increase at least as rapidly as experienced over the last decades due to, e.g.,

new medical breakthroughs or healthier life styles. Others disagree and project

that increases in lifetime will decelerate, and potentially even decline (at least for

certain risk groups), since any increase in longevity would have to occur by virtue
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of declines in mortality for older age groups, or for other underlying causes of

death. Other controversial points in this debate refer to the possible existence of

a biological limit to human life and whether we are actually approaching it (see,

e.g., Vaupel (1997), Olshansky and Carnes (1997) and Watson Wyatt (2005)).

The competing views on the evolution of lifespans, medical advancement or

the existence of a biologic limit to human life translate into the question of how

to appropriately model future longevity. Mortality forecasting methods currently

in use can be categorized in many di¤erent ways. They can be clustered into epi-

demiological methods, projection by cause of death, extrapolative models, expert-

opinion models and relational models.

Epidemiological models analyze the relationship between speci…c risk factors

(e.g., smoking, obesity, socio-economic status, marital status and speci…c diseases)

and their e¤ects on mortality. The idea is to estimate the impact of speci…ed

risk factors on mortality rates (not on causes of death), from which mortality

forecasts can be generated by projecting these risk factors into the future, given

certain distributional assumptions. The practical usefulness of this approach lacks

an accurate knowledge of the relationship between risk factors and mortality,

something that science may achieve in the future. In relational models, future

mortality rates are assumed to follow the dynamics of observed mortality for a

more “advanced” population. The assumption is that the mortality pro…le of the

forecasted population (e.g., of a developing country) will converge to the “target”

population over some future time horizon.

Extrapolative models assume that future mortality can be estimated by pro-

jecting into the future the same trends observed in the recent to medium-term

past. While the models can be either deterministic or stochastic, the basic idea

is that future mortality will continue to improve at the same rate as in the past

(observation window). This approach is the most popular among o¢cial bureaus

all over the world but should be used with caution since it depends on the reli-

ability of base mortality data and neglects, to a certain extent, the uncertainty

related to the evolution of causes of death, future medical advances or to envi-

ronmental risk factors. A variant of this approach are the methods that involve

projection by cause of death, i.e., methods that disaggregate total mortality and

forecast mortality rates for each cause of death separately by extrapolating past

trends. Finally, expert-opinion models are also based on an extrapolative model,

but explicitly include assumptions by the forecaster in respect to the future evolu-

tion of mortality. The idea is to incorporate additional information not captured

by the statistical model ensuring that forecasted values are not pushed beyond
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reasonable limits.

The classical approach to incorporating improvement in longevity for forecast-

ing future mortality within extrapolative models is to …t an appropriate paramet-

ric function (e.g., Makeham model) to each calendar year data. Then, each of

the parameter estimates is treated as independent time series, extrapolating their

behaviour to the future in order to provide the actuary with projected lifetables

(see, e.g., CMIB (1976) and Heligman e Pollard (1980)). Despite simple, this

approach has serious limitations. In the …rst place, the approach strongly relies

on the appropriateness of the parametric function adopted. Secondly, parameter

estimates are very unstable, a feature that undermines the reliability of univariate

extrapolations. Thirdly, the time series for parameter estimates are not indepen-

dent and often robustly correlated. Although applying multivariate time series

methods for the parameter estimates is theoretically possible, this will complicate

the approach and introduce new problems.

Lee and Carter (1992) developed a simple model for describing the long term

trends in mortality as a function of a simple time index. The method models

the logarithm of a time series of age-speci…c death rates  () as the sum of an

age-speci…c component  that is independent of time, and a second component,

expressed as a product of a time-varying parameter denoting the general level of

mortality , and an age-speci…c component  that signals the sensitiveness of

mortality rates at each age when the general level of mortality changes. Formally,

we have

ln () =  +  +  (1)

where  » N
¡
0 2

¢
is a white-noise, representing transitory shocks and the

parameters ,  and  have to be constrained by

maxX

=min

 = 0 and
maxX

=min

 = 1 (2)

in order to ensure model identi…cation.

Parameter estimates are obtained by ordinary least squares, i.e., by solving

the following minimization program

(̂ ̂ ̂) = arg min


(
maxX

=min

maxX

=min

(ln () ¡  ¡ )
2

)
 (3)

Lee and Carter (1992) solve (3) by resorting to Singular Value Decomposition

techniques but alternative estimation procedures can be implemented consider-
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ing iterative methods (see, e.g., Bravo (2007)) or Weighted Least-Squares (see,

e.g., Wilmoth (1993)). The resulting time-varying parameter estimates are then

modeled and forecasted using standard Box-Jenkins time series methods. Finally,

from this forecast of the general level of mortality, projected age-speci…c death

rates are derived using the estimated age-speci…c parameters.

There have been several extensions to the Lee-Carter model including di¤erent

error assumptions and estimation procedures. Lee (2000), Lee and Miller (2001),

Tuljapurkar and Boe (1998), Brouhns et al. (2002a), Wong-Fupuy and Haberman

(2004), Bravo (2007) and Cairns et al. (2007) discuss the model and extensions.

Brouhns et al. (2002a) and Renshaw and Haberman (2003c) develop an extension

of the Lee-Carter model allowing for Poisson error assumptions and apply the

model to Belgian data. This Poisson log-bilinear approach can be stated as

 » P ( ())  (4)

where  denotes the number of deaths recorded at age  during year  from

an exposure-to-risk (i.e., the number of person-years from which  arise), ,

and  () is given by (1).

One of the main advantages of the Poisson log-bilinear model over the Lee-

Carter model is that speci…cation (4) allows us to use maximum-likelihood meth-

ods to estimate the parameters instead of resorting to least squares (SVD) meth-

ods. Formally, we estimate the parameters ,  and  by maximizing the

log-likelihood derived from model (1)-(4)

lnV (®¯·) =
maxX

=min

maxX

=min

f ( + ) ¡  exp ( + )g +  (5)

where ® = (min      max)
0  ¯ =

¡
min      max

¢0
 · = (min      max)

0

and  is a constant.

The presence of the bilinear term  makes it impossible to estimate the

model using standard statistical packages that include Poisson regression. Be-

cause of this, we resort to an iterative method for estimating log-linear models

with bilinear terms proposed by Goodman (1979). Even with a Poisson error

assumption, heterogeneity by age-group in mortality indicates over-dispersion of

errors.

Empirical studies to date suggest the need for more than a single factor to

model longevity improvement, something that the Lee-Carter approach with a

single factor and varying improvement impacts by age does not appear to capture.
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This is important because if pricing models can often perform reasonably well with

only a single factor, hedging requires a more complete picture of the dynamics

of longevity improvements. In this sense, Bell (1997), Booth et al. (2002) and

Renshaw and Haberman (2003c,d) include a second log-bilinear term in (1) and

estimate parameters by considering the …rst two term in a SVD. Additionally,

they adopt a multivariate setting in order to project the evolution of the time

indices  ( = 1 2 )

Carter and Prskawetz (2001) consider the possibility of time varying parame-

ters  and . Renshaw and Haberman (2003a) include additional non-linear

age factors when modeling the so-called “mortality reduction factors” within a

Generalized Linear Models (GLM’s) approach. Renshaw and Haberman (2006)

and Currie et al. (2004) include a cohort factor including year of birth as a factor

impacting the rate of longevity improvement. This cohort factor is found to be

signi…cant in UK mortality data. Renshaw e Haberman (2005) and Bravo (2007)

develop a version of the Lee-Carter model considering positive asymptotic mortal-

ity. This result is, for most age groups, more consistent with observed mortality

patterns when compared with that of the original model. Wilmoth and Valkonen

(2002) develop an extension of the Lee-Carter model aimed to investigate di¤er-

ential mortality by considering a number of alternative covariates other than age

and calendar time.

Cairns, Blake and Dowd (2006b) develop and apply a two-factor model similar

to the Lee-Carter model with a smoothing of age e¤ects using a logit transfor-

mation of mortality rates. Cairns et al. (2007) analyze England and Wales and

US mortality data showing that models that allow for an age e¤ect, a quadratic

age e¤ect and a cohort e¤ect …t the data best although the analysis of error dis-

tributions in these models revealed disappointing. De Jong and Tickle (2006)

formulate the Lee-Carter model in a state space framework.

2.2 Stochastic mortality modeling

Models following the approach of Lee and Carter typically adapt discrete-time

time series models to capture the random element in the stochastic development of

mortality rates. Given the unknown nature of future mortality, some authors have

recently developed models in a continuous-time framework by modeling mortality

intensity as a stochastic process (see, e.g., Milevsky and Promislow (2001), Dahl

(2004), Bi¢s and Millossovich (2004, 2006), Bi¢s (2005), Dahl and Møller (2005),

Miltersen and Persson (2005), Cairns et al. (2006a), Schrager (2006), Bravo (2007)

and references therein).
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Modeling the mortality intensity as a stochastic process allows us to capture

two of its more signi…cant features: time dependency and uncertainty of the future

development. Additionally, this framework provides a more accurate description

of both premiums and liabilities of life insurance companies and contributes to

a proper quanti…cation of systematic mortality risk (also called longevity risk)

faced by them. This framework and model application provides the theoretical

foundation for …nancial pricing of longevity dependent …nancial claims and for the

development of longevity risk hedging tools, namely mortality-linked contracts

such as longevity bonds or other longevity-linked derivatives.

Up to now, a number of di¤erent stochastic mortality models have been pro-

posed - for a detailed classi…cation see Cairns et al. (2006a) and Bravo (2007).

Most of these stochastic mortality models are short rate mortality models, i.e.,

they model the spot mortality rate  ()  or the spot force of mortality  () 

We can also …nd forward mortality models, i.e., approaches that model the dy-

namic of the forward mortality intensity  ( )  a positive-mortality modeling

framework for the spot survival probability  ()  in line with the term structure

approach developed by Flesaker e Hughson (1996), Rogers (1997) and Rutkowski

(1997), or market-models for the forward survival probability.

Milevsky and Promislow (2001) were the …rst to propose a stochastic “hazard

rate” or force of mortality. With the intention of pricing guaranteed annuitiza-

tion options in variable annuities, the authors demonstrate, …rst in a discrete-time

framework, how to price and hedge a plain vanilla mortality option using a portfo-

lio composed by zero coupon bonds, insurance contracts and endowment contracts.

Moreover, they price the same option in a continuous-time risk-neutral framework

assuming that the dynamics of the short interest rate and of the mortality inten-

sity evolve independently over time according to a Cox-Ingersoll-Ross-process and

a stochastic mean reverting Brownian Gompertz-type model, respectively.

Dahl (2004) develops a general stochastic model for the mortality intensity.

The author derives partial di¤erential equations for both the price at which some

insurance contracts should be sold on the …nancial market and for the general mor-

tality derivatives in the presence of stochastic mortality. In addition, he envisages

solutions by which systematic mortality risk can be transferred to the …nancial

market. Dahl and Moller (2005) derive risk-minimizing strategies for insurance

liabilities in a market without derivative securities. Bi¢s and Millossovich (2004)

expand this framework to a bidimensional setting in order to deal e¤ectively with

several sources of risk that simultaneously a¤ect insurance contracts.

In Bi¢s (2005), a¢ne jump-di¤usion processes are used to model both …nan-
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cial and demographic factors. Speci…cations of the model with an a¢ne term

structure are employed and closed form mathematical expressions (up to the so-

lutions of standard Riccati ordinary di¤erential equations) are derived for some

classic life insurance contracts. In Section ?? we illustrate this approach with a

particular example.

Schrager (2006) presents an a¢ne stochastic mortality model, that simulta-

neously describe the evolution of mortality for di¤erent age groups as opposed to

the previous formulation in which a single cohort is considered. The author …ts

the model to Dutch mortality data using Kalman …lters and presents alternative

valuation approaches for a number of mortality-contingent contracts.

Bi¢s and Denuit (2005) and Bi¢s et al. (2006) generalize the model pro-

posed by Lee and Carter (1992) to a stochastic setting. The authors assume that

the dynamics of the time-varying parameter  can be described by stochastic

di¤erential equations.

While most of the models presented so far assume independence between …-

nancial and demographic risk factors, Miltersen and Persson (2005) allow for cor-

relations. The authors adopt the well know Heath-Jarrow-Morton no-arbitrage

approach and model the forward mortality intensity (instead of the spot mortal-

ity intensity), taking the whole forward-mortality curve as an in…nite-dimensional

state variable. Similar to standard term structure literature, they derive no-

arbitrage conditions for the drift term.

These models have generally been implemented for single age cohorts. To al-

low for multiple ages in the modeling, dependence across ages must be modeled

in a proper way. Although these arbitrage-free models currently provide the most

potential as a standard modeling framework for pricing and hedging longevity risk

based products, there are a number of modeling issues that need to be addressed

and that are yet to be fully explored. Important issues include the modeling

of morbidity and ill-health, the use of multiple state models to capture the de-

pendence between competing risk factors or incorporating cause of death as risk

factors.

3 A¢ne-Jump di¤usion processes for mortality

In this section we draw a parallel between insurance contracts and certain credit-

sensitive securities and exploit some results of the intensity-based approach to

credit risk modeling. Speci…cally, we use doubly stochastic processes (also known

as Cox processes) in order to model the random evolution of the stochastic force
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of mortality of an individual aged  in a manner that is common in the credit

risk literature. The model is then embedded into the well know a¢ne-jump term

structure framework, widely used in the term structure literature, in order to

derive closed-form solutions for the survival probability.

3.1 Mathematical framework

We are given a …ltered probability space (­F FP) and concentrate on an indi-

vidual aged  at time 0 Following the pioneering work of Artzner and Delbaen

(1995) in the credit risk literature and the proposals by Dahl (2004) and Bi¢s

(2005) among others in the mortality area, we model his/her random lifetime as

an F-stopping time  admitting a random intensity  Speci…cally, we consider

 as the …rst jump-time of a nonexplosive F-counting process  recording at

each time  ¸ 0 whether the individual has died ( 6= 0) or survived ( = 0) 

The stopping time  is said to admit an intensity  if the compensator of 

does, i.e., if  is a nonnegative predictable process such that
R 
0 ()  1 for

all  ¸ 0 and such that the compensated process  =
n
 ¡

R 
0 () :  ¸ 0

o

is a local F-martingale. If the stronger condition E
³R 
0 ()

´
 1 is satis…ed,

then  is an F-martingale.

From this, we derive

E (+¢ ¡j F) = E
µZ +¢


()

¯̄
¯̄ F

¶
 (6)

based on which we can write

 (+¢ ¡j F) = ()¢+  (¢)  (7)

an expression comparable with that of the instantaneous probability of death

¢+ derived in the traditional deterministic context.

By further assuming that  is a Cox (or doubly stochastic) process driven by

a sub…ltration G of F with F-predictable intensity  it can be shown, by using

the law of iterated expectations, that the probability of an individual aged + 

at time  surviving up to time  ¸  on the set f  g  is given by

P (   j F) = E
h
¡

 
 +()

¯̄
¯ F

i
 (8)

Readers who are familiar with mathematical …nance and, in particular, with

the interest rate literature, can without di¢culty observe that the right-hand-side

of equation (8) represents the price at time  of a unitary default-free zero coupon
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bond with maturity at time    if the intensity  is to represent the short-term

interest rate.

One of the main advantages of this mathematical framework is that we can

approach the survival probability (8) by using well known a¢ne-jump di¤usion

processes. In particular, an R-valued a¢ne-jump di¤usion process  is an F-

Markov process whose dynamics is given by

 = ()+ ( ) +
X

=1

  (9)

where  is a F-standard Brownian motion in R and each component  is

a pure-jump process in R with jump-arrival intensity
©
 () :  ¸ 0

ª
and

time-dependent jump distribution  on R An important requirement of a¢ne

processes is that the drift  :  ! R the instantaneous covariance matrix

T :  ! R£ and the jump-arrival intensity  :  ! R+ must all have an

a¢ne dependency on  . The jump-size distribution is determined by its Laplace

transform.

The convenience of adopting a¢ne processes in modeling the mortality inten-

sity comes from the fact that, for any  2 C for given  ¸  and an a¢ne function

 de…ned by  () = 0 () + 1 () ¢  under certain technical conditions we

have

X (   ) $ E
h
¡

 
 ()¢

¯̄
¯F

i
= ()+()¢  (10)

where  (¢) 
=  (¢;  )   (¢) 

=  (¢;  ) satisfy generalized Ricatti ordinary

di¤erential equations, that can be solved at least numerically and, in some cases,

as we will see below, analytically.

3.2 Mortality intensity as a stochastic process

Turning now to the problem of modeling adequately the dynamics of mortality,

we illustrate the approach developed in the previous section by developing a new

model for the mortality intensity that considers the classic Feller equation together

with a jump component. Formally, we assume that the mortality intensity +()

solves the following stochastic di¤erential equation

+() = +()+ 
q
+() () + () (11)

+(0) = ¹

13



with

() =
X

=1

 (12)

where ¹  0   0,  ¸ 0 and  () is a standard Brownian motion.

We assume that () is a compound Poisson process, independent of  , with

constant jump-arrival intensity  ¸ 0, where f :  = 1    1g are i.i.d. vari-

ables. Following the results by Kou (2002), among others, we consider jump

sizes that are random variables double asymmetric exponentially distributed with

density

 () = 1

µ
1

1

¶

¡ 

1 If¸0g + 2

µ
1

2

¶



2 If0g (13)

where 1 2 ¸ 0 1 + 2 = 1 represent, respectively, the probabilities of a

positive (with average size 1  0) and negative (with average size 2  0) jump.

By setting 1 = 0 we are interested only on the importance of longevity risk (see,

e.g., Bi¢s (2005)). By setting  = 0 the model becomes deterministic. When

1 = 2 and 1 = 2 = 1
2 we get the so-called “…rst Laplace law”. By adopting

equation (13) we consider the signi…cance of both positive mortality shocks (e.g.,

new medical breakthroughs) and negative mortality shifts (e.g., bird ‡u).

In the spirit of (10), let us now assume that the survival probability ¡+()

is represented by an exponentially a¢ne function. By applying the framework

described above, we have that

¡+() ´ A()+B( )¢+() (14)

where  =  ¡ 

It can be shown that the solution to this problem admits the following Feynman-

Kac representation


¡
 +()

¢½
¡ _A() ¡ _B()() + +()B() +

2

2
+()B2()

+

µ
1

1 ¡ 1B()
+

2
1 + 2B()

¡ 1

¶
¡ +()

¾
= 0 (15)

where 
¡
 +()

¢
=¡ +().

Dividing both sides of this equation by 
¡
 +()

¢
we get

·
¡ _B() + B() +

2

2
B2( ) ¡ 1

¸
+() (16)

+

·
¡ _A() + 

µ
1

1 ¡ 1B()
+

2
1 + 2B()

¡ 1

¶¸
= 0
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where () and () are solutions to the following system of ODEs’

_B() = B() +
1

2
2B2() ¡ 1 (17)

_A() = 

µ
1

1 ¡ 1B()
+

2
1 + 2B()

¡ 1

¶
(18)

with boundary conditions

B(0) = 0 A(0) = 0 (19)

where _B() = 
 B() _A() = 

A().

By solving the system (17)-(18)-(19), we get the following closed-form solutions

for A() and B()

A() = 1

½
0

(0 ¡ 1)
+
1 (0 + 1) [ln (0 + 1) ¡ ln (0 ¡ 1 + (1 + 1)

 )]

 (0 ¡ 1) (1 + 1)

¾

+2

½
0

(0 + 2)
+

2 (0 + 1)

 (1 ¡ 2) (0 + 2)
[¡ ln (0 + 1) (20)

+ ln (0 + 2 + (1 ¡ 2)
 )]g ¡ 

B() =
1 ¡ 

0 + 1
(21)

with  =
p
2 + 22 0 = (+)

2 and 1 = (¡)
2 , de…ned for

¡ 1

2
 B() 

1

1
 (22)

We observe that the model stipulates an increasing (deterministic) trend for

the mortality intensity, around which random ‡uctuations occur due to the sto-

chastic component and due to the jump component. Additionally, the model

o¤ers a realistic process for the stochastic mortality rate since it ensures that

the variable cannot take negative values. The model assumes that both negative

and positive jumps can be registered in mortality, a feature that contrasts with

similar models that are interested in sudden improvements in mortality (e.g., due

to medical advances) only. We think this gives a more appropriate description of

mortality, in which unexpected increases in mortality can occur (e.g., caused by

natural catastrophes or epidemics). The model o¤ers a nice analytical solution,

easy to use in pricing and reserving applications within the life insurance industry.
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4 Calibration to the Portuguese projected lifetables

As a …rst application of the above models, we have calibrated model (11) to the

Portuguese projected lifetables. Portuguese projected lifetables were obtained by

…tting model (4)-(1)-(2) to a matrix of crude Portuguese death rates, from year

1970 to 2004 and for ages 0 to 84 The data, discriminated by age and sex, refers

to the entire Portuguese population and has been supplied by the Portuguese

National Institute of Statistics (INE - Instituto Nacional de Estatística). The

database used comprised two elements: the observed number of death  given

by age and year of death, and the observed population size  at December

31 of each year. We follow the INE de…nition of population at risk using the

population counts at the beginning and at the end of a year and take migration into

account. The Poisson parameters   and  implicated in (1) are estimated by

maximum-likelihood methods using the iterative procedure described in Section

2.1.1

The closing of lifetables was performed using the method proposed by De-

nuit and Goderniaux (2005) to extrapolate mortality rates at very old ages. The

method is a two step method. First, a quadratic function is …tted to age-speci…c

estimated mortality rates in a given age-band. Second, the estimated function is

used to extrapolate mortality rates up to a pre-determined maximum age. For-

mally, the following log-quadratic model is …tted by weighted least-squares

ln ̂ () =  () +  () +  ()2 +  ()   2 [65 84] (23)

to age-speci…c mortality rates observed at older ages (in our case  2 [65 84]),

where  () » N
¡
0 2 ()

¢
, with additional constraints

max = 1 (24)

0max = 0 (25)

where 0 denotes the …rst derivative of  with respect to age max. Constraints

(24) and (25) impose a concave con…guration to the curve of mortality rates at

old ages and the existence of a horizontal tangent at  = max = 120 We then

use this function to extrapolated mortality rates up to age max.

In …tting the model, we have adopted the ordinary least squares method, i.e.,

we minimize the quadratic deviations between the model survival probabilities,

¡model
65 () and the prospective lifetable ones, ¡TP

65 () for an individual aged

1For more details see Bravo (2007).
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65. Formally, parameter estimates £ solve the following optimization problem

£̂ = arg min
£

8
<
:Q2 =

+(max¡65)+1X

=+1

³
¡

model
65 () ¡¡ 

TP
65 ()

´2
9
=
; (26)

where max = 120 and  2 f1970 1980 1990 2004g
Table 1 reports the optimal values of the parameters, the calibration error

and the initial value of +() 65() chosen to be equal to ¡ ln (65())  for

both male and female populations. Figure 1 report, for the generations aged 65

in  2 [1970 2004]  the survival function of the stochastic process analysed and of

the prospective lifetable one.

Male
 = 1970  = 1980  = 1990  = 2004

65() 0.02765901 0.02774125 0.02558451 0.01689187
 0.09516212 0.09033169 0.08739382 0.09949474
 0.00001013 0.00001131 0.00000981 0.00000978
 0.0117887 0.03936915 0.06544481 0.05226689
1 0.02654017 0.02876439 0.02726195 0.02757463
2 0.001128449 0.0001023 0.0001102 0.00009724921
Q2 0.000483312 0.001135141 0.00423265 0.007431117

Female
 = 1970  = 1980  = 1990  = 2004

65() 0.01472793 0.01375416 0.01163745 0.007780187
 0.1119171 0.1096041 0.1101916 0.1199389
 0.00001044 0.00001033 0.00001082 0.00001049
 0.01180289 0.03190069 0.05536174 0.05693019
1 0.0284391 0.02890383 0.02727089 0.02644525
2 0.0001189 0.0001098 0.0001072 0.0001066
Q2 0.0003536312 0.0007131984 0.003482145 0.006155311

Table 1: Parameter estimates

The calibration error is quite small and the parameter estimates show that

the value of  is very low, particularly when compared with that of both positive

and negative average size jumps. We can observe that the …t is very good, even

when we consider the importance of the rectangularization phenomena, highly

signi…cant in the 2004 generation. The results also suggest that jumps seem to

be an appropriate way to describe the random variations observed in mortality.
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Figure 1: Survival probability ¡65() as a function of age + ¡  for  = 1970

and  = 2004 (the left panel corresponds to the male population)

5 Conclusion

In this paper, we have reviewed both the traditional discrete-time dynamic ap-

proach to mortality projection and the new “stochastic mortality approach” to

mortality and longevity risk modeling. We have describe the random evolution of

mortality by using doubly stochastic processes. The intensity is then described as

an a¢ne-jump di¤usion process, considering jump sizes that are random variables

double asymmetric exponentially distributed. The model is compatible with both

both negative and positive jumps in mortality, a feature that contrasts with sim-

ilar models that are interested in sudden improvements in mortality (e.g., due to

medical advances) only. Survival probabilities have been provided in closed-form.

The intensity process has been calibrated to the Portuguese population using pro-

jected lifetables built using the Poisson Lee-Carter method. The results show that

…t is very good and that the model is ‡exible enough to accommodate some of

the traditional demographic phenomena.
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