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SUMMARY

The embedding of discontinuities into finite elements has become a powerful technique for the simulation of
fracture in a wide variety of mechanical problems. However, existing formulations still use non-conforming
finite elements. In this manuscript, a new conforming formulation is proposed. The main properties of this
formulation are as follows: (i) variational consistency; (ii) no limitations on the choice of the parent finite
element; (iii) comprehensive kinematics of the discontinuity, including both rigid body motion and stretch-
ing; (iv) fully compatible enhanced kinematic field; (v) additional global DOFs located at the discontinuity;
(vi) continuity of both jumps and tractions across element boundaries; and (vii) stress locking free. The
performance of the proposed formulation is tested by means of academic and structural examples. The
numerical results are compared with available experimental results and other numerical approaches, namely
the generalized strong discontinuity approach and the generalized FEM/Extended FEM. Copyright © 2012
John Wiley & Sons, Ltd.
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NOMENCLATURE

a total displacement vector at the nodes
Oa regular displacement vector at the nodes
Qa enhanced displacement vector at the nodes
Nb body forces vector
B strain-nodal displacement matrix
Bw enhanced strain-nodal displacement matrix
c0 cohesion
D constitutive matrix
E Young’s modulus
Of vector force at the regular nodes
fc compressive strength
ft tensile strength
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fw vector force at the additional nodes
GF fracture energy
h parameter defining the jump transmission to �C and ��

H�d function measuring the jump transmission to �C and ��

H�d diagonal matrix containing the Heaviside function evaluated at each DOF
H�d Heaviside function
i , j nodes placed at both extremities of the discontinuity
I identity matrix
kn, ks normal and shear penalty parameters, respectively
Kaa bulk stiffness matrix
Kaw , Kwa, Kww enhanced bulk stiffness matrices
Kd discontinuity stiffness matrix
l measure of distance around the tip
lch Hillerborg’s characteristic length
ld discontinuity length
L differential operator matrix
MRw matrix transmitting the rigid body motion from the discontinuity opening
MnRw matrix transmitting the non–rigid body motion from the discontinuity opening
Mw matrix transmitting the displacement resulting from the discontinuity opening
Mk�

w matrix containing the contribution of the discontinuities of all enriched elements
to each node of the element

n number of finite element nodes
n unit vector normal to the boundary
nC unit vector normal to the discontinuity surface
nel number of enriched elements
N shape function matrix
Nw enhanced shape function matrix
m unit vector with the direction of the jump
P external load
r distance between the integration point and the discontinuity tip
s unit vector tangent to the discontinuity
t traction vector
Nt natural forces vector
T discontinuity constitutive matrix
u total displacement vector
Nu essential boundary conditions vector
Ou regular displacement field vector
Qu enhanced displacement field vector
ŒŒu�� jump vector
uv vertical displacement
w� nodal jump vector
wi weight for the integration point i
x global coordinates of a material point
x1, x2 global frame
˛ discontinuity angle
ˇ shear contribution parameter
ˇ̌̌ diagonal matrix of the contribution of each enriched element
� boundary
�d discontinuity surface
�t boundary with natural forces
�u boundary with essential conditions
" total strain tensor
� stress tensor
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�1 first principle stress
� Poisson’s ratio
� body
d.�/ incremental variation of .�/
.�/s symmetric part of .�/
ı.�/ admissible or virtual variation of .�/
ı�d Dirac’s delta-function along the surface �d
.�/e .�/ belonging to the finite element e
.�/C, .�/� .�/ at the positive and negative side of the discontinuity, respectively
.�/n, .�/s normal and shear component of .�/

1. INTRODUCTION

The embedding of discontinuities into finite elements is a powerful technique for the simulation
of fracture in a wide variety of mechanical problems, namely brickwork masonry fracture [1, 2],
dynamic fracture [3], failure in finite strain problems [4, 5], and simulation of reinforced concrete
members [6, 7].

The first formulations were developed within the enhanced assumed strain method framework
(EAS) [8]. Typically, constant jumps are embedded using constant strain triangles (CST), and full
advantage of the static condensation of additional DOFs is adopted [9–16]. However, with these
formulations: (i) no inter-element continuity requirement is imposed on the enhanced strain field;
and, as a consequence, (ii) no traction continuity across element boundaries is obtained.

Bolzon [17] presented an innovative formulation with conforming elements to capture the rigid
body opening of the discontinuity. For that purpose the additional DOFs are: (i) placed at the edges
of the enriched element; and (ii) defined at global level to enforce traction continuity across ele-
ments. The major drawback remains the fact that only CST elements can be adopted. Moreover,
only very simple structural examples have been presented.

Alfaiate et al. [18] introduced an approach for embedding interface elements into any parent
element, capturing linear jumps along the discontinuity. This formulation was developed within
the framework of the discrete crack approach. A discussion concerning the advantages of using
local (static condensation) or global additional DOFs was also presented by the authors. The latter
option was adopted to ensure traction continuity across element edges. Dias-da-Costa et al. [19]
provided a variationally consistent formulation handling rigid body jump transmission induced by
the opening of the discontinuity. It was proved that this formulation satisfies Simo’s orthogonality
condition [9] exactly. Consequently, the enhanced displacement field induces a null strain field, and
the discontinuity behaviour is decoupled from the bulk behaviour. Additionally, the modelling of
the discontinuity is performed as an internal interface of the element.

Linder and Armero [20] developed a general framework to embed both rigid and stretching open-
ing modes of the discontinuity into any parent element. Because the authors took advantage of
static condensation, traction continuity is not obtained. A variationally consistent formulation with
traction continuity was introduced by Dias-da-Costa et al. [21], called the generalized strong dis-
continuity approach (GSDA). The GSDA considers the rigid body motion and stretching of�C over
��, the domains at both sides of the discontinuity. However, although jumps and tractions remain
continuous across element boundaries, no inter-element continuity of the enhanced displacement
field is achieved in the GSDA.

Despite the earlier mentioned relevant contributions to this field, a general embedded formu-
lation capable of dealing with strong discontinuities using conforming finite elements is still
missing. Figures 1(a)–(c) are used to illustrate what occurs with a typical deformed mesh where
displacements are magnified 200 times:

- in Figure 1(a) the usual representation is shown, where only the regular nodes of each element
are represented. Therefore, the enriched elements remain unpartitioned and seem compatible,
although distorted;
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- Figure 1(b) corresponds to Figure 1(a), but now, each enriched element has the discontinuity
truly represented inside the parent element and the corresponding domain becomes partitioned.
Therefore, the non-conformity of the elements becomes evident;

- in Figure 1(c), the expected deformed mesh obtained with a fully conforming formulation
is shown.

It is important to emphasise that although the additional DOFs may be global [18, 19, 21], non-
conformity still appears, although less significant, between enriched elements and at the tip of the
crack (Figure 2).

2. RESEARCH SIGNIFICANCE

A new general conforming embedded formulation is proposed here, aiming to fulfil the follow-
ing main objectives: (i) variational consistency; (ii) comprehensive kinematics of the discontinuity
including both rigid body motion and stretching; (iii) no limitation on the choice of the parent finite
element; (iv) additional DOFs located at the discontinuity; (v) continuity of both jumps and tractions
across element boundaries by using global additional DOFs; (vi) fully compatible displacement
field; and (vii) stress locking free.

(a) (b) (c)

Figure 1. Deformed mesh obtained using embedded elements (displacements magnified 200 times): (a) clas-
sic representation of (apparently compatible) deformed elements; (b) representation of the true deformed

mesh revealing non-conforming elements; and (c) solution with conforming elements.

#2

#1

(a)

non−conforming

equal jump

#1

#2

(b)

Figure 2. Traction continuity: (a) identification of non-conformity of the elements; and (b) details #1 and #2
showing, respectively, non-conformity between enriched elements and at the tip of the crack.
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The manuscript is organised in the following main sections. The general framework is briefly
reviewed in Section 3, including the kinematics of a strong discontinuity and the variational princi-
ple. Afterwards, the element technology issues are discussed in Section 4. The most relevant results,
obtained from both academic and structural examples, are presented and discussed in Section 5.
The presented examples have been chosen to illustrate the capabilities of the proposed formulation
by comparison to both experimental results and results obtained with other relevant formulations,
namely the GSDA [21] and generalized/extended FEM (GFEM/XFEM) [22–25].

3. GENERAL FRAMEWORK

3.1. Kinematics of a strong discontinuity

Consider a body�with an external boundary � and an internal boundary, which is the discontinuity
�d , dividing the domain in two subregions: �C and �� (Figure 3).

A quasi-static loading of body forces Nb and natural boundary conditions Nt, distributed on the
external boundary �t , is applied to the body. The essential boundary conditions Nu are prescribed at
boundary �u, such that: �t [�u D � and �t \�u D¿. The Vector n is orthogonal to the boundary
surface, pointing outwards, whilst nC is orthogonal to the discontinuity and pointing inwards �C.

Distinct approaches can be considered regarding the way the jump is transmitted by the disconti-
nuity to the domain�. The most general one considers the independent enhanced displacement field
composed by QuC and Qu� on �C and ��, respectively [17, 26]. However, the direct consequence of
this procedure is the duplication of the number of DOFs at the discontinuity. A possible simplifica-
tion consists of assuming a constant scalar factor, 0 6 h 6 1, partitioning the jump [13, 18, 27–29]
(Figure 3). Accordingly, the total displacement u is composed by the sum of two parts: (i) the
regular displacement field Ou; and (ii) the enhanced displacement field Qu, induced by the jumps at
the discontinuity:

u.x/D Ou.x/CH�d Qu.x/, (1)

where H�d is the function establishing the way the jump is transmitted by the discontinuity:

H�d DH�d � .1� h/, 06 h6 1, (2)

with H�d denoting the standard Heaviside function:

H�d D

²
1 in �C

0 otherwise
. (3)

Figure 3. Domain � crossed by a strong discontinuity �d and one-dimensional representation of displace-
ment and strain fields.
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The jump at the discontinuity is obtained by evaluating the enhanced displacement field along the
discontinuity according to

ŒŒu��D .uC � u�/j�d D Quj�d . (4)

The jump ŒŒu�� can be expressed in the following form:

ŒŒu��D ŒŒu��m, (5)

with ŒŒu�� and m representing the modulus and direction of the jump, respectively. When m is parallel
to nC, the crack opens in pure mode-I; if m is parallel to the crack, mode-II failure is obtained.

For small displacements, the strain field is

"D r suD r s OuCH�d .r
s Qu/„ ƒ‚ …

bounded

C ı�d
�
ŒŒu��˝ nC

�s„ ƒ‚ …
unbounded

in �, (6)

where .�/s is the symmetric part of .�/ and ˝ is the dyadic product. It is highlighted that the
unbounded term in Equation (6) vanishes outside �d .

For most situations, the solution is independent of h due to the enforcement of both essential and
natural boundary conditions [26]. Therefore, it is hereafter assumed that hD 1 which, according to
Equation (2), leads to H�d DH�d , being the jump entirely transmitted from �� to �C.

3.2. Variational formulation

The following equation states the principle of virtual work for a continuum media with a
discontinuity:

�

Z
�n�d

.r sıu/ W � ."/ d��
Z
�d

ıŒŒu�� � tCd� C
Z
�n�d

ıu � Nbd�C
Z
�t

ıu � Ntd� D 0. (7)

where (i) the first integral is the internal work; and (ii) the third and fourth terms are the external
work. Both (i) and (ii) are the usual terms adopted in a continuum approach. The second term is the
work produced at the discontinuity.

It is stressed that the variational formulation represented by Equation (7) was already obtained by
Malvern [30] by progressively applying the principle of virtual work to each subregion �C and ��

(Figure 3), where the discontinuity is taken as an external boundary.

4. ELEMENT TECHNOLOGY

In this section, the general framework for obtaining conforming enriched elements, namely the jump
transmission technique, the discretised equations and the crack propagation issues are presented.

4.1. Element interpolation

Consider a finite element partition of the two-dimensional domain �. Each finite element �e ,
with n nodes, crossed by a straight discontinuity �e

d
, is divided in two subdomains. The adopted

conventions are represented in Figure 4(a).
The following equation provides the approximation of the displacement field for each enriched

finite element with n nodes:

ue D Ne.x/
�
Oae CH�d Qa

e
�

if x 2�e n �ed , (8)

where Ne contains the element shape functions, Oae are the nodal DOFs related to Oue and Qae are the
enhanced nodal DOFs related to Que .

The previous equation can be rearranged by noticing that Oae is given by

Oae D ae �He
�d
Qae , (9)
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(a) (b)

Figure 4. Domain �e crossed by a strong discontinuity �e
d

: (a) definitions; and (b) general opening.

with ae being the total nodal DOFs related to ue , He
�d

is a .2n � 2n/ diagonal matrix with

components equal to ‘1’ for nodal DOFs in �eC and components equal to ‘0’, otherwise.
Replacing Equation (9) into Equation (8), the following can be conveniently written:

ue D Ne.x/
h
ae C

�
H�d I�He

�d

�
Qae
i

if x 2�e n �ed . (10)

The jump at the discontinuity can be obtained using Equation (10) applied at both sides of the
discontinuity:

ŒŒu��e D ueC � ue� D Ne.x/Qae at �ed . (11)

To capture the kinematics of the discontinuity regarding both rigid body motion and stretching of
�C over ��, two additional nodes are placed at the edges of each enriched element [18, 19, 21, 31]
(Figure 4(b)). Therefore, the enhanced nodal DOFs become

Qae DMek�

w we
�

, (12)

where we
�

is a vector formed by juxtaposing by rows the additional DOFs resulting from the contri-
bution of the following nel enriched elements: (i) element e; and (ii) all remaining enriched elements
sharing at least one node with element e. Matrix Mek�

w has also the contribution of all these enriched
elements, such that each row, Mei�

w is in direct correspondence to the i-node of the element e and
can be computed by

Mei�

w DMe
w C

nelX
jD1,j¤e

®
Mj
w �Me

w

¯
ˇ̌̌
j , (13)

where Me
w is responsible for transmitting the jumps to the element nodes and can be decomposed

into

Me
w DMe

Rw
CMe

nRw
, (14)

with

Me
Rw
D

2
64 1�

.x2�xi2/ sin˛e

le
d

.x2�xi2/ cos˛e

le
d

.x2�xi2/ sin˛e

le
d

�
.x2�xi2/ cos˛e

le
d

.x1�xi1/ sin˛e

le
d

1�
.x1�xi1/ cos˛e

le
d

�
.x1�xi1/ sin˛e

le
d

.x1�xi1/ cos˛e

le
d

3
75 , (15)
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Me
nRw
D

"
�
sen.1Ccos.2˛e//

2
�
sen.sin.2˛e//

2

sen.1Ccos.2˛e//
2

sen.sin.2˛e//
2

�
sen.sin.2˛e//

2
�
sen.1�cos.2˛e//

2

sen.sin.2˛e//
2

sen.1�cos.2˛e//
2

#
(16)

and

sen D
s .xi /
le
d

D
�
x1 � x

i
1

� cos.˛e/

le
d

C
�
x2 � x

i
2

� sin.˛e/

le
d

, (17)

where x D .x1, x2/ is the global position of any material point inside the finite element, xi D�
xi1, xi2

�
is the global position of the tip i (Figure 4(a)), le

d
is the length of the discontinuity �e

d
measured along the local frame Es, and ˛e is the discontinuity angle defined in Figure 4(a).

It is stressed that Me
Rw

is the rigid-body part, which includes both normal and constant shear
jump components, and Me

nRw
is the non-rigid stretching part along the discontinuity �e

d
(see [21]

for more details).
ˇ̌̌j is a diagonal matrix computed at each node i , containing ˇjxi terms for both directions

.x1, x2/, representing a measure of the relative stiffness contribution of each enriched element for
the enhanced displacement field:

ˇjxi D
K
j
i ,xiPnel

kD1
Kki ,xi

, (18)

whereKji ,xi is the stiffness matrix component of the bulk for element j for direction xi (Figure 4(a)).
Thus, according to Equations (13)–(18), a mutual dependence between jumps and bulk deformation
is built, leading to a full compatible formulation.

Note that the embedded formulation is obtained as if an interface element were embedded in
the parent finite element, whereas the GFEM/XFEM can be interpreted as if two element layers
were superimposed. This is why, in the embedded formulations, the transmission of the additional
DOFs to the standard nodes has to be performed using Me

w , which is formulated differently for
each embedded formulation: in the DSDA [19], the matrix Me

w introduces a rigid body motion of
�eC with respect to �e�, in the GSDA [21], this matrix is generalized to further include stretching
and in the present conforming formulation this matrix is again redefined to achieve compatibility
(Equation (13)). In the GFEM/XFEM, there is no such transmission of the DOFs because they are
obtained directly at the standard node locations and not at the discontinuity (a complete comparative
study can be found in [32]).

Finally, by inserting Equation (12) into Equations (10) and (11) the interpolation of the total
displacement and jump fields becomes

ue D Ne.x/
h
ae C

�
H�d I�He

�d

�
Mek�

w we
�

i
if x 2�e n �ed , (19a)

ŒŒu��e D ueC � ue� D Ne.x/Mek�

w we
�

at �ed . (19b)

The discrete version of the strain field is given by

"e D LNe.x/„ ƒ‚ …
Be.x/

h
ae C

�
H�d I�He

�d

�
Mek�

w we
�

i
in �e n �ed , (20)

where L is the usual differential operator. The incremental stress field is

d� e D DeBe
h
dae C

�
H�d I�He

�d

�
Mek�

w dwe
�

i
in �e n �ed , (21)

and the traction at the discontinuity, in incremental format, reads:

dte D TedŒŒu��e D TeNe.x/Mek�

w dwe
�

at �ed , (22)

where De and Te are, respectively, the bulk and the discontinuity constitutive matrices. The latter
constitutive law can be either elastic, for which only the diagonal coefficients are given, or derived
from damage theories [25, 31], or plasticity theories [31, 33–36].
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4.2. Discretised equations

Equation (7) is discretised using Equations (19a) to (22) and by successively taking: (i) ıdwe
�

D 0;
and (ii) ıdae D 0, the following system of equations is obtained:

Ke
aadae CKe

awdwe
�

D dOfe , (23a)

Ke
wadae C

�
Ke
ww CKe

d

�
dwe

�

D dfew , (23b)

where:

Ke
aa D

Z
�en�e

d

BeTDeBed�e , (24)

Ke
aw D

Z
�en�e

d

BeTDeBewd�
e , (25)

Ke
wa D

Z
�en�e

d

BeTw DeBed�e , (26)

Ke
ww D

Z
�en�e

d

BeTw DeBewd�
e , (27)

Ke
d D

Z
�e
d

New
TTeNewd�

e , (28)

with

Bew D Be
�
H�d I�He

�d

�
Mek�

w (29)

and

New D Ne
�
H�d I�He

�d

�
Mek�

w . (30)

The external forces are given by

Ofe D
Z
�en�e

d

NeT Nbed�e C
Z
�et

NeT Nted�e , (31a)

few D
Z
�en�e

d

NeTw Nb
ed�e C

Z
�et

NeTw Nt
ed�e . (31b)

Because traction continuity is enforced in the weak sense, the symmetry of the system of
equations is kept if symmetric constitutive matrices are adopted.

4.3. Implementation issues

In this section, the implementation issues concerning crack propagation and path continuity
are addressed. Furthermore, the numerical integration of Equations (23a) and (23b) is also
briefly explained.
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Figure 5. Enriched elements due to crack propagation.

4.3.1. Crack propagation. It is assumed that the discontinuity is straight and crosses an entire par-
ent element and, therefore, the crack tip is always located at the element edge. The finite elements
supporting the crack path are enriched (Figure 5), whereas to keep the crack tip closed: (i) no addi-
tional DOFs are introduced at this location; (ii) Mei�

w is assumed to be zero for nodes supporting the
tip. The latter assumption is also traditionally adopted in the GFEM/XFEM [25].

The crack initiation criterion is obtained from a non-local stress state adopted near the crack tip, in
which case the averaging support is extended beyond the element size [19, 25]. For that, a Gaussian
weight function is used to smooth out the stresses at the discontinuity tip:

wi D
1

.2�/3=2l3
exp

�
� r

2

2l2

�
. (32)

In Equation (32), wi is the weight for the integration point i , r is the distance between the inte-
gration point and the discontinuity tip, and l is a measure of significant distance around the tip.
Similarly to [19], l is assumed to be circa 1% of Hillerborg’s characteristic length [37], given by

lch D
GFE

f 2t0
, (33)

in which GF is the fracture energy, ft0 is the tensile strength and E is the Young’s modulus.
Having obtained the stress at the crack tip, the direction of propagation can be provided by adopt-

ing: (i) a function describing a smooth transition between mode-I fracture, mixed-mode and mode-II
fracture [19]; or (ii) a Rankine criterion where cracking occurs perpendicularly to the direction of
maximum tensile stress. The latter option is herein adopted as it was already shown to provide
adequate results for concrete [38].

Traction continuity is enforced in a weak manner, consequently the envelope surface is not
reached simultaneously in the bulk and at the discontinuity. At crack initiation, to prevent the traction
field at the tip to lie outside the limit surface, a conservative procedure is adopted: the discontinuities
are introduced in a slightly earlier stage, in which the stress field in the bulk lies inside the surface
([19]). To avoid convergence difficulties during the iterative procedure, new discontinuities are only
inserted at the end of each time step, when updating the internal variables.

4.3.2. Path continuity. The following algorithm, presented in [31], is adopted to enforce continuity
of the crack path, which was found to lead to the following: (i) an objective dissipation of energy
with respect to the mesh; and (ii) the development of crack patterns similar to those found in exper-
iments, even when reasonably coarse meshes are used. This algorithm does not correspond exactly
to a purely local tracking strategy because the stress at the tip is computed by the averaged stress
tensor presented in the previous section.

Each time a new discontinuity is inserted, the existence of crack tips in the neighbourhood has to
be checked on the element sides:

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2013; 93:224–244
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1. if no tip is present at the element edges, the crack is enforced to contain the centroid of the
element and two new tips are introduced at the adjacent elements;

2. if a tip already exists at the element edge, the new discontinuity is enforced to propagate from
that tip;

3. if two tips exist at the element edges, they are connected by inserting a new discontinuity, and
the angle is defined by the crack geometry of the problem.

The discontinuity angle remains fixed after crack initiation. Two alternative procedures are avail-
able: (i) only one crack is allowed to exist, and each new embedded discontinuity can only be
inserted at the crack tip; and (ii) new crack paths are allowed to initiate only outside the neighbour-
hood of existing crack tips. This neighbourhood is defined by a radius of influence centred at each
crack tip with a value of three to five times the maximum aggregate size.

4.3.3. Numerical integration. Equations (25)–(27) require partial integration of �eC, the proce-
dure described by [21] is herein adopted. The numerical integration of the discontinuity stiffness
matrix given in Equation (28) is performed with a Newton–Cotes/Lobatto scheme to avoid spurious
oscillations ([32]).

5. RESULTS

In this section, both element and structural examples of the presented formulation are presented. All
examples are computed using bilinear plane stress elements. Both GSDA [21] and GFEM/XFEM
[25, 32] are adopted for comparison purposes.

5.1. Element examples

The element examples in this section have been chosen to illustrate the kinematics of the proposed
embedded formulation. In Section 5.1.1, two neighbouring elements with different stiffness are
enriched, whereas in Section 5.1.2, a small example is used to illustrate the compatibility issues at
the tip of a crack front.

5.1.1. Two enriched elements. Consider two enriched elements, each one with dimensions 2� 2�
1 mm3, according to the models represented in Figure 6. In the first model (Figure 6(a)), the left
element is softer than the right element, whereas the opposite is assumed for the second model
(Figure 6(b)). In both cases, the right discontinuity is stiffer than the left discontinuity.

Linear elastic relationships are adopted for both bulk and discontinuity. The material parame-
ters for the bulk are the following: Young’s modulus E D 10 N/mm2 and Poisson’s ratio � D 0

for the softer bulk element; Young’s modulus E D 1 and Poisson’s ratio � D 0 for the stiffer
bulk element. The discontinuity constitutive matrix (Equation (22)) has the diagonal components
related to the normal and shear stiffness equal to: kn D ks D 1N/mm3 for the left discontinuity; and
kn D ks D1 for the right discontinuity.

(a) (b)

Figure 6. Mesh and loading conditions (dashed line indicates the prescribed discontinuity): (a) first element
soft and second element stiff; (b) first element stiff and second element soft.
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The resulting deformed mesh for P D .1I 1/N is represented in Figures 7 and 8 for both cases.
It can be concluded that (i) although the GSDA is able to enforce continuous jumps and tractions
across elements (see the closed tip between elements in Figures 7(a) and 8(a)), a ‘gap’ appears
between elements due to the non-conforming enrichment; (ii) a conforming enrichment is obtained
with the new embedded formulation, which is able to adequately reproduce the kinematics of the dis-
continuity (similar conclusion regarding GFEM/XFEM); and (iii) less DOFs are required in the new
formulation when compared with GFEM/XFEM; consequently, the bulk is discretised with a smaller
number of DOFs and this is noticed in particular for the stiff/softer case where the softer element is
loaded (compare displacements obtained with both formulations in Figures 7(b) and 8(b)).

5.1.2. Element in front of the tip. The example presented in this section was selected to show the
conforming issues appearing due to crack propagation (Figure 2). Three 2�2�1 mm3 finite elements
are considered, where the two elements crossed by a discontinuity are enriched (Figure 9).

Linear elastic properties are considered for both bulk and discontinuity with the following values:
Young’s modulus E D 10 N/mm2; Poisson’s ratio � D 0; normal and shear stiffness kn D ks D
1N/mm3. The resulting deformed mesh is represented in Figure 10, for PD .1I 1/N, from which it

(a) (b)

Figure 7. Deformed mesh for soft/stiffer case obtained with: (a) the GSDA; (b) the new formulation
(continuous) and GFEM/XFEM (dashed).

(a) (b)

Figure 8. Deformed mesh for stiff/softer case obtained with: (a) the GSDA; (b) the new formulation
(continuous) and GFEM/XFEM (dashed).

Figure 9. Mesh and loading conditions (dashed line indicates the prescribed discontinuity).
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(a) (b)

Figure 10. Deformed mesh (displacements magnified 2 times) obtained with (a) the GSDA; and (b) the new
formulation (continuous) and GFEM/XFEM (dashed).

Figure 11. Single-edge notched beam—structural scheme (100 mm width, dimensions in mm).

can be concluded that (i) although with the GSDA both jumps and tractions are continuous
across element boundaries, incompatible displacements between elements and at the tip are
obtained (Figures 10(a) and 2); (ii) the deformed meshes obtained with the new formulation
and GFEM/XFEM are qualitatively better; (iii) the new embedded approach is fully compat-
ible (Figure 10(b)); and (iv) the displacements obtained with both the new formulation and
GFEM/XFEM are similar, although the former leads to a slightly stiffer solution than the latter
(Figure 10(b)).

5.2. Structural examples

In this section, the following structural examples are presented: (i) a single-edge notched beam [38];
(ii) a double-edge notched specimen subjected to mixed-mode fracture [39]; and (iii) a prenotched
gravity dam model [40].

5.2.1. Single-edge notched beam. In this section, a single-edge notched beam of small size com-
posed of normal concrete with maximum aggregate size of 8mm is numerically simulated [38]. The
beam measures 400 � 100 � 100 mm3 and has a 5 � 20 � 100 mm3 notch located at the top, as
shown in Figure 11. The material parameters are as follows: Young’s modulus E D 35 000 N/mm2;
Poisson’s ratio � D 0.15; tensile strength ft0 D 3.0 N/mm2; and fracture energy GF D 0.1 N/mm.
A constitutive law by [41] is adopted with normal stiffness kn D 105 N/mm3 and shear stiffness
ks D 4� 10

2 N/mm3.
A mesh composed of 474 bilinear elements is adopted (Figure 12). Loading is controlled using

the arc-length method, in which the monotonic increase of the relative sliding displacement of the
notch (crack mouth slide displacement, CMSD), is enforced. The discontinuity is constrained to
propagate from the notch.

In Figures 13 and 14 the numerical results are presented. In particular, the results obtained with
both conforming formulations (the new embedded approach and the GFEM/XFEM) are practi-
cally coincident (see CMSD versus load curves in Figure 13(a) and crack path in Figure 13(b)).
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Figure 12. Single edge notched beam – adopted mesh with 474 bilinear finite elements.
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Figure 13. Single-edge notched beam: (a) CMSD versus load curves; and (b) crack path computed at
CMSDD 0.1 mm.

In Figure 14(a), non-conforming elements are clearly visible close to the notch, although this is less
visible in a later stage (Figure 14(b)).

In this example, the computational time spent on a laptop (i7 M620 2.67 GHz, 8 GB RAM) until
CMSDD 0.1 mm is 55 s and 225 steps for all approaches.

5.2.2. Nooru Mohamed’s test. This example consists of a double-edge notched specimen subjected
to mixed-mode fracture, experimentally tested by [39]. The 200� 200� 50 mm3 specimen has two
25 � 5 mm2 horizontal notches located at half height. The specimen is loaded by means of two
L-shaped steel frames glued to the specimen. One of the experimental load paths is numerically
simulated: (i) a horizontal force P is applied and increased to 104 N, after which it is kept constant;
and (ii) a vertical displacement uv is gradually enforced into the top steel frame (Figure 15(a)).

The material parameters are taken from [39]: Poisson’s ratio � D 0.2; Young’s modulus
E D 30 000 N/mm2; compressive strength fc D 38 N/mm2, tensile strength ft0 D 3.0 N/mm2;
and fracture energy GF D 0.11 N/mm. The initial normal and shear stiffness adopted for the dis-
continuity is kn D ks D 104 N/mm3. Upon crack opening, the constitutive law by [31] is adopted,
with ˇ D ft0=c0 D 0.6, where c0 is the cohesion estimated using Mohr’s rupture theory.

The adopted mesh with 435 bilinear finite elements is represented in Figure 15(b). The arc-length
method is used to enforce a monotonic increase in the vertical displacement of the top steel frame
(uv). The discontinuities are inserted from the notch.

All results are shown in Figures 16–18, including the vertical displacement versus load curves, the
crack path, the deformed mesh and the map of the first principal stress. It must be stressed that the
experimental peak load is smaller than the corresponding numerical values, which is also verified
by other authors [42–44].

From the numerical results, it can be observed that, similarly to the previous structural exam-
ple, the conforming formulations (GFEM/XFEM and the new embedded approach), provide similar
displacement versus load curves, crack paths and deformed meshes. Furthermore, the stress map
represented in Figure 18 reveals that the new embedded formulation adequately reproduces the
stress field in the bulk, with stresses gradually approaching zero in the vicinity of the crack.
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(a)

(b)

(c)

(d)

Figure 14. Single-edge notched beam—deformed mesh (displacements magnified 75 times) obtained with:
(a)–(b) the GSDA; and (c)–(d) the new formulation. (a) and (c) correspond to CMSD D 0.05 mm, whereas

(b) and (d) correspond to CMSDD 0.1 mm.

(a) (b)

Figure 15. Nooru Mohamed’s test: (a) structural scheme (50 mm width, dimensions in mm); and (b) adopted
mesh with 435 bilinear elements.

In this example, the computational time spent on a laptop (i7 M620 2.67 GHz, 8 GB RAM) until
uv D 0.2 mm is: 350 s and 152 steps for the new embedded approach; 375 s and 151 steps for the
GSDA; and 350 s and 154 steps for the GFEM/XFEM.
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Figure 16. Nooru Mohamed’s test: (a) vertical displacement versus load curves; and (b) crack path computed
at uv D 0.2 mm.

(a) (b)

Figure 17. Nooru Mohamed’s test—deformed mesh (displacements magnified 150 times) for uv D 0.2 mm
obtained with: (a) the GSDA; and (b) the new formulation.

(a) (b)

Figure 18. Nooru Mohamed’s test - principal stress �1 (displacements magnified 150 times) for uv D
0.2 mm obtained with: (a) the GSDA; and (b) the new formulation.
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5.2.3. Prenotched gravity dam model. An experimental test performed by [40] on a dam is
numerically simulated in this section. The corresponding structural scheme is represented in
Figure 19.

The material parameters are adopted from [40]: Young’s modulus E D 35 700 N/mm2; Poisson’s
ratio � D 0.1; dead weight �D 2400 kg/m3; tensile strength ft0 D 3.6 N/mm2; and fracture energy
GF D 0.184 N/mm. Additionally, an exponential softening law is adopted for the constitutive rela-
tion between the normal component for mode-I opening, whereas the shear stiffness is assumed to
gradually drop towards zero, proportionally to the mode-I secant stiffness.

The mesh is composed of 1848 bilinear finite elements (Figure 20). A refinement is performed
near the notch to better evaluate the stress at the discontinuity. Non-proportional loading is applied:
first, the dead load is introduced; afterwards, the water pressure in front of the dam is gradually
increased. In both cases, the arc-length method is used to enforce an increase of the relative crack
mouth opening displacement (CMOD).

The load versus CMOD curves are presented in Figure 21. It can be observed that the numerical
results are similar to the experimental results from [40]. Furthermore, it is again confirmed that the
conforming formulations lead to almost coincident results with GFEM/XFEM.

A good agreement between the numerical and the experimental crack path is found, as represented
in Figure 22. Some differences between formulations only appear in the later stages of propagation,
where the coarser mesh is clearly insufficient for the evaluation of the crack path.

Figure 19. Prenotched gravity dam model—structural scheme (30cm width, dimensions in cm).

Figure 20. Prenotched gravity dam model - adopted mesh with 1848 bilinear elements.
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Figure 21. Prenotched gravity dam model—load versus CMOD curves superposed with experimental and
numerical results from [40].
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Figure 22. Prenotched gravity dam model—crack path, obtained when CMOD is 0.50 mm, superposed with
experimental and numerical results from [40].

(a) (b)

Figure 23. Prenotched gravity dam model—deformed mesh (displacements amplified 500 times) for CMOD
0.50 mm obtained with: (a) the GSDA; and (b) the new formulation.

The deformed mesh is represented in Figure 23, when the CMOD is 0.5 mm, for the GSDA and
the new embedded approach. Additionally, in Figure 24, the �1 stress map is also represented.

In this example, the computational time spent on a laptop (i7 M620 2.67 GHz, 8 GB RAM) until
CMOD 0.50 mm is: 340 s and 86 steps for the new embedded approach; 345 s and 81 steps for the
GSDA; and 395 s and 83 steps for the GFEM/XFEM. This is the only example where the comput-
ing time has been slightly larger with GFEM/XFEM due to the significant increase in the required
number of DOFs.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2013; 93:224–244
DOI: 10.1002/nme



242 D. DIAS-DA-COSTA ET AL.

(a)

(b)

Figure 24. Prenotched gravity dam model—principal stress �1 (displacements amplified 500 times) for
CMOD 0.50 mm obtained with (a) the GSDA; and (b) the new formulation.

6. CONCLUSIONS

A new formulation using conforming finite elements with embedded strong discontinuities was
presented. Compared with previous embedded approaches, namely [11, 12, 18–21, 45, 46]: (i) no
additional DOFs are required; and (ii) the continuity of both tractions and enhanced kinematical
field across elements is automatically ensured. The proposed formulation is variationally consis-
tent and built upon the framework of the discrete crack approach. Therefore, mesh objectivity is
automatically inherited.

The presented structural examples allowed to conclude that the new embedded formulation is
capable of providing results, which are practically indistinguishable from the results obtained with
GFEM/XFEM.

However, in spite of the common variational framework [32] and similar results, the two
formulations are built in a significantly different manner. The following main differences can
be advanced:

- the GFEM/XFEM is nodal based whereas the present formulation is built at element level;
- crack propagation is simpler to implement in the embedded approach as only crossed finite ele-

ments are enriched, instead of all nodes surrounding the discontinuity, as typically performed
in GFEM/XFEM;

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2013; 93:224–244
DOI: 10.1002/nme



CONFORMING EMBEDDED APPROACH TO CAPTURE STRONG DISCONTINUITIES 243

- with the embedded formulation, only one additional node is required at each new enriched
finite element because of crack propagation, whereas with GFEM/XFEM, all nodes supporting
the discontinuity must be enriched;

- with the present formulation, all additional DOFs are located at the discontinuity, where the
quantities of interest are measured.

Finally, although the observed computational cost was similar for the bi-dimensional struc-
tural problems earlier presented, the embedded formulation is expected to gain advantage in
three-dimensional problems because significantly fewer DOFs are required for each enriched
finite element.
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