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Abstract In this paper we assess a crack propagation
criterion based on the notion of configurational force
in the spirit of Gurtin (Configurational forces as basic
concepts of continuum physics. Applied mathematical
sciences. Springer, Berlin, 2000). We extend the theory
of Gurtin to finite strain elasto-plastic fracture and in
addition take thermal effects into account. The global
model is a system of nonlinear and non-smooth equa-
tions which are solved directly with a finite element dis-
cretization. Comparison with laboratory experiments is
provided, thereby showing that the concept of config-
urational force can be successfully used for computa-
tional damage-based fracture tests on ductile materials.

Keywords Ductile fracture · Plasticity · Finite
strains · Configurational forces · Thermal stress

1 Introduction

Damage(Lemaitre1996)andfracture(Barenblatt1959)
arealmostalways intimately linked together in theavail-
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able models for crack propagation coexisting in the lit-
erature. For instance, in Allaire et al. (2011) a damage
model is shown to provide crack-like results in some
limit case while in Bourdin et al. (2008) (see also Bour-
din et al. 2011) a purely fracture-dedicated theoreti-
cal model is implemented numerically with help of an
auxiliary variable which has the effect of smearing
the crack. In principle, damage must be understood as
an internal (here, scalar) thermodynamical variable ζ ,
which is thereforenotnecessarilymeasurablebutwhose
interaction with other mechanical and/or defect vari-
ables has visible effects. In the present model, damage is
rather a model parameter determining when crack will
propagate: at a certain threshold the damage value is
such that softening of the material is unbearable with-
out propagation of the crack tip. Let us remark that
damage can be cast within purely elastic brittle frac-
ture models but also plays a crucial role in the models
designed for ductile materials such as metals, cf. Bažant
(1976) or Amstutz et al. (1995), Oliver (1995), Xue
and Wierzbicki (2008). In fact, ductile fracture mech-
anisms under mixed mode I/II load show either shear, or
microvoid coalescence behaviors (Maccagno and Knott
1992), with the latter here modeled by the introduc-
tion of ζ .

In most metals, ductile fracture is an elasto-plastic
process (Nemat-Nasser 2004; Lubliner 1990; Jirásek
and Bažant 2002; Xue and Wierzbicki 2008). Plastic
effects are classically understood as a state of the body
where external loading and/or thermal fluxes have cre-
ated residual stresses and irreversible deformations of
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the metal. As induced and enhanced by mutual inter-
action of point defects and dislocations, plastic effects
are, as damage, particularly observed in a region around
the crack tip called the process zone. These effects are
localised along the so-called flow tensor N which is
the derivative of the yield function with respect to the
Kirchhoff stress tensor. In order to avoid singular points
on the yield surface where N is undefined (thence
belonging to a normal cone), multisurface plasticity is
here considered (Klisinski 1998; Areias et al. 2012a).

The present model is applied to metal plasticity
which is known to produce higher plastic than elas-
tic deformations. Nevertheless, finite strain elasto-plas-
ticity (Rousselier et al. 1989; Bonet and Wood 2008)
will be considered with a multiplicative decomposi-
tion of the deformation gradient (Lee 1969). Numeri-
cal simulations will be performed with the SIMPLAS
code (https://ssm7.ae.uiuc.edu:80/simplas) as based on
a series previously published contributions (Areias and
Rabczuk 2010; Areias et al. 2009, 2011b, 2012a). Tri-
angular finite elements without tip mesh refinement
are used with remeshing performed at every iteration
to allow crack propagation. Moreover, the flow law is
solved directly, i.e., without appealing to return-map
algorithms (Simo and Hughes 1998), by smoothing the
complementarity conditions (Chen and Mangasarian
1996).

Obviously, dissipation phenomena are observed at
the crack tip, and hence any realistic model should
incorporate the temperature (T ) as a thermodynamic
variable, besides the left Cauchy–Green tensor. In
the present model, the energy equation (with a heat
source depending on the plastic dissipation) is solved
as coupled to the momentum equation, while the yield
functions also depend on T . A first series of duc-
tile crack propagation results with such a temperature-
dependence have been performed and discussed in Van
Goethem et al. (2011) from which the present contribu-
tion has followed. However as opposed to the present
model the crack propagation direction was calculated
with an empirical law based on a CTOD1 criterion
(Ma et al. 1999) which is known to provide excellent
qualitative results for both brittle and ductile fracture
(cf., e.g., Sutton et al. 2000; Areias et al. 2009, 2011b).

Here we propose a model where the direction of
crack propagation follows from rational mechanics
arguments from Gurtin’s theory of configurational

1 Crack Tip Opening Displacement.

forces (Gurtin 2000). The so-called tip traction is cal-
culated as the limit of a contour integral around the
crack tip as the contour converges to the tip. For homo-
geneous elastic bodies, the tip traction is known to be
independent of the chosen contour and corresponds to
the notion of J -integral (Sosa and Eischen 1986). How-
ever Gurtin’s concepts are formulated in such a way that
extension to finite strain elasto-plasticity and incorpo-
ration of temperature-dependent laws is easily tracta-
ble (Gurtin 1981). Moreover fracture criteria based on
the J -integral are known to be geometry-dependent,
whereas Gurtin’s energy release rate criterion is only
material dependent.

Our intention in this paper is to show that such a ratio-
nal fracture criterion (remark that crack tip velocity is
also provided) is able to provide remarkable results for
two classical benchmark cases, the mode I and mode II
crack propagation. Moreover mixed-mode experimen-
tal results as reported by Sutton et al. (2000) have been
reproduced by our model with good agreement. To con-
clude the series of numerical simulations, a force-free
crack propagation is also shown as an application of the
model. Here fracture is driven by the sole heat flux. Note
that as opposed to other approaches as based on configu-
rational forces,no tip refinement is requiredand thecon-
tour integral is computed directly (i.e., is not turned into
a surface integral by Green’s theorem).

Let us emphasize that the present model is based on
the so-called Hill–Mandel principle of maximal dissi-
pation (Mandel 1971). First, the plastic flow law fol-
lows from the principle of maximal plastic dissipation
(Simo 1988a,b; Doghri 2000). In addition, the kink-
ing angle is also a consequence of this principle as
applied to crack tip dissipation with appropriate con-
stitutive relations (Gurtin 2000). Let us also remark that
as based on this principle it is also possible to theoreti-
cally justify crack nucleation criteria for brittle fracture
(Van Goethem and Novotny 2010) whereas nucleation
of ductile bodies is to the knowledge of the authors
not addressed much in the literature from a theoreti-
cal viewpoint. We also leave numerical experiences of
crack nucleation with this model for future works, and
hence the shown examples here are all given with an
initial notch. To conclude, let us recall that for ductile
fracture the crack tip singularities are less severe than
for brittle cracks, and hence the difficulty to deal with
in the present model are rather towards the complexity
of the global system to solve numerically, which is both
nonlinear and non smooth.
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A damage-based temperature-dependent model 217

2 The fracture model

2.1 On the concept of configurational force

Gurtin (2000) believes that besides the Newtonian force
system, the “configurational forces should be viewed as
basic objects consistent with their own force balance”.
Since a body is free to move in its current configura-
tion by the action of the Newtonian forces, whereas it
is not free to move in its reference configuration, Gur-
tin justifies the existence of internal, material forces as
those that “pin, in place, the material points of the body,
thereby maintaining its internal structure”.

These notions are rather abstract, requiring to take
some distance from our intuition about forces, while
conferring to the force the status of a mathematical
concept. Moreover, the balance laws of configurational
forces follow from rational thermodynamic arguments
such as invariance with respect to change in the mate-
rial observer as the exact analogue of Newtonian laws
as derived from invariance principles with respect to
change in the spatial observer. Moreover Gurtin intro-
duces the counterpart of a control volume in the current
configuration, called the material control volume P(t)
that migrates through the reference body and invokes a
nonclassical version of the second law requiring that

d

dt
{free energy of P(t)}
≤ {rate at which work is performed

in P(t)}.
In Gurtin (2000), these concepts are also specifically
developed to study the propagation of a crack.

Let us give a recent interpretation of configurational
forces by Gupta and Markenscoff (2008), which is illu-
minating, since it states the equivalence between the
classicalbalance laws(i.e.,ofNewtonianforces)and the
work done by the configurational forces: the aforemen-
tioned authors prove that the energy release (associated
with the configurational force) “ensures that the body
remains infinitesimally close to equilibrium even after
a small perturbation of the inhomogeneity position.” A
further refinement of their approach can be found in Li
and Gupta (2006), Gupta and Markenscoff (2007).

2.2 Preliminary results for the model

Let us assume the multiplicative decomposition of the
deformation gradient F, i.e., the existence of a local

plastic process associated to a local reference configu-
ration and a plastic deformation Fp such that

F = FeFp, (2.1)

where Fe defines the elastic deformation (Lee 1969;
Truesdell and Noll 2004).

Definition 1 The free energy is a function �̂ of the left
Cauchy–Green tensor be := FeFeT and of the temper-
ature T :

�(X, t) = �̃(F(X, t), Fp(X, t), T (X, t);
ζ(X, t)) = �̂(be(X, t), T (X, t)), (2.2)

with an implicit dependence on the auxiliary (scalar,
internal) variable ζ which represents damage.

Note that the free energy does not depend explicitly on
the damage coefficient, but be depends on ζ through
the yield function dependence on ζ and the flow rules
(cf. Sect. 3.2 for detail). Let us remark that the mate-
rial inhomogeneity is due to temperature-dependence
of the free energy but also provoked by the assumed
non-vanishing plastic deformations Fp, in such a way
that be �= FFT .

Let � denote the reference body and [0, t�] be the
interval of time where the evolution of a crack will be
considered. We intend to analyze and perform numer-
ical simulations of ductile fracture, a representation of
which is shown in Fig. 1.

Let t be the current time and Z(t) ∈ � denote the
crack tip. Moreover, following Gurtin (2000) Dδ(t)
designates the disk centered at Z and of radius δ >

0, P(t) is a so-called “tip control volume”, and Pδ(t) =
P(t) \ Dδ(t) is a family of bulk control volumes con-
verging to P .

Fig. 1 Ductile fracture in the deformed configuration
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218 N. Van Goethem, P. Areias

Fig. 2 The notions of crack
control volume P , the crack
tip disk Dδ and the
definition of Pδ

Definition 2 (Tip integrals) Recalling Fig. 2, the fol-
lowing tip integrals are defined
∮

ti p

hd L= lim
δ→0

∮

∂ Dδ

hd L and
∫

ti p

Hd S= lim
δ→0

∫

Dδ

Hd S,

where the functions h and H have appropriate regular-
ity.

Definition 3 (Time derivative following ∂ P) Let q be
a velocity field for the particle labeled by X ∈ ∂ P(t).
Its trajectory χ(τ )(t ≤ τ ≤ t�) is defined as the solu-
tion of χ̇(τ ) = q(χ(τ ), τ ) with χ(t) = X . The time
derivative of a field � following ∂ P is defined as

◦
� (X, t) := d

dτ
�(χ(τ ), τ )|τ=t . (2.3)

Since they serve as basis of our model, we here recall
the three following assumption, lemma and definition
which are also proved and discussed in Gurtin (2000).

Assumption 1 (Regular free energy) Let us assume
that the free energy � is smooth away from the tip and
that its integral and the integral of its material deriv-
ative over P exist in terms of their Cauchy principal
value, i.e.,∫

P

�d S := lim
δ→0

∫

Pδ

�d S < ∞

and
∫

P

◦
� d S := lim

δ→0

∫

Pδ

◦
� d S < ∞. (2.4)

Lemma 1 Under Assumption 1, it holds, uniformly in
time:

lim
δ→0

∫

Dδ

�d S = 0 and lim
δ→0

d

dt

∫

Dδ

�d S = 0. (2.5)

Remark 1 In the above lemma, the integral
∫

Dδ
�d S

should be understood “in principal part”, that is, as

defined by (2.4)a. Moreover, if � and
◦
� are assumed

norm-integrable in � (i.e., �,
◦
� ∈ L1(�)) then obvi-

ously Assumption 1 and Lemma 1 will hold with∫
Dδ

�d S indented in the L1 sense.

Let N be the exterior unit normal to ∂ Dδ(t) and T
be the crack direction at time t .

Definition 4 By Lemma 1 and in the absence of bulk
forces and surface tension on the crack, the dissipation
at the crack tip is defined as

	ti p :=
∮

ti p

(PN · ẏ + V N · T�)d L , (2.6)

where y(X) is the position of material point X in the
deformed configuration and ẏ(X, t) the motion veloc-
ity of X . Moreover, V is the crack tip speed, P the first
Piola–Kirchhoff stress2, and N the external unit normal
to the contour.

2.3 Configurational forces with finite elastoplastic
strains

In contrast with Gurtin, we do not require that the inter-
nal configurational force g be integrable in the sense
of Cauchy (cf. Assumption 1). In fact be believe that
this condition is too restrictive and in particular does
not allow for explicit concentration properties at the
crack tip. We believe that the notion of Radon mea-
sure is much more appropriate in view of the Radon–
Nykodým (or Lebesgue) decomposition (cf., e.g., Mat-
tila 1995) of such a measure in a diffuse regular part
which is L1(�) and in a singular part which we here

2 Identified with the Cauchy stress for small strains.
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assume to be purely concentrated. Moreover, a measure
is by definition an extensive field, and this property is
required to confer to g the interpretation of a force:
both the regular integrable and the concentrated parts
are extensive fields, whereby all non-measure concen-
trated distributions are excluded as tip forces.

Assumption 2 The internal body force g is assumed
to be finite Radon measure on �, whose singular part is
purely concentrated at Z, that is, by Radon–Nykodým
decomposition,

g = g̃ + g�δZ (2.7)

with g̃ Lebesgue-integrable on �.

Remark 2 It should however be precised that for the
purpose of the present work, g could have been cho-
sen Lebesgue-integrable only, i.e., without allowing for
a concentrated body force contribution. The choice of
assuming g as a measure is made because, on the one
hand, it does not render the forthcoming exposition
more complicated, and on the other hand because from
a physical viewpoint, there exists situations where con-
centrated forces must be accounted for, as for instance
as soon as dislocations are present.

Assumption 3 Let us assume that tensor C := � I −
FT P belongs to C(�\{Z}; R

3×3) and satisfies Div C ∈
M(�; R

3×3).

The following result is a straightforward extension
of a result by Gurtin (2000).

Lemma 2 (Balance laws) For any tip control volume
D, the standard and configurational force balances and
the second Law entail that 3∫

∂ D

PN d L = 0 (2.8)

∫

∂ D

(�I − FT P)N d L +
∫

D

g d S + gti p = 0, (2.9)

where gti p is Gurtin’s internal configurational force.
Then,

Div P = 0 and g + Div C = −gti pδZ

with C := � I − FT P, (2.10)

and where Div is a symbol recalling the distributional
nature of the divergence.

3 We write G := ∫
D gd S with an abuse of notations. It should

be written G = ∫
D g̃d S + g�(Z).

Note that in component form g+gti pδZ = − Div C
writes by (2.8) and (2.10) as

g̃i + (g�+gtip)iδZ = −D j Ci j = −D j (�δi j−Fki Pk j )

= −Di� + D j (Fki Pk j )

= s∂i T − 
e
kl Di b

e
kl + Pkj D j Fki ,

(2.11)

where Di denotes the distributional derivative, and
where we have defined the plastic thermodynamic
stress and the entropy as4

PLASTIC THERMODYNAMIC STRESS: 
e := ∂�̂

∂be

= 1

2
PFT be−1

(2.12)

ENTROPY: s := −∂�̂

∂T
. (2.13)

In view of Eqs. (2.4) and (2.5) it is still assumed that
(cf. Assumption 1 with P here taken as Dδ),

lim
δ→0

∫

Dδ

s∇T d S = 0. (2.14)

By (2.8)–(2.14) and recalling the definition of Dδ

on Fig. 2, it results that ∀δ > 0,

(g� + gti p)δZ := − lim
δ→0

∫

Dδ

Div C d S (2.15)

Let us rewrite Eq. (2.9) with D replaced by Dδ , and
let δ → 0. Then by Lemma 1, it also holds

(g� + gti p)δZ = − lim
δ→0

∫

∂ Dδ

CN d L , (2.16)

for every δ > 0.
As a consequence, recalling (2.11), Definition 2 and

Lemma 1, and letting δ → 0, the crack tip tractions are
introduced as follows.

Definition 5 (Crack tip tractions)

j :=
∮

ti p

(�I − FT P)N d L (2.17)

i := j
‖j‖ . (2.18)

4 To establish (2.12) we have used τ = PFT together with τ =
τ (be, T ) := 2 ∂�

∂be be.
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Let us now introduce the classical definition of
energy release rate, which will suffice for the appli-
cation purposes of the present work.

Definition 6 (Energy release rate)

f := j · T, (2.19)

where the unit vector T being the crack direction.

The following Lemma can also be found in Gurtin
(2000).

Lemma 3 (Dissipation) The second law and the bal-
ance of configurational forces entail

	ti p = f V ≥ 0 with V, f ≥ 0. (2.20)

Corollary 1 (Crack tip speed) It follows from (2.6) and
(2.20) that

V =
〈

P∗
ti p

f ∗

〉

+
(2.21)

with P∗
ti p := ∮

ti p(PN) · ẏd L and f ∗ := − ∮
ti p(F

T P) ·
(T⊗N)d L, while 〈·〉+ denotes the “positive part” func-
tion defined as 〈x〉+ = x+|x |

2 .

Proof From (2.6), (2.19) and (2.20),

V
∮

ti p

(�I − FT P)Nd L · T =
∮

ti p

(PN) · ẏd L

+V
∮

ti p

(�I) · (N ⊗ T)d L ,

from which (2.21) follows with the positive part 〈·〉+
taken because V is assumed nonnegative. ��

2.4 Dissipation at the crack tip and kinking

The following statement is taken from Gurtin (2000).

Assumption 4 (Constitutive assumptions) Let θ be the
kinking angle at time t , i.e. the crack is assumed to prop-
agate in a direction forming a counter-clockwise angle
θ with T, i.e. T = T̂(θ), with n = T′ = n̂(θ), the
normal to the crack. It is assumed that

f = f̂ (θ) = j · T̂(θ), (2.22)

with j as defined by (2.17) independent of θ . Moreover,
the tip speed V is assumed isotropic, i.e., V = V̂ ( f ),
and satisfying

V, V ′, V ′′ > 0 if f ≥ fcri t > 0. (2.23)

Then, Eq. (2.20) and Assumption 4 yield 	ti p(θ) =
f (θ)V̂ ( f̂ (θ)) with

	′
ti p(θ) = ( f )′(V ′ f + V ) and

	′′
ti p(θ) = ( f )′′(V ′ f + V ) + (( f )′)2(V ′′ f + 2V ′)

(2.24)

where, by (2.22),

( f )′ = j · N̂(θ) and ( f )′′ = − f. (2.25)

In classical fracture mechanics, the principle of max-
imal dissipation is often postulated (Mandel 1971). It
is also our approach to follow Gurtin with this respect,
thereby assuming this principle, whose major conse-
quence is to determine the crack propagation direction
T̂(θMAX) as aligned with j.

Law 1 (Maximal dissipation) The internal variables
at time t are such that the dissipation 	ti p is maximized
at the crack tip.

Theorem 1 (Crack propagation direction) Assume that
the crack kinks at time t along a direction T̂ forming
a counter-clockwise angle θMAX with its orientation
at time t in order to maximize the dissipation 	ti p at
θMAX. Then, recalling j as given by (2.17), one has

i = j
‖j‖ = T̂(θMAX). (2.26)

Proof From (2.24), the critical states of the dissipation
are given by

θ ∈ �e := {( f )′ = 0} if V ′ ≥ 0. (2.27)

Moreover at critical points the dissipation is maxi-
mized, since

	′′
ti p(�

e) = − f (V ′ f + V ) < 0. (2.28)

As a consequence, the kinking angle maximizing the
tip dissipation is θMAX ∈ �e such that ( f )′(θMAX) =
j · n̂(θMAX) = 0 from which (2.26) follows. ��

2.5 When, where and how much does crack
propagate?

• When? As soon as the critical void fraction is
reached, i.e., ζ = ζcrit , cf. the model equations
below (see Eq. (3.1)).

• Where? In the direction of θMAX, that is, as paral-
lel to the tip traction cf. Eq. (2.17).

• How much? With a velocity V given by (2.21)
while the quasistatic time-step δt is fixed.
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3 Balance and flow laws

The solution will consist in solving coupled balance
and flow lows.

3.1 Temperature-dependent compressible
neo-Hookean isotropic finite strain elasticity

The (homogeneous and isotropic)5 compressible neo-
Hookean free energy reads (Doghri 2000)

W (F, Fp) = W̃ (FF−p, I ) = Ŵ (be)

:= μ

2

(
J−2/3

e tr be − 3
)

+ κ

2
(1 − Je)

2, (3.1)

with F−p := (Fp)−1, be := FeFeT (recall that F =
FeFp) and Je := √

det be. This energy is known to be
well-defined for metal plasticity (where elastic strains
are smaller than plastic strains).6

The associated temperature-dependent free energy
(per unit volume) reads

�̂
(
be, ε̄

p
i , T

) := Ŵ (be) + (3λ + 2μ)α̃

(T − Tenv)(1 − Je) − C pρ

2Tenv
(T −Tenv)

2+H (
ε̄

p
i

)
,

(3.2)

with α̃ the coefficient of thermal expansion, and
where H is the hardening term with the hardening
variables chosen as the equivalent plastic strain ε̄

p
i

(i = 1, 2), which are with be the problem unknowns,
whose solution is given by the flow laws in Sect. 3.2.
Here, we consider isotropic hardening with H(ε̄

p
i ) =

1
2

∑2
i=1 Hi (ε̄

p
i )2 with Hi ≥ 0.

Let us also define l := ḞF−1, d = 1
2 (l + lT ) and

�

be as the derivative of be while keeping F constant.7

5 Since it does not dependent explicitly on X , but only on be,
and hence is invariant with respect to rotations (Bonet and Wood
2008); moreover, it dependents on the tensorial invariants of be

only. The identity W (F, Fp) = W̃ (FF−p, I ) follows from the
principle of plastic invariance (Mielke 2003).
6 Note however that being non polyconvex, there exist no solu-
tion in the framework of pure nonlinear elasticity, i.e., for Fe = F.
In Conti and de Lellis (2003) the authors show that there is no
existence of solutions for limit cases, but however it should be
noted that they consider an energy involving (∇u)2, which is
different from FFT and thus also from FeFeT .
7 Since

�

be represents the variation of be due to permanent defor-
mations while the total deformation F is kept unchanged, lp van-
ishes in the case of pure elastic unloading.

We introduce the plastic rate of deformation as (cf.
Bonet and Wood 2008; Areias et al. 2012a for detail),

lp := −1

2

�

be (be)−1 = 1

2
FC−pĊpF−1, (3.3)

and the elastic rate of deformation as

le := ḞeF−e. (3.4)

By Clausius–Duhem inequality, τ ·d− d
dt (Ŵ +H) ≥ 0

for any process, which we rewrite as (Maugin (1992),

Bonet and Wood (2008)) (τ − 2 ∂Ŵ
∂be be) · le + τ · lp −

∑2
i=1 q�

i

·
ε̄

p
i ≥ 0 with the hardening stress q�

i := Hi ε̄
p
i ,

whereby the Kirchhoff stress is defined as τ (be, T ) :=
2

∂�

∂be be, that is, in plane stress (note that the factor

E/(1 − ν) should be replaced by (3λ + 2μ) in plane
strain or in 3D) (Areias et al. 2012a),

τ (be, T ) = μJ−2/3
e

(
be − tr be

d
I
)

−
(

κ(1 − Je) + α̃E

1 − ν
(T − Tenv)

)
JeI, (3.5)

with d = 2 in plane stress and d = 3 in plane strain or
in 3D.

Remark that (2.14) is satisfied with τ as given by
(3.5). Moreover, we introduce the rate of mechanical
dissipation as the remaining terms in the LHS of Clau-
sius–Duhem inequality, viz.,

D
(

τ , q�
i ; lp,

·
ε̄

p
i

)
:= τ · lp −

2∑
i=1

q�
i

·
ε̄

p
i , (3.6)

with τ · lp the rate of plastic dissipation.
Let us assume that be ∈ L2(�) with Je ∈ L∞(�).

Since be = FC−pFT =: b̂e(F(u), Fp) = b̃e(u, Fp)

with Cp := FpT Fp and where u is the displacement
field, the quasi-static momentum balance law in plane
stress reads in the weak form: find u ∈ (H1(�))3 such
that:⎧⎪⎨
⎪⎩

∫

�

τ (b̃e(u, Fp), T ) · ∇û d S =
∫

	N

G · û d L

τ33 = 0,

(3.7)

for every û ∈ (H1
0 (�; R

3)) and where G is the applied
load on the boundary (no external body forces are here
considered).

The weak form of the heat conduction equation
reads: find T ∈ H1(�) such that:∫

�

(ρC pṪ T̂ + k∇T · ∇ T̂ )dV =
∫

�

ρᾱ(τ · lp)T̂ dV,

(3.8)
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for every T̂ ∈ H1
0 (�) and with ᾱ the Taylor–Quinney

coefficient (i.e., giving the proportion of energy con-
verted into heat), and lp the plastic strain rate to be
defined below. The specific heat supply is given by

Q̇ = ᾱ(τ · lp). (3.9)

3.2 Principle of maximal plastic dissipation
and flow law

Let us introduce the maximal principal Almansi strain

εeq = arg max
εi

{
det ((I − b−e) − 2εi I) = 0

}
, (3.10)

the void fraction (that, is, the damage parameter),

0 ≤ ζ =
(εeq

ε̄

)2 ≤ 1, (3.11)

with ε̄ a constitutive parameter. The m yield functions
read (1 ≤ i ≤ m = 2)

�i
(
τ , σ

eq
i

) := σ
eq
i − (1 − ζ )

(
1 − T − Tenv

Tmelt − Tenv

)
σyi ,

(3.12)

with Tenv and Tmelt the room and melting temperatures,
respectively, with the yield stress given by

σyi = σ 0
y + H ε̄

p
i , (3.13)

with σ 0
y the initial tensile yield stress, with the i th equiv-

alent plastic strain

ε̄
p
i =

t∫

0

·
ε̄

p
i ds, (3.14)

and H a material-hardening constitutive parameter and
where the von Mises and Drucker–Prager equivalent
stresses read (with τ d the deviatoric part of τ )

{
σ

eq
1 :=

√
3
2τ 2 − 9

2d2 ( tr τ )2 =
√

3
2 (τ d)2

σ
eq
2 := σ

eq
1 − βζ tr τ .

(3.15)

with β a constitutive parameter. Here d = 2 in plane
stress and d = 3 in plane strain or in 3D.
Consider the rate of mechanical dissipationD(τ , q�

i ; lp,
·

ε̄
p
i ) as given by (3.6), where q�

i := H ε̄
p
i .

Theorem 2 (Maximal plastic dissipation) The princi-
ple of maximal plastic dissipation entails the flow laws8

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
2 (lp + lpT ) =

∑2

i=1
λ̇i

∂�i

∂T
(τ , q�

i )

=
∑2

i=1
λ̇i τ̄ (1 − dβζδi2)

·
ε̄

p
i = −λ̇i

∂�i

∂qi
(τ , q�

i )

= λ̇i (1 − ζ )(1 − T −Tenv
Tmelt−Tenv

)

(3.16)

and cλ̇i − 〈cλ̇i + �i (τ , q�
i )〉+ = 0, where the yield

functions are given by (3.12) and τ̄ := τ d√
2
3 (τ d )2

.

Proof The elasticity domain is defined as the convex
set � := {(T, qi ) ∈ A s.t. φ�(T, qi ) ≤ 0} where T is
a symmetric second-order matrix and qi (i = 1, 2) a
scalar. Hill–Mandel’s principle of maximal dissipation
states that the solution (τ , σ

eq
i )(i = 1, 2) satisfies

D
(

τ , σ
eq
i ; lp,

·
ε̄ p

)
= max

(T,qi )∈�

{
D

(
T, qi ; lp,

·
ε̄ p

)}
.

(3.17)

From the constraint �1 ≤ 0 and �2 ≤ 0, the flow
rules immediately follow from the stationary points of

the Lagrangean L(T, qi , λ̇i ; lp,
·

ε̄ p) := −D(T, qi ; lp,
·

ε̄ p) + ∑2
i=1 λ̇i�i (T, qi ) w.r.t (T, qi , λ̇) with the

Lagrange multipliers λ̇i and recalling definition (3.6).
The last equalities in the RHS of (3.16) follow by the
definition of �i . ��

From (3.15) & (3.16) and since τ · τ̄ = σ
eq
1 while

�i λ̇i = 0, the rate of dissipation reads

D = (1 − ζ )

(
1 − T − Tenv

Tmelt − Tenv

)

2∑
i=1

λ̇i
(
σyi (1 − dβζδi2) − H ε̄

p
i

)
.

Let us remark that Eq. (3.16c) is solved directly
by means of Chen–Mangasarian function (Chen and

Mangasarian 1996). Moreover
∂��

∂τ
is computed in an

exact manner with Mathematica (Wolfram Research
Inc. 2007). For a detailed description of the numerical

8 Noting in passing that the extremization principles has left
1
2 (lp − lpT ) undefined, a fact that is not mentioned clear in clas-
sical literature. Let us also remark that the set of inequalities for
the plastic multiplier and the yield function is given by the formal
Eq. (3.16)c where c is a parameter to satisfy unit consistency.
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implementation of the model, of computational issues
such as mesh opening, remeshing, type of finite ele-
ments used we refer to Areias and Rabczuk (2010),
Areias et al. (2011b, 2012a,b). Some detail is given in
Sect. 4.2.

4 Numerical implementation

4.1 Brief discussion on the numerical method

Combination of the return-mapping technique (Nemat-
Nasser 2004; Simo and Hughes 1998) and mixed
formulations (Brezzi and Fortin 1991) led to a stan-
dardization of elasto-plastic modeling with finite ele-
ments (see the treatise by Belytschko et al. 2000 and
the one by Bonet 2008). However, return-mapping
algorithms where implicit inequality for the plastic
multiplier appear still pose challenges to systemati-
zation, since the predictor in the presence of duc-
tile damage evolution can give a false indication and
might produce fictitious unloading. As a consequence,
classical finite strain constitutive approaches (e.g. the
rotated FeFp method Areias and Belytschko 2006)
inherit some of the difficulties of the small strain algo-
rithms.

Besides these problems, in complex simulations the
convergence radius is often not satisfactory (Crisfield
and Norris 1999). For ductile fracture problems, where
mesh adaptation, quadrature point alterations and even
full remeshing has to be adopted, small conver-
gence radius can be impairing for a successful anal-
ysis.

Here, the finite strain elasto-plastic algorithm of
Areias et al. (2012a) has been adopted, which allows
us to include in the same underlying framework, kine-
matic hardening, anisotropy and damage. Adding to
this, recent ductile damage models (specifically the one
by Areias et al. 2011a) make use of non-differentiable
convex yield functions, not easily tractable by classical
return-mapping algorithms.

4.2 Iteration of the historical variables

The time interval [0, t�] is discretized and the unknowns
are computed at time tn ∈ [0, t�] with 1 ≤ n ≤ N .

To find F and T at each time iteration, we need to
determine the tangent modulus associated to (3.7) and
(3.8),

⎡
⎣ ∂ Q̇

∂T
∂ Q̇
∂F

∂τ
∂T

∂τ
∂F

⎤
⎦ ,

which is computed with Mathematica and the AceGen
add-on Korelc (2002).

Then, having solved (3.7) at time tn+1 knowing the
solution at time tn , the increment of F is found as

δFn = Fn+1Fn
−1

From the expression be = FC−pFT we infer that be at
time tn+1 writes as

be
n+1 = Fn+1C−p

nFn+1
T

+
�

δbe
n= Fn+1

(
Fn

−1be
nFn

−T
)

Fn+1
T

+
�

δbe
n= δFnbe

nδFn
T +

�

δbe
n

where δ�be is the increment of be caused by a variation
of Cp. In brief we write

be
n+1 = be◦

n +
�

δbe
n (4.1)

where be◦
n is the “trial” be at time tn . Then τn :=

τ (be
n, Tn) is replaced by τn+1 and (3.7) is solved iter-

atively as coupled with the heat equation.

On the other hand dp := (lp)S = − 1
4

�

be b−e −
1
4 b−e

�

be which as rewritten in Voigt form allows us to

isolate
�

be, that is,

dp
V = −1

4
AV

�

be
V (4.2)

where in 3D, AV is a 6 × 6 matrix whose entries are
linear combinations of the entries of (be)−1 (Areias et
al. 2012a).

As a consequence, the flow law (3.16) is integrated
semi-implicitly. In particular, matrix A is kept constant
as a function of be

n and then the flow law reads as the
nonlinear system (Voigt notation is used):⎧⎨
⎩

0 = be◦
n − be

n+1 − 4A−1
V nnδλ̇

0 = ε̄
p
n − ε̄

p
n+1 + ϕnδλ̇

0 = cδλ̇ − 〈cδλ̇ + δϕ〉+
, (4.3)

with the flow vector nn := ( ∂�1
∂τ

, ∂�2
∂τ

)(τn+1, qi n+1;
ζn, Tn+1) and ϕn :=( ∂�1

∂q1
, ∂�2

∂q2
)(τn+1, qi n+1; ζn, Tn+1).

Moreover, the notation δλ̇ = (δγ1, δγ2)
T , δ� =

(δ�1, δ�̇2)
T , δϕ = (δϕ1, δϕ2)

T is employed.
The solution of (4.3) provides the constitutive vari-

ables at time tn+1,{
be

n+1, δλ̇, ε̄
p
n+1

}T
.
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Fig. 3 Summary of the iterative process

Fig. 4 Approximation of the “positive part” to solve the com-
plementarity conditions (i.e., the flow rules)

A figure summarizing the iterative process is pro-
vided in Fig. 3. Supplementary detail on the numerical
resolution of (4.3) can be found in Bai and Wierzbicki
(2010), Areias et al. (2012a,b).

4.3 Smoothing the complementarity condition

Equation (4.3c) is solved be approximating the “pos-
itive part” function 〈·〉+ by the smooth ramp function
(Chen and Mangasarian 1996),

〈x〉+ ∼ S(x) = x + 1

αe
ln (1 + exp(−αex)) ,

as can be observed in Fig. 4.

4.4 Computation of the contour integral and fracture
algorithm

The crack tip traction je whose expression is given by
(2.17) is computed in the reference configuration as a

contour integral on a circle centered at the crack tip and
of radius 1/40th of the body diameter.

A picture of the fracture algorithm is provided in
Fig. 5.

5 Numerical results

Concerning the algorithm, direct integration of the
rate equations is performed as well as smoothing
of the complementarity conditions with the Chen–
Mangasarian function. The resulting problem is smooth,
always converges quadratically and is robust, typi-
cally requiring fewer steps than return-mapping algo-
rithms.

Selected examples are shown in the following sec-
tions. In the first 2 and last examples no thickness varia-
tion was considered. The second example is then re-run
with thickness variation (see Sect. 5.3) showing no sig-
nificant change in the results.

5.1 Ductile fracture in Mode 1 and Mode 2

The fracture model as based on configurational forces
is first tested on classical Mode I and Mode II loading
experiments. The set-up and the values of the model
parameter are shown in Fig. 6. The mode I loading
(i.e., pure traction) consists in a imposed displacement
perpendicular to the upper and lower faces of the body,
while the left-side face is clamped and right-side face
is displacement free. For the mode II loading (i.e.,
pure shear) the imposed displacement is parallel to the
upper and lower faces. The left-side face is clamped
in its upper half part and force-free in its lower half
part, while the right-side face is also force-free. In both
cases a notch is inserted in the middle of the left-side
face.

Propagation of the crack as loading increases is
observed in Figs. 7 (for mode I) and 9 (for mode II)
along a path whose direction is given by the principle
of maximal dissipation and hence with a kinking angle
given by the direction of the tip traction (2.17). The
time increment is here 0.1 s. The temperature depen-
dent elasto-plastic problem is solved entirely at each
iteration: effective plastic strain, damage and tempera-
ture difference (i.e., T − Tenv) are shown in Figs. 7 and
9, while load-displacement curves are given in Figs. 8
(for mode I) and 10 (for mode II) for 2 mesh refine-
ments, which are shown in Fig. 11.
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Fig. 5 Fracture algorithm. Left the contour integral: the stress is interpolated at 100 points on the circle of radius R; middle node
splitting and mesh opening; right: element re-ordering and splitting

Fig. 6 The set-up and all values of the material and model param-
eter for the Mode I and Mode II experiments

It is astonishing to observe that the path followed
by the Mode I and Mode II cracks are almost identi-
cal. In fact, one knows that in brittle fracture the two

paths are clearly distinct (cf., e.g., Allaire et al. 2011).
However, for ductile fracture this is no more the case
as laboratory experiments and numerical simulations
show (Maccagno and Knott 1992; Amstutz et al. 1995;
James and Swenson 1999; Sutton et al. 2000) (Fig. 12).

From this consideration, it appears mandatory to
assess our model with comparison with these known
experimental facts. This is done in Sect. 5.2

5.2 The Arcan–Sutton tearing test

The Arcan test fixture as shown in Fig. 13 have been
originally used for testing of composite specimens for
stable tearing tests (Arcan et al. 1978). We here refer
to Sutton et al. (2000) where experimental results by
Amstutz et al. (1995) have been reproduced with good
qualitative agreement for 2024-T3 aluminum.

Our objective is to assess our criterion based on
maximal dissipation and our temperature-dependent
finite-strain elasto-plastic model by comparison of
the numerically computed crack propagation direction
with the known experimental paths for a series of 5
mixed-mode loading angle.
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0.000e+00

4.016e-02

8.031e-02

1.205e-01

1.606e-01
EFFECTIVE

0.000e+00

2.000e-02

4.000e-02

6.000e-02
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VOID FRACTION

-1.879e-01

7.335e+00

1.486e+01

2.238e+01

2.990e+01
TEMPERATURE DIFFERENCE

Fig. 7 The effective plastic strain, the damage (i.e., void frac-
tion) parameter and the temperature for the Mode I experiment.
The time increment is here 0.1 s

The results shown in Fig. 14 indicate good agree-
ment with the experimental results. The time increment
is here 0.1 s. The temperature is also shown along the
path in Fig. 14. Therefore it is believed that the pro-
posed model deserves attention towards future appli-
cations of ductile fracture.

5.3 ARCAN test with plane stress and thickness
variation

Thickness variation is caused by the condition τ33 =
0 where 3 is the out-of-plane direction. Since the

Fig. 8 Displacement-loading curves for coarse and fine meshes
for the Mode I experiment. A first stable process is followed by an
unstable propagation. Coarse mesh consists of 3,270 nodes and
6,284 elements. Fine mesh consists of 12,870 nodes and 25,240
elements

0.000e+00

7.978e-02

1.596e-01

2.393e-01

3.191e-01
EFFECTIVE

0.000e+00

2.000e-02

4.000e-02

6.000e-02

8.000e-02
VOID FRACTION

-1.292e-03

1.548e+01

3.096e+01

4.644e+01

6.192e+01
TEMPERATURE DIFFERENCE

Fig. 9 The effective plastic strain, the damage (i.e., void frac-
tion) parameter and the temperature for the Mode II experiment.
The time increment is here 0.1 s
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Fig. 10 Displacement-loading curves for coarse and fine meshes
for the Mode II experiment. A first stable process is followed by
an unstable propagation

Fig. 11 a Coarse mesh consisting of 3,270 nodes and 6,284
elements. b Fine mesh consisting of 12,870 nodes and 25,240
elements

deformation gradient for plane stress can be partitioned
as

F =
⎡
⎣ F11 F12 0

F22 F21 0
0 0 F33

⎤
⎦ (5.1)

where

F33 = h

H
(5.2)

with h and H representing, respectively, the deformed
and undeformed thickness, we can therefore impose the
condition τ33 = 0 by calculating F33 and therefore h.
The application of Newton’s method results as:
∂τ33

∂ F33
δF33 = −τ33 (5.3)

Fig. 12 The Arcan set-up (top) and mesh (bottom) and all val-
ues of the material and model parameter as based on Arcan et al.
(1978); Sutton et al. (2000)

Fig. 13 Configurational forces after 2 time steps in the Arcan
test

Further details concerning this topic can be con-
sulted in Areias et al. (2011b). Simulation results of
thickness variation are shown in Fig. 15. Corresponding
velocity profiles at the crack tip are shown in Fig. 16.
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Fig. 14 The crack paths
provided by our model as
based on configurational
forces. The time increment
is here 0.1 s

5.4 Force-free elasto-plastic fracture

Crack opening by pure cooling can also be simu-
lated with our method. Heat is flowing throughout the
horizontal faces, while no forces are exerted on the
boundary. The time increment is here 1.5 s. The crack
path is determined by the tip traction by means od
(2.17), where the dependence of P on the temperature
is explicitly provided by the formula P = τF−T with
τ = τ̂ (be, T ) given by (3.5). All other field depen-
dence on the temperature are implicitly provided by

the flow law, the momentum and the heat equations.
Set-up and results are shown in Fig. 17.

Moreover, load-displacement curves are also pro-
vided in Fig. 17 for 2 mesh refinements, which are the
same as those of Fig. 11.

6 Concluding remarks

The first aim of this paper was to providing a com-
plete fracture simulation model for finite-strain metal
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Fig. 15 Thickness variation in the Arcan–Sutton test performed (coarse mesh)

Fig. 16 Crack tip speed as given by Eq. (2.21) in the Arcan–
Sutton test with thickness variation (coarse mesh)

plasticity with as few as possible model parameters.
In total there are 7 parameters, 5 of which are specifi-
cally designed for the plastic model, while 2 only are
specific for the fracture model. There are 2 parameters
in the yield stress expression (3.13), 1 for the damage
parameter (3.10), and 1 in the Drucker–Prager equiv-
alent stress (3.15a), while the last plastic parameter is
m, the chosen number of plastic surfaces. Concerning

crack propagation one needs to provide ζcrit , the cho-
sen threshold for complete softening (at which crack
begins to propagate) and R the radius of the contour to
compute the crack tip traction in (2.17). In the above
simulations the value of R was 1/40th of the body diam-
eter.

The second objective was to be able to justify the
model in a deductive manner and this was possible by
appealing to Gurtin’s notion of configurational force
(Gurtin 2000). The main interest is then to understand
fracture mechanisms, since they follow from rational
arguments which can be validated and analyzed by
comparing numerical simulation as based on the model
with experimental data. This was done in Sect. 5.

Let us also remark that the theory provides an
explicit expression of the crack tip speed, which we
have features for one simulation example in Fig. 16.
To the knowledge of the authors, such an explicit crack
tip speed expression in the quasi-static setting is not
found in the literature on computational fracture. Let
us emphasize that our expression (2.21) comes directly
from Gurtin’s work (2000), which has served as foun-
dation of our method, model and algorithm.
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Fig. 17 Crack opening by pure cooling with our model as based on configurational forces

The third goal was to develop a numerical scheme
to solve the global problem which is both nonlin-
ear and non smooth, cf. Sect. 3. These algorithmic
and computational aspects have been less explained in
the present paper, since it is based on the SIMPLAS
code (https://ssm7.ae.uiuc.edu:80/simplas) whose var-
ious ingredients and features have been previously pub-
lished (Areias and Rabczuk 2010; Areias et al. 2009,
2011b, 2012a.

The present paper then focusses on the two novel
aspects of the model, namely the temperature depen-
dence and the crack propagation criterion as based on
configurational forces. This latter point is crucial since
we believe that its major advantage is its generality: a
mere modification of the free energy is automatically
taken into account in the fracture criterion. For instance

if a dislocation model or an electro-magnetic coupling
is added to the current thermodynamic model, the spe-
cific role played by the dislocations or the Lorentz force
on the crack path direction might be accounted for with-
out requiring further ad-hoc procedures. Moreover, as
opposed to many other methods based on this notion,
here the contour integral is solved directly without need
to finely mesh the tip region, which is computationally
expensive (and requires to compute the higher order
terms).

The specific role of the temperature on crack prop-
agation has also been investigated. Our first concern
was to include thermal effects, since temperature is a
thermodynamic variable of major importance in every
physical mechanism where dissipation plays a crucial
role. This is why the temperature appears explicitly or

123123

https://ssm7.ae.uiuc.edu:80/simplas


A damage-based temperature-dependent model 231

implicitly in every model equation, including of course
in the tip traction expression which determines the
kinking direction. Moreover, temperature dependence
has been incorporated also because thermal gradients
do play a role in the physical mechanisms of fracture.
As a matter of fact, our last numerical simulation shows
that force-free fracture can also be predicted.

Since the Arcan–Sutton experimental curves have
been reproduced with our method (cf. Sect. 5.2) with
reasonable accuracy, we believe that our results consti-
tute a solid basis to further analyze fracture, by develop-
ing and applying the method to other physical effects.
This will be done in future work.
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