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Continuing the earlier research [16] on local well-posedness of a time-minimum problem associated
to a closed target set C ⊂ H (H is a Hilbert space) and a convex constant dynamics F ⊂ H we
study the Lipschitz (or, in general, Hölder) regularity of the (unique) point πF

C
(x) in C achieved

from x for a minimal time. As a consequence, smoothness of the value function is proved, and an
explicit formula for its derivative is given.
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1. Introduction

Let us consider a Hilbert spaceH with the inner product 〈·, ·〉 and the norm ‖·‖. For
a nonempty closed convex bounded set F ⊂ H (further called dynamics) containing
the origin in its interior and for some nonempty closed target set C ⊂ H we denote
by TF

C (x), x ∈ H, the value function in the following time optimal control problem

min
{
T > 0 : ∃x (·) , x (T ) ∈ C, x (0) = x, and

·
x (t) ∈ F a.e. in [0, T ]

}
. (1)

The set of terminal points x (T ) for all functions x (·), which are minimizers in (1)
(or, in other words, the set of points in C attainable from x in a minimal time),
is said to be the time-minimum projection of x onto C (with respect to F ) and is
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denoted by πF
C (x). We use the same name and notation also for the unique element

of πF
C (x) if it is a singleton. Due to the convexity of F the problem (1) is equivalent

to the mathematical programming problem

min {ρF (y − x) : y ∈ C} ,

where ρF (·) is the Minkowski functional (gauge function) associated to F ,

ρF (ξ) := inf {λ > 0 : ξ ∈ λF} , ξ ∈ H. (2)

Therefore,
TF

C (x) = inf
y∈C

ρF (y − x)

and
πF
C (x) =

{
y ∈ C : ρF (y − x) = TF

C (x)
}
.

If F = B is the closed unit ball in H then ρF (·), TF
C (x) and πF

C (x) are reduced to
the norm ‖·‖, to the distance dC (x) from x to the set C and to the usual metric
projection πC (x) of x onto C, respectively. Observe that unlike this particular case
we do not suppose the set F to be either symmetric or smooth, or strictly convex.

It is well known that for each convex C the projection πC (x) is a singleton con-
tinuously depending on x ∈ H (it is even Lipschitzean with the Lipschitz constant
1), and the distance dC (·) is continuously Fréchet differentiable outside C. Some
generalization of the convexity leads to validity of the properties above not on the
whole space but only on an open neighbourhood of the target set. Namely, in past
many authors (see, e.g., [15, 25, 4, 5, 24, 9, 21, 11, 1] and others) studied the class
of the so-called ϕ-convex or proximally smooth sets (the exact definition will be
given in the sequel). Roughly speaking, these sets could be characterized by the
following geometric property: given x ∈ ∂C, for any x, y ∈ C near x the con-
vex combination λx + (1− λ) y (not necessarily belonging to C) is distant from C
not more than of the order O

(
‖x− y‖2

)
, and this proximity is controlled by some

(continuous) function ϕ (·). We know that a closed set C ⊂ H is ϕ-convex iff for
some open neighbourhood U ⊃ C depending on ϕ (·) the map πC (·) is well defined,
single-valued and (Lipschitz) continuous on U ; or, equivalently, the distance func-
tion dC (·) is Fréchet differentiable on U (outside of C) that justifies the other name
given to these sets. Moreover, the gradient ∇dC (·) turns out to be Lipschitzean
near each point x ∈ U�C with Lipschitz constant tending to infinity as x verges
on the boundary of U .
Notice that the continuous differentiability of the distance function is strictly re-
lated to the well-posedness (i.e., existence, uniqueness and continuity) of the metric
projection (see, e.g., [9, Proposition 3.6] and [18, Section 1.3.3]). As follows from
Theorem 22 [20] formulated in a general Banach space setting these properties are
equivalent in a Hilbert space. Therefore, if the well-posedness of the projection is
violated in a neighbourhood of some point x ∈ H then there is no differentiability
of the distance, and one is led to study various types of subdifferentials of dC (·) at
x and the relationships between them. In this direction one usually distinguishes
two cases: x ∈ ∂C and x /∈ C. In the first case (the distance, certainly, is never
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differentiable at that point) the relationships between (proximal, Fréchet, limiting
or Clarke) subdifferential and the respective normal cone to C at the point x are
well known (see [2, 3] and the bibliography therein). If x /∈ C instead then there are
two kinds of formulas. Some of them relate subdifferentials of dC (·) to the normal
cones to the sublevel set C (r) := {y ∈ H : dC (y) ≤ r} where r := dC (x) (see, e.g.,
[9, Theorem 3.4] and [2, Theorem 3.6]), while others are written in terms of the
normal cones to the set C itself at a metric projection x ∈ πC (x) (if any). Taking
into account these formulas the questions of regularity of the distance function (in
the sense of coincidence of various subdifferentials) were studied. For details we
refer to the book [18] and to the extensive bibliography therein.

During the last ten years the majority of the results above were generalized to an
arbitrary constant convex dynamics F (see, e.g., [26, 13, 14, 27, 19, 12]). In the
simplest case of the convex target set C the subdifferential of TF

C (·) at x /∈ C (in the
sense of Convex Analysis) was represented in terms of the so-called separating cone
(see [14, Theorem 4.2]), which involves both normal cones (to C at x ∈ πF

C (x) and
to F at some associated point). In the same paper, considering an arbitrary closed
C, the authors expressed both proximal and Fréchet subdifferentials of the value
function at a point x /∈ C through the respective normal cones to the "enlargement
set"

{
y ∈ H : TF

C (y) ≤ TF
C (x)

}
similarly as for the distance (see [14, Theorem 3.1]),

while in [27] these formulas were generalized to Banach spaces, and the similar
representation for the Clarke subdifferential was given. The latter work contains
also various formulas for subdifferentials of the minimum time function at x ∈ ∂C.
In [19] the limiting subdifferentials are considered as well.

If x /∈ C and one assumes existence of a point x ∈ πF
C (x) then it is natural to link

a subdifferential of TF
C (·) at x to the respective normal cone to the target set at

x. The case when C is convex suggests that such relationships should contain the
normal cone to the convex set F at some associated point (but this is not of the
essence for the distance because in the case F = B there is a unique exterior normal
to F at a boundary point coinciding with the radius-vector). However, without any
supplementary assumptions they admit the form of the one-sided inclusions only
(see, e.g., [14, Theorem 3.3]). In order to have equalities one should suppose the set
C or F to be regular in some sense (as, e.g., in Theorems 5.10 and 5.12 from [14]).
On the other hand, such equalities are the main tools in studying the smoothness
of the value function. Notice that in general the function TF

C (·) can be very nice
near a point x /∈ C when πF

C (x) is not a singleton (or even when it is the empty set,
see [12, Example 4.3]), which never happens in the case of distance. Nevertheless,
here we consider a more regular situation imposing conditions, which guarantee
the well-posedness of the time-minimum projection as well (similarly as in the case
F = B). Moreover, we are interested in the validity of the latter property not at a
single point out of C but on a neighbourhood of the target set (compare with the
equivalent characterizations of ϕ-convex sets).

The global well-posedness conditions have been proposed in [14] as the generaliza-
tion of the respective hypothesis for the metric projection. Namely, the authors
required the ϕ-convexity of C (with a constant function ϕ (x) ≡ ϕ) and some kind
of uniform strict convexity of the set F controlled by a parameter γ > 0. Un-
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der these assumptions the function x 7→ πF
C (x) is well defined, single-valued and

Hölder continuous with the exponent 1/2 on an open neighbourhood of C deter-
minable through the balance between two constants ϕ and γ (see [14, Theorems
5.6 and 5.7]). Later, in [16] we localized these (uniform) hypotheses, assuming the
set C to be ϕ-convex with an arbitrary continuous function ϕ (·) and writing the
(local) rotundity condition for F in terms of some kind of curvature. Besides that,
we proposed an alternative (first order) condition based on mutual regularity of the
proximal normals to C (near a fixed point) and of the duality mapping associated to
F . As a result, an open neighbourhood U ⊃ C, on which the (single-valued) time-
minimum projection πF

C (·) is well defined and enough regular, can be constructed
by employment of both type of local conditions (see [16, Theorem 6.1]). Neverthe-
less, in contrast to the case F = B, the Fréchet differentiability of TF

C (·) does not
follow immediately from this well-posedness (in particular, from our hypotheses),
but it needs some more regularity assumptions on the target set or on the dynamics
such as those given, for instance, in Theorem 5.14 [14].

Our paper continues research [14, 16] concerning the well-posedness and the regu-
larity of the time-minimum projection in a neighbourhood of the target set. The
main hypotheses (A) and (B) we use, studied in detail in [16], are formulated in
Section 2, while the goal of Section 3 is to show how one can increase the degree of
the Hölderianity of πF

C (·) by increasing regularity of one of the sets C or F . It is
interesting to observe that under the assumption (A) we always have the Lipschitz
continuity of the projection, while under (B) we can obtain gratis (without any
supplementary hypothesis on C and F ) the Hölder continuity with the exponent
1/2 only (as in [14, Theorem 5.7(i)]). However, if the target set and the dynamics
are "compatible" near a given point in a Hölderian way (in particular, if one of
these sets admits a Hölder continuous normal vector) then the Hölder regularity of
πF
C (·) can be essentially improved (see Theorems 3.5 and 3.8 below). In Section 4

we consider a special case when the target set is strictly convex in a neighbourhood
of a given point. Then (in Section 5) we obtain first a general result on the Clarke
regularity of the value function TF

C (·) (see Proposition 5.1), which is used further for
proving the continuous differentiability of TF

C (·) near the target C. The formulas
for the gradient ∇TF

C (x) under various assumptions are also given, and the Hölder
regularity of ∇TF

C (·) is studied. Finally, in the last section we set two examples,
which illustrate the obtained results.

2. Preliminaries. Basic hypotheses

Throughout the paper we consider a pair of subsets (F,C) of a Hilbert space H
assuming F to be closed convex bounded with 0 ∈ intF ("int" means interior of
F ), and C to be just nonempty and closed. Let us introduce some concepts relating
to both sets, which will be used in the sequel.

We denote by F 0 the polar set, i.e.,

F 0 := {ξ∗ ∈ H : 〈ξ, ξ∗〉 ≤ 1 ∀ξ ∈ F} ,

and by JF : ∂F 0 → ∂F the duality mapping that associates to each ξ∗ ∈ ∂F 0 the
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set
JF (ξ∗) := {ξ ∈ ∂F : 〈ξ, ξ∗〉 = 1} .

In other words, JF (ξ∗) is the set of all points ξ from the boundary ∂F , in which
the functional η 7→ 〈ξ∗, η〉 supports F . We say that (ξ, ξ∗) is a dual pair if ξ∗ ∈ ∂F 0

and ξ ∈ JF (ξ∗). The Minkowski functional (gauge function) ρF (ξ) (see (2)) can be
also represented through the support function to the polar set, namely,

ρF (ξ) = σF 0 (ξ) := sup
{
〈ξ, ξ∗〉 : ξ∗ ∈ F 0

}
, (3)

and satisfies the inequalities

1

‖F‖ ‖ξ‖ ≤ ρF (ξ) ≤
∥∥F 0

∥∥ ‖ξ‖ , ξ ∈ H, (4)

where ‖F‖ := sup {‖ξ‖ : ξ ∈ F}. Hence

|ρF (ξ1)− ρF (ξ2)| ≤
∥∥F 0

∥∥ ‖ξ1 − ξ2‖ , ξ1, ξ2 ∈ H.

Let us denote by NF (ξ) the normal cone to F at ξ ∈ ∂F and by ∂ρF (ξ) the
subdifferential of the function ρF (·) in the sense of Convex Analysis. Notice that
JF (ξ∗), ξ∗ ∈ ∂F 0, is nothing else than ∂ρF 0 (ξ∗), while the setNF (ξ)∩∂F 0 coincides
with the pre-image J−1F (ξ) = JF 0 (ξ), ξ ∈ ∂F .

Recall some notions studied in detail in [16] that quantitatively characterize the
rotundity of convex sets. Given a dual pair (ξ, ξ∗) we introduce the modulus of
strict convexity (rotundity) of F as the real function

ĈF (r, ξ, ξ∗) := inf {〈ξ − η, ξ∗〉 : η ∈ F, ‖ξ − η‖ ≥ r} , r > 0. (5)

The set F is said to be strictly convex (rotund ) at the point ξ with respect to

(w.r.t.) ξ∗ if ĈF (r, ξ, ξ∗) > 0 for all r > 0. Since in this case ξ is the unique element
of JF (ξ∗), we could speak just about the strict convexity w.r.t. the vector ξ∗. We
keep the same agreement for all the similar concepts introduced below. Given a set
U ⊂ ∂F 0, we say that F is uniformly strictly convex (uniformly rotund ) w.r.t. U if

βU (r) := inf
{

ĈF (r, ξ, ξ∗) : ξ∗ ∈ U
}
> 0 (6)

for all r > 0. If in the definition above U is a neighbourhood of a point ξ∗0 ∈ ∂F 0

then we say that F is uniformly strictly convex w.r.t. ξ∗0 . Observe that there is a
strong connection between the rotundity properties of the set F and the smoothness
of its polar F 0. Namely (see [16, Proposition 3.3]), F is strictly convex at ξ ∈ ∂F
w.r.t. ξ∗ ∈ ∂F 0 if and only if the dual Minkowski functional ρF 0 (·) is Fréchet
differentiable at ξ∗ with ∇ρF 0 (ξ∗) = ξ. In this case we say also that F 0 is smooth
at the point ξ∗. To formulate the uniform version of this property let us introduce
the so called modulus of smoothness of F 0 at ξ∗ ∈ ∂F 0 w.r.t. ξ ∈ ∂F ,

SF 0 (t, ξ∗, ξ) := sup
{
ρF 0 (ξ∗ + tη∗)− ρF 0 (ξ∗)− t 〈ξ, η∗〉 : η∗ ∈ F 0

}
.
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Proposition 2.1. Let U be an arbitrary subset of ∂F 0. Then the following asser-
tions are equivalent:

(i) the set F is uniformly rotund w.r.t. U ;

(ii) the mapping JF (·) is single-valued on U and uniformly continuous in the
following sense:

sup
η∈JF (η∗)

‖JF (ξ∗)− η‖ → 0 as ‖ξ∗ − η∗‖ → 0, ξ∗ ∈ U , η∗ ∈ ∂F 0;

(iii) limt→0+
S

F0 (t,ξ∗,ξ)

t
= 0, and the limit is uniform in ξ∗ ∈ U , ξ ∈ JF (ξ∗).

Proof. The implication (i) =⇒ (ii) can be shown similarly as in [16, Proposition
3.4]. Indeed, assuming that the second part of the assertion (ii) does not hold
(single-valuedness of JF (·) on U follows from (i) immediately) let us take ε > 0
and sequences {ξ∗n} ⊂ U , {η∗n} ⊂ ∂F 0 such that ‖ξ∗n − η∗n‖ → 0 as n → ∞ but
‖ξn − ηn‖ ≥ ε for some ηn ∈ JF (η∗n), n = 1, 2, ... . Here ξn ∈ JF (ξ∗n). By definition
of the rotundity modulus (5) we obviously have

〈ξn − ηn, ξ
∗
n − η∗n〉 ≥ ĈF (ε, ξn, ξ

∗
n) + ĈF (ε, ηn, η

∗
n) ≥ βU (ε) > 0,

which is a contradiction.

To prove (ii) =⇒ (iii) we follow the same line as [17, Lemma 5.5.9]. Observing
that ξ∗+tη∗

ρ
F0 (ξ∗+tη∗)

→ ξ∗ as t → 0+ uniformly in ξ∗, η∗ ∈ ∂F 0 and using the uniform

continuity of JF (·), for given ε > 0 we choose δ > 0 such that

‖JF (ξ∗)− ζ‖ ≤ ε (7)

for all ξ∗ ∈ U , ζ ∈ JF

(
ξ∗+tη∗

ρ
F0 (ξ∗+tη∗)

)
, η∗ ∈ ∂F 0 and 0 < t ≤ δ. Let us estimate now

the difference ρF 0 (ξ∗ + tη∗) − ρF 0 (ξ∗). On one hand, by (3) and by definition of
the duality mapping we successively have

ρF 0 (ξ∗ + tη∗)− ρF 0 (ξ∗)

= ρF 0 (ξ∗ + tη∗)

[〈
ζ,

ξ∗ + tη∗

ρF 0 (ξ∗ + tη∗)

〉
− ρF 0

(
ξ∗

ρF 0 (ξ∗ + tη∗)

)]

≤ ρF 0 (ξ∗ + tη∗)

〈
ζ,

ξ∗ + tη∗

ρF 0 (ξ∗ + tη∗)
− ξ∗

ρF 0 (ξ∗ + tη∗)

〉

= t 〈ζ, η∗〉 . (8)

On the other hand,

ρF 0 (ξ∗ + tη∗)− ρF 0 (ξ∗) ≥ 〈JF (ξ∗) , ξ∗ + tη∗〉 − 〈JF (ξ∗) , ξ∗〉
= t 〈JF (ξ∗) , η∗〉 . (9)

Setting ξ := JF (ξ∗), we obtain from (9), (8) and (7) that

0 ≤ ρF 0 (ξ∗ + tη∗)− ρF 0 (ξ∗)

t
− 〈ξ, η∗〉

≤ ‖JF (ξ∗)− ζ‖ ‖η∗‖ ≤ ε
∥∥F 0

∥∥
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whenever η∗ ∈ ∂F 0, ξ∗ ∈ U and 0 < t ≤ δ, and (iii) follows.

Finally, in order to prove the implication (iii) =⇒ (i) let us recall the Lindenstrauss
type formula (see [16, Proposition 4.2])

SF 0 (t, ξ∗, ξ) = sup
{
tr − C+

F (r, ξ, ξ∗) : r > 0
}
, (10)

where
C+
F (r, ξ, ξ∗) := inf {〈ξ − η, ξ∗〉 : η ∈ F , ρF (η − ξ) ≥ r}

is a slightly modificated rotundity modulus. Since for each r > 0

C+
F

(
r

‖F‖ , ξ, ξ
∗
)
≤ ĈF (r, ξ, ξ∗) ≤ C+

F

(
r
∥∥F 0

∥∥ , ξ, ξ∗
)
,

in definition of the uniform rotundity (6) the modulus ĈF (r, ξ, ξ∗) can be obviously
substituted by C+

F (r, ξ, ξ∗). Let us fix now r > 0 and by (iii) choose δ > 0 such
that

SF 0 (t, ξ∗, ξ)

t
≤ r

2

for all ξ∗ ∈ U , ξ ∈ JF (ξ∗) and 0 < t ≤ δ. Taking into account (10) we have

r − C+
F (r, ξ, ξ∗)

t
≤ r

2
,

or, equivalently,

C+
F (r, ξ, ξ∗) ≥ r

2
t,

which proves inequality (6).

From Proposition 2.1 it follows immediately that the uniform rotundity of the set
F ⊂ H w.r.t. U ⊂ ∂F 0 implies the uniform continuity of the Fréchet derivative
(or gradient) ∇ρF 0 (·) on U . If the latter property takes place then we say that F 0

is uniformly smooth on U . In the case when U is a neighbourhood of some point
ξ∗0 ∈ ∂F 0 the set F 0 is said to be also uniformly smooth at ξ∗0 . By duality the similar
definitions (of smoothness and uniform smoothness) can be certainly applied to the
set F itself.

For a dual pair (ξ, ξ∗) the (square) curvature of F at ξ w.r.t. ξ∗ is defined by

{F (ξ, ξ∗) :=
1

‖ξ∗‖ lim inf
(r,η,η∗)→(0+,ξ,ξ∗)
η∈JF (η∗), η∗∈∂F 0

ĈF (r, η, η∗)

r2
, (11)

and the set F is said to be strictly convex (rotund ) of second order (at the point
ξ ∈ ∂F ) w.r.t. the normal vector ξ∗ ∈ ∂F 0 if {F (ξ, ξ∗) > 0. Geometrically, the
curvature can be characterized through the so called curvature radius

R̂F (ξ, ξ∗) := ‖ξ∗‖ lim sup
(ε,η,η∗)→(0+,ξ,ξ∗)
η∈JF (η∗), η∗∈∂F 0

inf
{
r > 0 :

F ∩
(
η + εB

)
⊂ η − rη∗ + r ‖η∗‖B

}
. (12)
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Namely (see [16, Proposition 3.8]),

R̂F (ξ, ξ∗) =
1

2{F (ξ, ξ∗)
.

In the past similar concepts of curvature (but without passage to limits as (η, η∗)→
(ξ, ξ∗)) were studied for C1 manifolds embedded into a Banach space (see, e.g.,
[23, 6, 7] and the bibliography therein). For our objectives instead such passage
in formulas (11) and (12) is very important. In particular, it guarantees lower
semicontinuity of the curvature. Moreover, we put these notions into the general
duality settings of Convex Analysis (in an arbitrary Hilbert space). For instance,
Proposition 4.4 and inequalities (21) from [16] link the curvature (11) with the
second order derivative ∇2ρF 0 (·). So, we can consider {F (ξ, ξ∗) as a quantitative
characteristics of the polar set F 0 at the point ξ∗ as well.

However, in what follows a slightly bigger radius

RF (ξ, ξ∗) := ‖ξ∗‖ lim sup
(η,η∗)→(ξ,ξ∗)

η∈JF (η∗), η∗∈∂F 0

inf
{
r > 0 : F ⊂ η − rη∗ + r ‖η∗‖B

}
(13)

is more relevant. Since it depends not only on the local structure of the boundary
near ξ but also on the size of the set F , the numbers (13) and {F (ξ, ξ∗) := 1

2RF (ξ,ξ∗)

are sometimes called the scaled curvature radius and the scaled curvature, respec-
tively. Notice that RF (ξ, ξ∗) can not be too small unlike the "true" curvature radius

R̂F (ξ, ξ∗). Namely,
RF (ξ, ξ∗) ≥ ‖ξ∗‖ rF > 0, (14)

where rF is the Chebyshev radius of the convex set F .

Passing now to an arbitrary closed set C (target) observe that there are various
notions of normal cones to C, which can be given through the respective subdiffer-
entials of the indicator function IC (·), equal to zero on C and to +∞ elsewhere.
Since in what follows we deal also with various kinds of subdifferentials of the
time-minimum function, it is convenient to give here the general definitions.

For a lower semicontinuous function f : H → R ∪ {+∞} and x ∈ domf :=
{x ∈ H : f (x) < +∞} we define

• the proximal subdifferential ∂pf (x) as the set of all ζ ∈ H such that there exist
σ ≥ 0 and ε > 0 with

f (y) ≥ f (x) + 〈ζ, y − x〉 − σ ‖y − x‖2 ∀y, ‖y − x‖ ≤ ε;

• the Fréchet subdifferential

∂ff (x) :=

{
ζ ∈ H : lim

x 6=y→x
inf

f (y)− f (x)− 〈ζ, y − x〉
‖y − x‖ ≥ 0

}
; (15)

• the limiting (Mordukhovich) subdifferential

∂lf (x) :=
{
w- lim

n→∞
ζn : ζn ∈ ∂pf (xn) , xn → x, f (xn)→ f (x)

}
, (16)

where "w-limn→∞" means the weak limit.
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For the properties of the subdifferentials above and for the relationships between
them we refer to [10, 2, 18] and to the bibliography therein. Let us observe only
that ∂pf (x) is always convex (possibly empty), that ∂ff (x) is convex and closed
and that ∂lf (x) 6= ? whenever the function f (·) is Lipschitzean around x (see [18,
Corollary 2.25]). In the latter case one can introduce the Clarke subdifferential by
the formula

∂cf (x) :=

{
ζ ∈ H : lim

y→x, t→0+
sup

f (y + tv)− f (y)

t
≥ 〈ζ, v〉 ∀v ∈ H

}
.

It can be represented also as the closed convex hull of the limiting subdifferential
∂lf (x) (see [10, p. 88] and [18, p. 317]). Therefore, ∂cf (x) is a nonempty closed con-
vex bounded set and, consequently, a weakly compact set. Moreover, the mapping
x 7→ ∂cf (x) has s× w-closed graph, i.e., given sequences {xn} and {ζn} in H such
that xn → x and {ζn} converges to ζ weakly as n→∞, the relations ζn ∈ ∂cf (xn),
n = 1, 2, ..., imply that ζ ∈ ∂cf (x) (see [8, Proposition 2.1.5]). There are various
generalizations of the Clarke subdifferential to non (locally) Lipschitzean functions,
but in the sequel we use only the case f = IC and define its Clarke subdifferential
(called also the Clarke normal cone to C at the point x ∈ C) by

∂cIC (x) = Nc
C (x) := co Nl

C (x) ,

where "co" stands for the closed convex hull, and Nl
C (x) := ∂lIC (x) means the

limiting (Mordukhovich) normal cone. In finite dimensions the coneNl
C (x) is closed

but may be not convex, Nl
C (x) 6= {0} for all x ∈ ∂C, and the mapping x 7→ Nl

C (x)
has closed graph. However, the latter property fails in general for the Clarke cone
Nc

C (·) (see [22, Counterexample 2]) in contrast with the Clarke subdifferential of a
locally Lipschitzean function (see above). In an infinite dimensional Hilbert space
Nl

C (x) can be trivial and non closed for some x ∈ ∂C (see [18, p. 11]).

Given x ∈ C the proximal and Fréchet normal cones to C at the point x are defined,
respectively, by N

p
C (x) := ∂pIC (x) and by N

f
C (x) := ∂fIC (x), or, equivalently, by

N
p
C (x) :=

{
v ∈ H : ∃σ ≥ 0 such that 〈v, y − x〉 ≤ σ ‖y − x‖2 ∀y ∈ C

}

and by

N
f
C (x) :=

{
v ∈ H : lim sup

y→x, x 6=y∈C

〈
v,

y − x

‖y − x‖

〉
≤ 0

}
.

The following inclusions take place:

N
p
C (x) ⊆ N

f
C (x) ⊆ Nl

C (x) ⊆ Nc
C (x) . (17)

Analogously,
∂pf (x) ⊆ ∂ff (x) ⊆ ∂lf (x) ⊆ ∂cf (x) (18)

for each x ∈ domf . If the set C (the function f) is convex then all the cones (all
the subdifferentials) above coincide with the normal cone NC (x) (respectively, with
the subdifferential ∂f (x)) in the sense of Convex Analysis. On the other hand, if
at the point x some of the inclusions in (17) (in (18)) can be reversed then we are
led to various kinds of regularity of the set C (respectively, of the function f (·)) at
x. Namely, C is said to be
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• proximally regular at x if Np
C (x) = Nl

C (x);

• normally regular at x if Nf
C (x) = Nl

C (x);

• Fréchet regular at x if Np
C (x) = N

f
C (x);

• Clarke regular at x if Nf
C (x) = Nc

C (x).

The notions of proximal (Fréchet or Clarke) regularity of a function f : H →
R ∪ {+∞} at x ∈ domf are introduced by substituting in the definitions above
the normal cones by the respective subdifferentials. If ∂ff (x) = ∂lf (x) then the
function f (·) is said to be lower regular at the point x. A little asymmetry in
terminology suggests another name "upper regularity" in the case of functions,
which is reserved for the respective superdifferentials.

Notice that the proximal regularity is a very strong property. Simple examples in
R show that even a continuously differentiable function f (·) may be not proximally
regular in general (moreover, the subdifferential ∂pf (x) may be empty). However,
this does not occur if the derivative f ′ (·) (or the Fréchet gradient ∇f (·) in the case
of an arbitrary Hilbert space) is Lipschitz continuous near x. Following the tradition
we denote the class of functions satisfying the latter property for all x ∈ U (U ⊂ H
is an open set) by C1,1loc (U). Slightly extending this family we denote by C1,αloc (U) the
class of functions f (·) ∈ C1 (U), whose gradient ∇f (·) is Hölder continuous near
each x ∈ U with the exponent 0 < α ≤ 1, i.e., given x ∈ U there exist a constant
K = K (x) > 0 and ε > 0 such that

‖∇f (x1)−∇f (x2)‖ ≤ K ‖x1 − x2‖α

whenever ‖xi − x‖ ≤ ε, i = 1, 2. In what follows we distinguish the (global)
Lipschitzeanity or Hölderianity on some set U from the Lipschitz (respectively,
Hölder) continuity, which is always local property.

The closed set C ⊂ H is said to be ϕ-convex (or proximally smooth) if there exists
a continuous function ϕ : C → R+ such that

〈v, y − x〉 ≤ ϕ (x) ‖v‖ ‖y − x‖2

for all x, y ∈ C and v ∈ N
p
C (x). This is equivalent to a kind of external sphere

condition: for each x ∈ ∂C and v ∈ N
p
C (x), ‖v‖ = 1, there exists a sphere with

the center placed on x + vR+ and with locally uniform radius, which touches the
set C at the point x only. If this property takes place only in a neighbourhood of
x0 ∈ ∂C, or, in other words, there exist δ = δ (x0) > 0 and M = M (x0) ≥ 0 such
that

〈v, y − x〉 ≤M ‖v‖ ‖y − x‖2 (19)

for all x ∈ C, ‖x− x0‖ ≤ δ, v ∈ N
p
C (x) and all y ∈ C then we say that C is ϕ-

convex (proximally smooth) near x0 (on the δ-neighbourhood of this point). Notice
that each ϕ-convex set is regular at every x ∈ ∂C close to x0 in the sense of all the
definitions above, i.e., all the normal cones to C at x ∈ ∂C, ‖x− x0‖ ≤ δ, coincide.

We say that a closed set C ⊂ H has smooth (or C1) boundary at x0 ∈ ∂C if for each
x ∈ ∂C enough close to x0 there exists a unique normal vector nC (x) ∈ Nl

C (x)
with ‖nC (x)‖ = 1, which depends continuously on x. In what follows we use also
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a stronger property assuming, in addition, the Hölder continuity of nC (·) with an
exponent 0 < α ≤ 1. In this case we say that C has C1,α-boundary at x0. Observe
that each set with C1,1-boundary at x0 ∈ ∂C is ϕ-convex near this point. If, instead,
α < 1 then the set C may be even not proximally regular, and the proximal normal
cone N

p
C (x) may be trivial. However, it is well known (see [10, p. 49]) that the

"reduced" boundary
∂∗C := {x ∈ ∂C : Np

C (x) 6= {0}}
is always dense in ∂C.

We are ready now to introduce the basic (local) hypotheses for the pair of sets
(F,C), under which the regularity results are obtained. Notice that the first one
uses only the linear approximation of the sets (duality mapping and normal vectors),
while the second deals with their square characteristics (namely, with the internal
and external curvatures). Therefore, they can be named hypotheses of the first and
of the second order, respectively.

We say that (F,C) satisfies the condition (A) at a point x0 ∈ ∂C if there exists
δ = δ (x0) > 0 such that

(A1) the composed mapping x 7→ JF (−Np
C (x) ∩ ∂F 0) is single-valued and Lip-

schitzean on
Cδ (x0) := {x ∈ ∂∗C : ‖x− x0‖ ≤ δ} ;

(A2) the set F is uniformly rotund w.r.t.

Uδ (x0) :=
⋃

x∈Cδ(x0)

(
−Np

C (x) ∩ ∂F 0
)
. (20)

According to Proposition 2.1 in the place of the hypothesis (A2) one can require the
uniform continuity of the single-valued mapping JF (·) (or of the gradient ∇ρF 0 (·))
on a slightly larger set than Uδ (x0), which is sometimes easier to verify.

Alternatively, we say that (F,C) satisfies the condition (B) at x0 ∈ ∂C if for some
δ = δ (x0) > 0

(B1) the set C is ϕ-convex on Cδ (x0), i.e., there exists M ≥ 0 such that inequality
(19) holds for all x ∈ Cδ (x0), v ∈ N

p
C (x) and y ∈ C;

(B2) there exist δ′ = δ′ (x0) > 0 and K = K (x0) > 0 such that

{F (JF (ξ∗) , ξ∗) ≥ K

for all ξ∗ ∈ Uδ,δ′ (x0), where

Uδ,δ′ (x0) := ∂F 0 ∩
⋃

x∈Cδ(x0)�{x0}

[
−Np

C (x) ∩ ∂F 0 + δ′B
]
.

Some simplifications of the conditions (A2) and (B2) can be made in finite dimen-
sions. For instance, for validity of (A2) it is enough to assume only the strict
convexity of F w.r.t. each direction from the closure of Uδ (x0). Notice that the
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latter set is closed, e.g., when C is proximally regular near x0. Furthermore, (A2)
is reduced to the rotundity of F w.r.t. each ξ∗ ∈ ∂F 0 close to

ξ∗0 := − nC (x0)

ρF 0 (−nC (x0))
(21)

when C has smooth boundary at x0 (with the normal vector nC (·)).

Observe that due to the condition (B2) if N
p
C (x0) 6= {0} then the set F may be even

not strictly convex w.r.t. some vector v0 ∈ N
p
C (x0) (for instance, (B2) is trivially

fulfilled for the pair of sets (F,C),

F :=
{
(x1, x2) ∈ R2 : max (|x1| , |x2|) ≤ 1

}
;

C :=
{
(x1, x2) ∈ R2 : |x1|+ |x2| ≤ 1

}
,

at the point (0, 1) ∈ ∂C). On the other hand, in finite dimensions for validity of (B2)
it is enough to require that F is rotund of second order w.r.t. each ξ∗ ∈ Uδ (x0) (see
(20)). This follows from both lower semicontinuity of the curvature and compactness
of the set (20) (the latter is guaranteed by the hypothesis (B1)). If, moreover, C
has C1,1-boundary at x0 then (B1) holds automatically, while (B2) is reduced to the
condition {F (JF (ξ∗0) , ξ

∗
0) > 0 (see (21)).

For the convenience of the further references let us formulate here a local well-
posedness result (see [16]).

Theorem 2.2. Given x0 ∈ ∂C, assume that the pair of sets (F,C) satisfies the
condition (A) or (B) at the point x0. Then there exists an open neighbourhood
U (x0) of x0 such that for each x ∈ U (x0) the time-minimum projection πF

C (x) is a
singleton, and the mapping x 7→ πF

C (x) is continuous on U (x0).

Remark 2.3. Originally, the hypothesis (A2) in [16] required the uniform strict
convexity of F w.r.t. a neighbourhood of the set Uδ (x0) (denoted as Uδ,δ′ (x0)).
But applying Proposition 2.1 (more fine than Proposition 3.4 from [16]) such a
slightly stronger version of Theorem 6.1 [16] can be proved. The respective simple
modifications will be seen in the proof of Theorem 3.1 below.

Remark 2.4. In the case of the condition (A) a neighbourhood U (x0) can be
chosen as (see (50) in [16])

U (x0) :=

{
x ∈ H : ‖x− x0‖ <

δ

‖F‖ ‖F 0‖+ 1
, TF

C (x) <
1

L

}
, (22)

where L > 0 is the Lipschitz constant of x 7→ JF (−Np
C (x) ∩ ∂F 0) on Cδ (x0). If,

instead, (F,C) satisfies the condition (B) then we set (see (59) in [16])

U (x0) :=

{
x ∈ H : ‖x− x0‖ <

δ

‖F‖ ‖F 0‖+ 1
, TF

C (x) <
K

M

}
. (23)
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3. Hölder regularity of the time-minimum projection

We start from the case when the condition (A) holds.

Theorem 3.1. Let us fix a point x0 ∈ ∂C. Assume that the pair of sets (F,C) sat-
isfies the condition (A) at x0. Then the time-minimum projection πF

C (·) is Lipschitz
continuous on the neighbourhood (22).

Proof. In virtue of Theorem 2.2 the mapping x 7→ πF
C (x) is well defined, single-

valued and continuous on U (x0). We want to prove that it is in fact locally Lips-
chitzean on this neighbourhood, i.e., given x ∈ U (x0) there exist ε = ε (x) > 0 and
a constant L = L (x) > 0 such that

∥∥πF
C (z1)− πF

C (z2)
∥∥ ≤ L ‖z1 − z2‖ (24)

whenever zi ∈ U (x0), ‖zi − x‖ ≤ ε, i = 1, 2.

Let us choose τ > 0 and 0 < ε ≤ τ
2‖F 0‖ such that

1−
(
TF

C (x) + τ
)
L > 0 (25)

and (
‖F‖

∥∥F 0
∥∥+ 1

)
(‖x− x0‖+ ε) < δ. (26)

Given z1, z2 ∈ x+ εB for the sake of simplicity we denote by z̄i := πF
C (zi), i = 1, 2,

and by β := ‖z1 − z2‖ /2 assuming naturally that β > 0. Let us suppose first that
both points z1 and z2 are out of C. By using the condition (A2) and Proposition
2.1(ii) we find 0 < ν ≤ min {β, ε} such that

‖η − JF (u)‖ ≤ β (27)

for all η ∈ JF (η∗), η∗ ∈ ∂F 0, u ∈ Uδ (x0) with ‖η∗ − u‖ ≤ ν. Moreover, we assume
ν > 0 to be so small that

ν +
(
‖F‖

∥∥F 0
∥∥+ 1

)
(‖x− x0‖+ ε) < δ (28)

(see (26)) and that (
zi + νB

)
∩ C = ?, i = 1, 2. (29)

Since z̄i minimizes the functional Fi (y) := ρF (y − zi) + IC (y), y ∈ H, we have
0 ∈ ∂pFi (z̄i), and by using the fuzzy sum rule for the proximal subdifferentials
(see [10, p. 56]) we find z′i, z

′′
i ∈ z̄i + νB with z′i ∈ ∂C and vectors vi ∈ N

p
C (z′i),

ξ∗i ∈ ∂ρF (z′′i − zi) such that
‖vi + ξ∗i ‖ ≤ ν. (30)

Notice that z′i 6= zi by (29), and z′i ∈ ∂∗C by (30) taking into account that ξ∗i ∈
∂F 0. Moreover, multiplying vi if necessary by some positive number, we arrive at
−vi ∈ ∂F 0.

The Lipschitz continuity of TF
C (·) implies

TF
C (zi) ≤

∥∥F 0
∥∥ ‖zi − x0‖ ,
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and hence (see (28))

‖z′i − x0‖ ≤ ‖z′i − z̄i‖+ ‖F‖ ρF (z̄i − zi) + ‖zi − x0‖
≤ ν +

(
‖F‖

∥∥F 0
∥∥+ 1

)
(‖zi − x‖+ ‖x− x0‖) < δ,

i.e., z′i ∈ Cδ (x0).

It follows from Corollary 2.3 [14] that

ξ∗i ∈ ∂F 0 ∩NF

(
z′′i − zi

ρF (z′′i − zi)

)
,

and hence ξi :=
z′′i −zi

ρF (z′′i −zi)
∈ JF (ξ∗i ). Since −vi ∈ Uδ (x0), by (27) and (30) we obtain

‖ξi − JF (−vi)‖ ≤ β. (31)

Joining together the inequalities (31) for i = 1, 2 and taking into account the
hypothesis (A1), we have

‖ξ1 − ξ2‖ ≤ 2β + ‖JF (−v1)− JF (−v2)‖
≤ 2β + L ‖z′1 − z′2‖
≤ 2β + L (2ν + ‖z̄1 − z̄2‖) . (32)

On the other hand,

|ρF (z′′1 − z1)− ρF (z′′2 − z2)| ≤ 2
∥∥F 0

∥∥ ν +
∣∣TF

C (z1)− TF
C (z2)

∣∣

≤
∥∥F 0

∥∥ (2ν + ‖z1 − z2‖) , (33)

and by the choice of ε > 0

ρF (z′′i − zi) ≤
∥∥F 0

∥∥ ν + TF
C (zi)

≤
∥∥F 0

∥∥ ν + TF
C (x) +

∥∥F 0
∥∥ ‖x− zi‖ ≤ TF

C (x) + τ . (34)

Consequently, by using representation of ξi and estimates (34), (32) and (33) we
successively obtain

‖z̄1 − z̄2‖ ≤ ‖z̄1 − z′′1‖+ ‖z′′1 − z′′2‖+ ‖z̄2 − z′′2‖
≤ 2ν + ‖ξ1ρF (z′′1 − z1)− ξ2ρF (z′′2 − z2)‖+ ‖z1 − z2‖
≤ 2ν + ρF (z′′1 − z1) ‖ξ1 − ξ2‖

+ ‖ξ2‖ |ρF (z′′1 − z1)− ρF (z′′2 − z2)|+ ‖z1 − z2‖
≤ 2ν +

(
TF

C (x) + τ
)
(2β + L (2ν + ‖z̄1 − z̄2‖))

+ ‖F‖
∥∥F 0

∥∥ (2ν + ‖z1 − z2‖) + ‖z1 − z2‖ . (35)

Recalling definitions of β and ν we can rewrite inequality (35) in the form

(
1−

(
TF

C (x) + τ
)
L
)
‖z̄1 − z̄2‖ ≤ L ‖z1 − z2‖ ,
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where
L := 2

(
‖F‖

∥∥F 0
∥∥+ 1

)
+

(
TF

C (x) + τ
)
(1 + L) .

Thus, it follows from (25) that inequality (24) holds with the Lipschitz constant

L = L (x) :=
L

1− (TF
C (x) + τ)L

. (36)

Assuming now that one of the points zi (say z2) belongs to C, we immediately have

‖z̄1 − z̄2‖ = ‖z̄1 − z2‖ ≤ ‖z̄1 − z1‖+ ‖z1 − z2‖
≤ ‖F‖

∣∣TF
C (z1)−TF

C (z2)
∣∣+ ‖z1 − z2‖

≤
(
1 + ‖F‖

∥∥F 0
∥∥) ‖z1 − z2‖ , (37)

and (24) also follows.

Remark 3.2. If the condition (A) is fulfilled at each point x0 ∈ ∂C then πF
C (·)

is locally Lipschitzean on the open set A := C ∪ ⋃
x0∈∂CU (x0), and the Lipschitz

constant L (x) increases when x tends to the boundary ∂A. Moreover, L (x)→ +∞
if the radii δ (x0), x0 ∈ ∂C, are large enough (see (36)).

In the case when a balance between the curvatures takes place we have the following
weaker regularity result.

Theorem 3.3. Let us fix x0 ∈ ∂C. If the pair of sets (F,C) satisfies the condi-
tion (B) at x0 then πF

C (·) is Hölder continuous on the neighbourhood (23) with the
exponent 1/2.

Proof. Existence, uniqueness of the projection πF
C (x) for each x ∈ U (x0) and

continuity of the mapping x 7→ πF
C (x) on U (x0) follow also from Theorem 2.2.

Here U (x0) is the neighbourhood of x0 given by the formula (23). For a fixed
x ∈ U (x0) we should find ε = ε (x) > 0 and L = L (x) > 0 such that

∥∥πF
C (z1)− πF

C (z2)
∥∥ ≤ L ‖z1 − z2‖1/2 (38)

for all zi ∈ U (x0) with ‖zi − x‖ ≤ ε, i = 1, 2 (compare with (24)).

Let us choose τ > 0 such that

2ν :=
1

‖F‖
(
K −

(
TF

C (x) + τ
)
M

)
> 0 (39)

and set ε := τ
‖F 0‖ assuming also that

(
1 + ‖F‖

∥∥F 0
∥∥) (‖x− x0‖+ ε) < δ. (40)

Setting as earlier z̄i := πF
C (zi), i = 1, 2, by the latter inequality we have

‖z̄i − x0‖ ≤ ‖F‖TF
C (zi) + ‖zi − x0‖

≤
(
1 + ‖F‖

∥∥F 0
∥∥) (‖x− x0‖+ ‖zi − x‖) < δ, (41)
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i.e., z̄i ∈ Cδ (x0) if zi ∈ x+ εB (notice that z̄i ∈ ∂∗C due to the hypothesis (B1)).

In the case z1, z2 /∈ C we apply the necessary condition of minimum for the func-
tional Fi (y) := ρF (y − zi) + IC (y), y ∈ H, at z̄i in the limiting form: 0 ∈ ∂lFi (z̄i).
By the calculus of the limiting subdifferentials (see, e.g., [10, p. 62]) and by the
representation formula for ∂ρF (z̄i − zi) (see [14, Corollary 2.3]) we conclude that
the set

−Np
C (z̄i) ∩NF

(
z̄i − zi

ρF (z̄i − zi)

)
∩ ∂F 0, (42)

i = 1, 2, is nonempty. We use here also the fact that the limiting and proximal
normal cones to C at the point z̄i coincide (see (B1)). Let us denote by ξ∗i an
arbitrary element of the set (42), and assume that at least one of the points z̄i (say
z̄1) is different from x0. Then ξ∗1 ∈ Uδ,δ′ (x0) and {F (JF (ξ∗1) , ξ

∗
1) ≥ K due to the

hypothesis (B2).

Recalling the scaled curvature radius (see (13)) and setting

R :=
RF (JF (ξ∗1) , ξ

∗
1)

‖ξ∗1‖
=

1

2 ‖ξ∗1‖{F (JF (ξ∗1) , ξ
∗
1)
,

by the choice of ε > 0 and by the Lipschitz continuity of TF
C (·) we deduce from (39)

that
1

2R
− TF

C (z1)M ‖ξ∗1‖ ≥ ‖ξ∗1‖
(
K − TF

C (z1)M
)
≥ 2ν.

Let us choose ν ′ > 0 so small that

1

2 (R + ν ′)
− TF

C (z1)M ‖ξ∗1‖ ≥ ν. (43)

Taking into account that JF (ξ∗1) =
z̄1−z1

ρF (z̄1−z1) , by the formula (13) we have

F ⊂ z̄1 − z1
ρF (z̄1 − z1)

− (R + ν ′) ξ∗1 + (R + ν ′) ‖ξ∗1‖B.

From the latter inclusion it follows, in particular, that
∥∥∥∥

z̄1 − z1
ρF (z̄1 − z1)

− z̄2 − z2
ρF (z̄2 − z2)

− (R + ν ′) ξ∗1

∥∥∥∥ ≤ (R + ν ′) ‖ξ∗1‖ . (44)

Let us devide the reminder of the proof into two steps.

Step 1. Assume that ρF (z̄1 − z1) = ρF (z̄2 − z2) and denote their common value by
ρ. Then (44) gives

‖(z1 − z2)− (z̄1 − z̄2) + ρ (R + ν ′) ξ∗1‖ ≤ ρ (R + ν ′) ‖ξ∗1‖ ,

and after simple transformations we have

‖(z1 − z2)− (z̄1 − z̄2)‖2

≤ 2ρ (R + ν ′) 〈−ξ∗1 , (z1 − z2)− (z̄1 − z̄2)〉
≤ 2ρ (R + ν ′)

(
〈ξ∗1 , z2 − z1〉+M ‖ξ∗1‖ ‖z̄1 − z̄2‖2

)
. (45)
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Here we used the hypothesis (B1) and the inequality (19) recalling that −ξ∗1 ∈
N

p
C (z̄1). Combining (45) with

‖(z1 − z2)− (z̄1 − z̄2)‖2 ≥ ‖z̄1 − z̄2‖2 − 2 〈z1 − z2, z̄1 − z̄2〉 ,

we obtain

(1− 2ρ (R + ν ′)M ‖ξ∗1‖) ‖z̄1 − z̄2‖2

≤ 2ρ (R + ν ′) 〈ξ∗1 , z2 − z1〉+ 2 〈z1 − z2, z̄1 − z̄2〉 .

Hence, by (43) and (14),

ν ‖z̄1 − z̄2‖2 ≤ ρ 〈ξ∗1 , z2 − z1〉+
1

rF
‖z1 − z2‖ ‖z̄1 − z̄2‖ , (46)

where rF > 0 is the Chebyshev radius of the set F . Since ξ∗1 ∈ F 0, we deduce from
(46) that

‖z̄1 − z̄2‖
(
ν ‖z̄1 − z̄2‖ −

1

rF
‖z1 − z2‖

)
≤ ρ

∥∥F 0
∥∥ ‖z1 − z2‖ .

Therefore, one of the inequalities

‖z̄1 − z̄2‖ ≤
√
ρ ‖F 0‖ ‖z1 − z2‖1/2 (47)

or

ν ‖z̄1 − z̄2‖ ≤
√
ρ ‖F 0‖ ‖z1 − z2‖1/2 +

1

rF
‖z1 − z2‖ , (48)

clearly, takes place. Observing that ρ = TF
C (zi) ≤ ‖F 0‖ δ, ‖z1 − z2‖ ≤ δ (the latter

follows from (23) and from the obvious inequality ‖F‖ ‖F 0‖ ≥ 1), and that ν > 0
can be always chosen less than 1, we obtain from (47) and (48):

‖z̄1 − z̄2‖ ≤ L ‖z1 − z2‖1/2 , (49)

where

L = L (x) :=
√
δ · 1

ν

(∥∥F 0
∥∥+

1

rF

)
. (50)

Step 2. In the general case we slightly diminish ε by setting

ε′ := ε/
(
1 + 2 ‖F‖

∥∥F 0
∥∥) .

Then, given z1, z2 ∈
(
x+ ε′B

)
�C let us denote by ρi := ρF (z̄i − zi), i = 1, 2,

assuming without loss of generality that ρ1 < ρ2.

Choose now u ∈ ∂F with z̄2 = z2+ρ2u and set z′2 := z2+(ρ2 − ρ1)u. We obviously
have

TF
C (z′2) ≤ ρF (z̄2 − z′2) = ρF (ρ2u− (ρ2 − ρ1)u) = ρ1, (51)
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while, on the other hand,

ρF (y − z′2) ≥ ρF (y − z2)− (ρ2 − ρ1) (52)

for each y ∈ C. Passing to infimum in (52) and comparing with (51) we conclude
that TF

C (z′2) = ρ1 = TF
C (z1). Moreover, it follows from (51) that πF

C (z′2) = z̄2.
Observe also that

‖z′2 − x‖ ≤ ‖z2 − x‖+
∣∣TF

C (z1)− TF
C (z2)

∣∣ ‖F‖
≤

(
1 + 2 ‖F‖

∥∥F 0
∥∥) ε′ = ε

and ‖z1 − x‖ ≤ ε′ < ε. Thus, we can apply to the points z1 and z′2 the inequality
(49) obtained in the Step 1. Finally, for the original points we have

‖z̄1 − z̄2‖ ≤ L ‖z1 − z′2‖1/2 ≤ L (‖z1 − z2‖+ ‖z2 − z′2‖)1/2

≤ L
(
‖z1 − z2‖+

∣∣TF
C (z1)− TF

C (z2)
∣∣ ‖u‖

)1/2

≤ L
√
1 + ‖F‖ ‖F 0‖ ‖z1 − z2‖1/2 , (53)

and (38) is proved with L = L (x) := L
√

1 + ‖F‖ ‖F 0‖.
When one of the points zi, i = 1, 2, belongs to C, similarly as in the proof of
Theorem 3.1 even the Lipschitz inequality follows (see (37)).

Notice that the argument allowing us to reduce the general situation to the case
when both points z1 and z2 have the same minimal time value was proposed ealier
in [14, Theorem 5.7]. It essentially simplifies the respective estimates and will be
used more in the sequel.

Remark 3.4. The assertion similar to Remark 3.2 is valid under the hypothesis
(B) as well. In particular, if (B) holds for each x0 ∈ ∂C and the numbers δ (x0) > 0
are large enough then πF

C (·) is Hölder continuous on A := C ∪⋃
x0∈∂CU (x0) with

the exponent 1/2 and with the (local) Hölder constant L (x) tending to +∞ as x
approximates to ∂A (see (50) and (39)). On the other hand, L (x)→ 0 as x tends
to ∂C because it is proportional to

√
δ.

The next natural question is to impose some supplementary hypotheses, which
would permit to improve the regularity of πF

C (·). These hypotheses concern, obvi-
ously, the behaviour of the time-minimum projection outside the target because if
one of the points belongs to C then always the Lipschitz inequality (37) holds. We
deal also with the second order condition (B) because under the assumption (A)
the time-minimum projection is Lipschitz continuous in virtue of Theorem 3.1.

Theorem 3.5. Under the hypotheses of Theorem 3.3 let us suppose, in addition,
that the mapping

Φ : x 7→ −Np
C (x̄) ∩NF

(
x̄− x

ρF (x̄− x)

)
∩ ∂F 0 (54)
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is single-valued and satisfies the Hölder inequality with an exponent 0 < α ≤ 1
on U (x0)�C. Here as usual x̄ := πF

C (x), and the neighbourhood U (x0) is of the
form (23). Then πF

C (·) is Hölder continuous on U (x0) with the exponent 1+α
2
. In

particular, the Lipschitzeanity of the mapping Φ (·) implies the Lipschitz continuity
of the time-minimum projection on U (x0).

Proof. We start by proceeding as in the proof of Theorem 3.3. Namely, given
x ∈ U (x0) we find τ > 0 and ε > 0 satisfying (39) and (40), take arbitrary z1, z2 ∈(
x+ εB

)
�C with z̄1 6= x0 and denote by ξ∗i , i = 1, 2, the unique element of the set

(42). So, ξ∗i = Φ(zi). Considering first the simpler case when TF
C (z1) = TF

C (z2) = ρ,
we arrive at the inequality (46).

Let us assume also that z̄2 6= x0. Then by changing the places of the points z1 and
z2 the same reasoning as above gives:

ν ‖z̄1 − z̄2‖2 ≤ ρ 〈ξ∗2 , z1 − z2〉+
1

rF
‖z1 − z2‖ ‖z̄1 − z̄2‖ . (55)

After adding inequalities (46) and (55) we have

2ν ‖z̄1 − z̄2‖2 ≤ ρ 〈Φ (z2)− Φ (z1) , z1 − z2〉+
2

rF
‖z1 − z2‖ ‖z̄1 − z̄2‖

≤ ρh ‖z1 − z2‖1+α +
2

rF
‖z1 − z2‖ ‖z̄1 − z̄2‖ , (56)

where h > 0 is the Hölder constant of Φ (·) (in the ε-neighbourhood of x). In turn,
(56) written in the form

‖z̄1 − z̄2‖
(
2ν ‖z̄1 − z̄2‖ −

2

rF
‖z1 − z2‖

)
≤ ρh ‖z1 − z2‖1+α

splits into two inequalities:

‖z̄1 − z̄2‖ ≤
√
ρh ‖z1 − z2‖

1+α
2 (57)

and

2ν ‖z̄1 − z̄2‖ ≤
√

ρh ‖z1 − z2‖
1+α
2 +

2

rF
‖z1 − z2‖ . (58)

Since ρ ≤ ‖F 0‖ δ, ‖z1 − z2‖ ≤ δ (see the proof of Theorem 3.3) and one can always

assume that 2ν < 1 and h ≥ max
{
‖F 0‖ , 2

rF

}
, we deduce from the alternative

inequalities (57) and (58) that

‖z̄1 − z̄2‖ ≤ L ‖z1 − z2‖
1+α
2 ,

where

L = L (x) := δ
1−α
2

h

ν
. (59)
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If TF
C (z1) 6= TF

C (z2) then we proceed as in the Step 2 of the proof of the pre-
vious theorem, substituting the point with the larger minimum time value (say
z2) for another one z′2 whose projection πF

C (z′2) coincides with z̄2 = πF
C (z2) and

ρF (z̄2 − z′2) = ρF (z̄1 − z1). Thus, employing the Hölder inequality already proved
for the latter case we have

‖z̄1 − z̄2‖ ≤ L ‖z1 − z′2‖
1+α
2 ,

and similarly to (53) we conclude that

‖z̄1 − z̄2‖ ≤ L
(
1 + ‖F‖

∥∥F 0
∥∥) 1+α

2 ‖z1 − z2‖
1+α
2 .

Notice that the points z1 and z2 are supposed to belong to a smaller neighbourhood
x+ ε′B where ε′ := ε/ (1 + 2 ‖F‖ ‖F 0‖).
It remains to treat only the case when z̄2 = x0. To this end let us define zλ :=
λz1 + (1− λ) z2 and λ∗ := sup

{
λ ∈ [0, 1] : πF

C (zλ) = x0

}
. Since z̄1 = πF

C (z1) 6= x0

and the mapping z 7→ πF
C (·) is continuous on U (x0), we have λ

∗ < 1, πF
C (zλ∗) = x0

and πF
C

(
zλ∗+1/n

)
6= x0 for n = 1, 2, ... large enough. Applying the Hölder inequality

for these points we have

∥∥πF
C (z1)− πF

C

(
zλ∗+1/n

)∥∥ ≤ L
∥∥z1 − zλ∗+1/n

∥∥ 1+α
2 . (60)

Passing now to limit in (60) as n → ∞ and taking into account that πF
C (zλ∗) =

πF
C (z2) and that ‖z1 − zλ∗‖ ≤ ‖z1 − z2‖ we finish the proof.

Remark 3.6. The assertion of Remark 3.4 is applicable also under the hypotheses
of Theorem 3.5 (certainly, with the larger Hölder exponent 1+α

2
). Notice only that

the Hölder constant here is proportional to δ
1−α
2 (see (59)), and this dependence

vanishes in the case of Lipschitzeanity (α = 1).

Remark 3.7. Observe that proving Theorems 3.3 and 3.5 we used the condition
(B2) in a simpler form. Namely, we needed only that

{F (JF (ξ∗) , ξ∗) ≥ K (61)

for all ξ∗ ∈ Φ (x), where x ∈ U (x0)�C are such that πF
C (x) 6= x0. Nevertheless, in

order to have the time-minimum projection well defined on U (x0) we should require
validity of the inequality (61) on a larger set Uδ,δ′ (x0).

An essential disadvantage of Theorem 3.5 is that the time-minimum projection
πF
C (·) itself entries into the definition of Φ (·), and, therefore, the Hölder condition

for this mapping (w.r.t. x) is practically unverifiable. However, we can overcome this
difficulty by setting another type of hypotheses, which involve the Hölder regularity
of the sets C and F separately.

Theorem 3.8. Let us fix x0 ∈ ∂C and assume that (F,C) satisfies the condition
(B) at x0. Moreover, suppose that one of the following conditions holds:
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(i) the target set C has smooth boundary at the point x0, and the function nC (·),
which associates to each x ∈ Cδ (x0) the respective (unique) normal vector
nC (x) ∈ Nl

C (x) ∩ ∂B, satisfies the Hölder inequality on Cδ (x0) with an ex-
ponent 0 < α ≤ 1;

(ii) the set F is smooth at each ξ ∈ Fδ (x0), where

Fδ (x0) :=
⋃

x∈Cδ(x0)�{x0}
JF

(
−Np

C (x) ∩ ∂F 0
)
, (62)

and the unit normal vector nF (·) to F , nF (ξ) = ∇ρF (ξ)
‖∇ρF (ξ)‖ , satisfies the Hölder

inequality on the set Fδ (x0) with an exponent 0 < α ≤ 1.

Then the time-minimum projection πF
C (·) is Hölder continuous on the neighbourhood

U (x0) with the exponent 1
2−α . In particular, πF

C (·) is Lipschitz continuous on U (x0)
whenever either nC (·) or nF (·) is Lipschitzean on the respective set.

Proof. Given x ∈ U (x0) let us choose τ > 0 and 0 < ε < τ
‖F 0‖ such that inequalities

(39) and (40) hold. Taking arbitrary z1, z2 ∈
(
x+ εB

)
�C we consider only the

case when z̄i := πF
C (zi) 6= x0, i = 1, 2, and TF

C (z1) = TF
C (z2) = ρ, while the other

cases can be treated similarly as in the Step 2 of Theorem 3.3 and in the last part
of the proof of Theorem 3.5.

Assume that the regularity condition (i) is fulfilled. It was already shown (see (41))
that z̄i ∈ Cδ (x0), and due to ϕ-convexity of the set C (the condition (B1))

N
p
C (z̄i) ∩ ∂B = {nC (z̄i)} .

Consequently, the sets Φ (z1) and Φ (z2) (see (54)) are singletons, and

Φ (zi) = −
nC (z̄i)

ρF 0 (−nC (z̄i))
, (63)

i = 1, 2. Then, as follows from the first inequality in (56),

2ν ‖z̄1 − z̄2‖2 ≤ ρ ‖Φ (z2)− Φ (z1)‖ ‖z1 − z2‖+
2

rF
‖z1 − z2‖ ‖z̄1 − z̄2‖ . (64)

Denoting by h > 0 the Hölder constant of nC (·) and taking into account the in-
equalities 1

‖F 0‖ ≤ ρF 0 (−nC (z̄i)) ≤ ‖F‖ (see (4)), i = 1, 2, we obtain from (63)
that

‖Φ (z2)− Φ (z1)‖ ≤ 2µ ‖z̄1 − z̄2‖α ,
where µ := h ‖F‖ ‖F 0‖2, and write (64) in the form

‖z̄1 − z̄2‖1−α
(
ν ‖z̄1 − z̄2‖ −

1

rF
‖z1 − z2‖

)
≤ µρ ‖z1 − z2‖ . (65)

Representing the right-hand side of (65) as

[
µρ ‖z1 − z2‖

1

2−α

]1−α
· (µρ)α ‖z1 − z2‖

1

2−α ,
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we see that (65) splits into two alternative inequalities:

‖z̄1 − z̄2‖ ≤ µρ ‖z1 − z2‖
1

2−α

and

‖z̄1 − z̄2‖ ≤
(µρ)α

ν
‖z1 − z2‖

1

2−α +
1

rF
‖z1 − z2‖ .

Since ‖z1 − z2‖ ≤ δ, ρ := TF
C (zi) ≤ ‖F 0‖ δ as we observed earlier, and ν > 0 can

be chosen enough small, it follows that in any case

∥∥πF
C (z1)− πF

C (z2)
∥∥ ≤ L ‖z1 − z2‖

1

2−α ,

where

L = L (x) :=
1

ν

(
h ‖F‖

∥∥F 0
∥∥3

δ
)α

+
1

rF
δ

1−α
2−α .

Observe that here only the number ν depends on x becoming smaller whenever x
tends to a part of ∂U (x0) determinable by the condition TF

C (x) = K/M .

Let us prove now the statement of the theorem under the condition (ii).

First of all, due to the various characterizations of the duality mapping we have

NF (ξ) ∩ ∂F 0 = {∇ρF (ξ)} , ξ ∈ Fδ (x0) .

In particular, ρF 0 (nF (ξ)) = 1
‖∇ρF (ξ)‖ , and in the place of the Hölder condition for

nF (·) we can use the same property for the gradient ∇ρF (·) (with the exponent
0 < α ≤ 1 and with some Hölder constant h > 0).

At the beginning of the proof of Theorem 3.3 by using the necessary condition
of optimality it was shown that the sets (42), which are nothing else than Φ (zi),
i = 1, 2, are nonempty. Since z̄i ∈ Cδ (x0)� {x0}, we directly have that (the
singletons) JF (ξ∗i ) belong to Fδ (x0) (see (62)) for each ξ∗i ∈ Φ (zi), i = 1, 2. On the
other hand,

NF

(
z̄i − zi

ρF (z̄i − zi)

)
∩ ∂F 0 = J−1F

(
z̄i − zi

ρF (z̄i − zi)

)
(66)

= ∂ρF

(
z̄i − zi

ρF (z̄i − zi)

)
. (67)

From (66) it follows that

JF (ξ∗i ) =
z̄i − zi

ρF (z̄i − zi)
,

while equality (67) implies that

ξ∗i = ∇ρF

(
z̄i − zi

ρF (z̄i − zi)

)
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is the unique element of Φ (zi), i = 1, 2. Hence, by the Hölder condition for ∇ρF (·)
we have

‖Φ (z1)− Φ (z2)‖ ≤ h

∥∥∥∥
z̄1 − z1

ρF (z̄1 − z1)
− z̄2 − z2

ρF (z̄2 − z2)

∥∥∥∥
α

≤ hρ−α (‖z̄1 − z̄2‖α + ‖z1 − z2‖α) , (68)

where we use the numerical inequality (a+ b)α ≤ aα + bα valid for all a, b > 0 and
0 < α ≤ 1 (to see this it is enough to integrate the obvious inequality (t+ 1)α−1 ≤
tα−1 on the interval

[
0, a

b

]
). Combining (68) with (64), which takes place also in

this case, we obtain

‖z̄1 − z̄2‖α
[
2ν ‖z̄1 − z̄2‖2−α − µ ‖z1 − z2‖

− 2

rF
‖z1 − z2‖ ‖z̄1 − z̄2‖1−α

]
≤ µ ‖z1 − z2‖α+1 , (69)

where µ := ρ1−αh. Applying the same argument as in the first part of the proof we
obtain from (69) that either

‖z̄1 − z̄2‖ ≤ µ ‖z1 − z2‖ (70)

or

2ν ‖z̄1 − z̄2‖2−α ≤
(
µ+ µ1−α) ‖z1 − z2‖+

2

rF
‖z1 − z2‖ ‖z̄1 − z̄2‖1−α .

In turn, the second inequality can be rewritten as

2 ‖z̄1 − z̄2‖1−α
(
ν ‖z̄1 − z̄2‖ −

1

rF
‖z1 − z2‖

)

≤ µ1−α−β ‖z1 − z2‖
1−α
2−α · µβ (µα + 1) ‖z1 − z2‖

1

2−α

for an arbitrary fixed β with 0 < β < 1−α. So, one of the following two inequalities

‖z̄1 − z̄2‖ ≤ µ1− β
1−α ‖z1 − z2‖

1

2−α ; (71)

‖z̄1 − z̄2‖ ≤
1

2ν
µβ (µα + 1) ‖z1 − z2‖

1

2−α +
1

νrF
‖z1 − z2‖ (72)

holds. Comparing inequalities (70), (71) and (72) we conclude that

‖z̄1 − z̄2‖ ≤ L ‖z1 − z2‖
1

2−α (73)

with some constant L = L (x) whenever z1 and z2 are enough close to x. Since ν > 0
can be chosen as small as we want, recalling the value of µ and the inequalities
‖z1 − z2‖ ≤ δ, ρ ≤ ‖F 0‖ δ we see that the contribution of the right-hand side of
(72) into the Hölder inequality (73) is more essential, and the constant L is of the
order O

(
δ(1−α)β

)
that can be controlled by the suitable choice of β ∈ ]0, 1− α[.

Theorem is proved.
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Remark 3.9. In comparison with Theorem 3.5 assuming the Hölder condition ei-
ther on the set C or on F we lose a little regularity of the time-minimum projection
( 1
2−α < α+1

2
if 0 < α < 1). It is due to the fact that the mapping (54) is the

composition of the normal vectors to C (or to F ) and the projection πF
C (·) itself.

Although Theorem 3.8 is more appropriate for applications, Theorem 3.5 has a
certain theoretical meaning because it connects the regularity of the time-minimum
projection with the similar property of the (Fréchet) gradient of the value function
(remind that this connection is immediate in the case of distance). Indeed, if
we assume that TF

C (·) is Fréchet differentiable on U (x0) and the set Φ (x) is a
singleton for x ∈ U (x0) (see (54)) then Φ (x) = −∇TF

C (x) (see [14, Theorem
3.3]). Therefore, the Hölder condition for the gradient ∇TF

C (·) on U (x0) (with an
exponent 0 < α ≤ 1) implies the Hölder continuity of πF

C (·) with the exponent
α+1
2
≥ α. In particular, we have always the 1/2-Hölderianity (see Theorem 3.3),

while the time-minimum projection is Lipschitz continuous whenever the gradient of
TF

C (·) is Lipschitzean. In Section 5 we study the reverse question: which conditions
on πF

C (·) should we impose to have certain regularity of the value function (of its
gradient), while now let us complete the previous results with some special case
where the gauge F can be arbitrary.

4. The case of a locally convex target

Recall first a well-posedness result from [16, Proposition 7.7(i)]: if the target set C
has smooth boundary at the point x0, and it is strictly convex of second order near
x0, then the mapping πF

C (·) is single-valued and continuous in some neighbourhood
of x0.

Notice that due to the invariantness of the curvature w.r.t. translations (see [16,
Proposition 3.7]) the second order rotundity does not depend on the position of the
origin in the interior of the set, and, consequently, this property is applicable also in
the case when the origin is out of the interior (it is important only that the interior
is not empty). Then, we have the following regularity result, which is a mixture of
Theorems 3.3 and 3.8 under the (very strong) convexity hypothesis on C.

Theorem 4.1. Let us assume that for a fixed x0 ∈ ∂C the boundary of C is smooth
at x0, and there exists δ > 0 such that the set G := C∩

(
x0 + δB

)
with int G 6= ∅, is

strictly convex of second order at x0 (w.r.t. respective normal vector). Then πF
C (·)

is Hölder continuous with the exponent 1/2 on some neighbourhood U (x0) of x0. If,
moreover, we suppose that the unit normal vector nC (x) satisfies near x0 the Hölder
inequality with an exponent 0 < α ≤ 1 then the time-minimum projection πF

C (·) is
Hölder continuous on U (x0) with the exponent 1

2−α . In particular, Lipschitzeanity

of nC (·) implies the Lipschiz continuity of πF
C (·).

Proof. Without loss of generality (translating the set C if necessary) we can sup-
pose that 0 ∈ int G. Considering G and G0 as an usual dual pair of sets, we can
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apply to them all the notations and definitions from Section 2. In particular, setting

v (x) :=
nC (x)

ρG0 (nC (x))
(74)

for x ∈ ∂C, ‖x− x0‖ < δ, we observe that v (x) ∈ ∂G0 ∩NG (x) and JG (v (x)) =
{x}, and define ν := {G (x0, v0) > 0 where v0 := v (x0). By the formula (22) from
[16] there exist θ ≥ ν/2 and 0 < δ′ ≤ δ such that

ĈG (r, x, v) ≥ θr2 (75)

whenever ‖x− x0‖ ≤ δ′, ‖v − v0‖ ≤ δ′ with JG (v) = {x}, x ∈ ∂G0 and r > 0.
By using continuity of the mapping x 7→ nC (x) (consequently, of v (·)) we find
0 < ε ≤ δ′ so small that ‖v (x)− v0‖ ≤ δ′ whenever ‖x− x0‖ ≤ ε.

Let us set now U (x0) := x0 +
ε

2‖F 0‖‖F‖B and take arbitrary points z1, z2 ∈ U (x0).

Due to [16, Proposition 7.7(i)] there exist (unique) time-minimum projections z̄1 :=
πF
C (z1) and z̄2 := πF

C (z2), which belong to the boundary of G, and, moreover,
‖z̄i − x0‖ ≤ ε, i = 1, 2. Applying inequality (75) with the points z̄i and taking into
account (74) we obtain from definition (5):

ν

2
ρG0 (nC (z̄1)) ‖z̄1 − z̄2‖2 ≤ 〈z̄1 − z̄2, nC (z̄1)〉 (76)

and
ν

2
ρG0 (nC (z̄2)) ‖z̄1 − z̄2‖2 ≤ 〈z̄2 − z̄1, nC (z̄2)〉 . (77)

On the other hand, from the necessary condition of optimality applied to the func-
tion y 7→ ρF (y − zi) + IC (y) it follows that

0 ∈ ∂ρF (z̄i − zi) +N
p
C (z̄i)

(observe that N
p
C (z̄i) is the normal cone to the convex set G, i.e., the semiline

generated by the vector nC (z̄i)). Consequently, there exists λi > 0 with

−λinC (z̄i) ∈ ∂ρF (z̄i − zi) = NF

(
z̄i − zi
ρi

)
∩ ∂F 0 (78)

(in fact, λi =
1

ρ
F0 (−nC(z̄i))

) where ρi := TF
C (zi) = ρF (z̄i − zi), i = 1, 2.

In the remainder of the proof we consider only the case when ρ1 = ρ2 = ρ because
the general situation can be easily treated as in the proof of Theorem 3.3 (see Step
2). Then by the convexity of F it follows from (78) that

〈nC (z̄1) , (z̄2 − z2)− (z̄1 − z1)〉 ≥ 0 (79)

and
〈nC (z̄2) , (z̄1 − z1)− (z̄2 − z2)〉 ≥ 0. (80)

In particular, combining inequalities (79) and (76) we obtain that

ν

2
ρG0 (nC (z̄1)) ‖z̄1 − z̄2‖2 ≤ 〈nC (z̄1) , z1 − z2〉 ≤ ‖z1 − z2‖ .
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Hence, applying (4) we have

‖z̄1 − z̄2‖ ≤ L ‖z1 − z2‖1/2 , (81)

where L :=
[
2
ν
‖G0‖

]1/2
.

In order to prove the second part of theorem let us denote by h > 0 a Hölder
constant of nC (·) on ∂C ∩

(
x0 + δB

)
. So,

‖nC (z̄1)− nC (z̄2)‖ ≤ h ‖z̄1 − z̄2‖α . (82)

Now, adding (76) and (77) we have

ν ‖z̄1 − z̄2‖2 ≤
∥∥G0

∥∥ 〈z̄1 − z̄2, nC (z̄1)− nC (z̄2)〉 , (83)

while inequalities (79) and (80) imply that

〈nC (z̄1)− nC (z̄2) , z̄1 − z̄2〉 ≤ 〈nC (z̄1)− nC (z̄2) , z1 − z2〉 . (84)

Combining (83) with (84) and applying (82) we obtain:

ν ‖z̄1 − z̄2‖2 ≤
∥∥G0

∥∥ ‖nC (z̄1)− nC (z̄2)‖ ‖z1 − z2‖
≤ h

∥∥G0
∥∥ ‖z̄1 − z̄2‖α ‖z1 − z2‖ ,

or, after simple transformations,

‖z̄1 − z̄2‖ ≤ L′ ‖z1 − z2‖
1

2−α

where the Hölder constant L′ :=
[
h

ν
‖G0‖

] 1

2−α .

With minor modifications the latter proof can be adapted to the case when in place
of Hölder regularity of the normal vector to the target set one requires the same
property for the dynamics (in a neighbourhood of some given point).

Theorem 4.2. Let us fix x0 ∈ ∂C and assume that the following hypotheses hold:

(i) the boundary ∂C is smooth at x0 with the normal vector nC (·);
(ii) the set G := C ∩

(
x0 + δB

)
has nonempty interior and is strictly convex of

second order for some δ > 0;

(iii) the vector v0 := − nC(x0)
ρ
F0 (−nC(x0))

∈ ∂F 0 supports F at a unique point ξ0 ∈ ∂F

(in other words, ξ0 is a strongly exposed point of F w.r.t. v0);

(iv) the set F is smooth at ξ0, and its (unit) normal vector nF (·) satisfies the
Hölder inequality in a neighbourhood of this point with an exponent 0 < α ≤ 1.

Then πF
C (·) is Hölder continuous near x0 with the exponent 1

2−α .

Proof. Keeping all the notations from the proof of Theorem 4.1 and repeating its
steps let us indicate some changements, which should be made.



V. V. Goncharov, F. F. Pereira / Geometric Conditions for Regularity in ... 657

Similarly, as in the proof of Theorem 3.8(ii) we can use here the Hölder inequality
for the gradient ∇ρF (·) (in the place of nF (·)). Denote by h > 0 the respective
Hölder constant. So, for some δ′′ > 0 we have

‖∇ρF (ξ1)−∇ρF (ξ2)‖ ≤ h ‖ξ1 − ξ2‖α

whenever ξi ∈ ∂F , ‖ξi − ξ0‖ ≤ δ′′, i = 1, 2. Let us show that for a suitable choice of
ε > 0 each point z ∈ U (x0) := x0+

ε
2‖F 0‖‖F‖B has a (unique) projection z̄ := πF

C (z)

such that z̄−z
ρF (z̄−z) belongs to the δ′′-neighbourhood of ξ0. Existence of the unique

projection z̄ follows from [16, Proposition 7.7(i)], while the relation (78) (applied
to an arbitrary z ∈ U (x0) in the place of zi) means, in particular, that

z̄ − z

ρF (z̄ − z)
∈ JF (∇ρF (z̄ − z)) (85)

and that

∇ρF

(
z̄ − z

ρF (z̄ − z)

)
= ∇ρF (z̄ − z) = − nC (z̄)

ρF 0 (−nC (z̄))
. (86)

Since the duality mapping JF (·) is Hausdorff continuous at v0 (see [16, Proposition
3.3(ii)]), by (85) there exists ε′ > 0 such that

∥∥∥∥
z̄ − z

ρF (z̄ − z)
− ξ0

∥∥∥∥ ≤ δ′′

whenever ‖∇ρF (z̄ − z)− v0‖ ≤ ε′. On the other hand, the latter inequality is
equivalent to ∥∥∥∥

nC (z̄)

ρF 0 (−nC (z̄))
− nC (x0)

ρF 0 (−nC (x0))

∥∥∥∥ ≤ ε′ (87)

(see (86)), and surely there exists ε > 0 such that (87) holds for all z ∈ U (x0).

Taking now arbitrary z1, z2 ∈ U (x0), denoting by z̄i := πF
C (zi) and assuming as

earlier that ρi := TF
C (zi) = ρ, i = 1, 2, by the convexity of F we have (see (78) and

(86)):
〈
∇ρF

(
z̄1 − z1

ρ

)
−∇ρF

(
z̄2 − z2

ρ

)
, (z̄1 − z1)− (z̄2 − z2)

〉
≥ 0. (88)

Furthermore, multiplying the inequalities (76) and (77), respectively, by λ1 and λ2,
adding them and taking into account (78), we obtain that

ν

‖F‖ ‖G0‖ ‖z̄1 − z̄2‖2 ≤
〈
z̄2 − z̄1,∇ρF

(
z̄1 − z1

ρ

)
−∇ρF

(
z̄2 − z2

ρ

)〉
.

Hence, comparing with (88) and recalling (82),

ν

‖F‖ ‖G0‖ ‖z̄1 − z̄2‖2 ≤
∥∥∥∥∇ρF

(
z̄1 − z1

ρ

)
−∇ρF

(
z̄2 − z2

ρ

)∥∥∥∥ ‖z1 − z2‖

≤ hρ−α ‖(z̄1 − z̄2) + (z2 − z1)‖α ‖z1 − z2‖
≤ hρ−α (‖z̄1 − z̄2‖α + ‖z1 − z2‖α) ‖z1 − z2‖ .
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Representing the latter inequality in the form

‖z̄1 − z̄2‖α
[

ν

‖F‖ ‖G0‖ ‖z̄1 − z̄2‖2−α − hρ−α ‖z1 − z2‖
]
≤ hρ−α ‖z1 − z2‖α+1 ,

and using the same argument as in the previous theorems, we arrive at

ν

‖F‖ ‖G0‖ ‖z̄1 − z̄2‖2−α ≤ 2hρ−α ‖z1 − z2‖ ,

and everything is proved.

Remark 4.3. Notice that the Hölder constants of πF
C (·) found in Theorems 4.1

and 4.2 depend only on the point x0. So, we have in fact the global Hölderianity
of the time-minimum projection on U (x0). Furthermore, these constants grow up
whenever the curvature {G (x0, v0) becomes smaller.

5. Smoothness of the time-minimum function

At the beginning of this section we establish an auxiliary result showing that the
Clarke regularity (and, consequently, lower regularity) of the function TF

C (·) at a
point x /∈ C takes place under some enough strong hypothesis on the modulus of
continuity of the projection πF

C (·) (assuming, certainly, that πF
C (y) is a singleton

for y close to x). Observe that the Clarke regularity is necessary for existence of the
continuous (Fréchet) gradient ∇TF

C (x), and it is needed to prove the statements
below.

For x /∈ C and r > 0 we set

ω (x; r) := sup
{∥∥πF

C (y)− πF
C (x)

∥∥ : ‖y − x‖ ≤ r
}
.

Proposition 5.1. Let us fix x ∈ H�C and assume that the mapping z 7→ πF
C (z) is

well defined and single-valued in some neighbourhood U (x) of the point x. Suppose
also that

lim
r→0+

ω (x; r)√
r

= 0 (89)

and that the target set C is proximally regular at x̄ := πF
C (x). Then the function

TF
C (·) is Clarke (and lower) regular at x. Furthermore, the following equalities hold:

∂cTF
C (x) = ∂fTF

C (x) = −∂ρF (x̄− x) ∩N
p
C (x̄) . (90)

Proof. First of all, since the (unique) projection x̄ := πF
C (x) exists, by using [14,

Theorem 3.3] and the proximal regularity of C at x̄ we have

∂fTF
C (x) ⊂ −∂ρF (x̄− x) ∩N

p
C (x̄) . (91)

Let us prove the opposite inclusion. To this end we fix a vector ζ from the right-hand
side of (91) and a number σ = σ (x̄, ζ) > 0 such that

〈ζ, y − x̄〉 ≤ σ ‖y − x̄‖2 (92)
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whenever y ∈ C. On the other hand, by the definition of subdifferential of a convex
function

ρF (z) ≥ ρF (x̄− x) + 〈−ζ, z − x̄+ x〉 ∀z ∈ H. (93)

In particular, substituting z = ȳ − y, ȳ := πF
C (y), into (93) we have that

ρF (ȳ − y)− ρF (x̄− x)− 〈ζ, y − x〉 ≥ 〈−ζ, ȳ − x̄〉 (94)

for all y ∈ H enough close to x. Comparing (94) with (92) and passing to lim inf
as y → x we successively obtain

lim inf
x 6=y→x

TF
C (y)− TF

C (x)− 〈ζ, y − x〉
‖y − x‖

= lim inf
x 6=y→x

ρF (ȳ − y)− ρF (x̄− x)− 〈ζ, y − x〉
‖y − x‖

≥ lim inf
x 6=y→x

(
−σ

∥∥πF
C (y)− πF

C (x)
∥∥2

‖y − x‖

)

= − σ

[
lim sup
x 6=y→x

∥∥πF
C (y)− πF

C (x)
∥∥

√
‖y − x‖

]2

≥ −σ
[
lim sup
r→0+

ω (r)√
r

]2
.

Hence, by using the assumption (89) and the definition of Fréchet subgradients (see
(15)) we conclude that ζ ∈ ∂fTF

C (x). Thus, the equality

∂fTF
C (x) = −∂ρF (x̄− x) ∩N

p
C (x̄) (95)

is proved. It is enough to show now that

∂cTF
C (x) ⊂ ∂fTF

C (x) , (96)

because the opposite inclusion always holds (see (18)).

By the definition (16) due to the Lipschitz continuity of the function TF
C (·) each

vector ζ ∈ ∂lTF
C (x) can be represented as the weak limit w-limn→∞ ζn, where ζn ∈

∂pTF
C (xn), xn → x as n → ∞. Since for n = 1, 2, ... large enough the (unique)

projection x̄n := πF
C (xn) exists, applying again [14, Theorem 3.3] we have that ζn ∈

N
p
C (x̄n) and −ζn ∈ ∂ρF (x̄n − xn). From the first relation taking into account that

x̄n → x̄ we have ζ ∈ Nl
C (x̄), while from the second and from the s×w-closedness of

the graph of the subdifferential ∂ρF (·) it follows that −ζ ∈ ∂ρF (x̄− x). Therefore,
by the regularity of the set C the vector ζ belongs to −∂ρF (x̄− x) ∩N

f
C (x̄). The

latter set being convex and closed, we conclude that

∂cTF
C (x) = co ∂lTF

C (x) ⊂ −∂ρF (x̄− x) ∩N
f
C (x̄) ,

and the inclusion (96) follows immediately from (95).

If we suppose that the time-minimum projection πF
C (·) is Hölder continuous near x

with an exponent larger than 1/2 then the condition (89) will be fulfilled not only
at the point x itself but in its neighbourhood. Therefore, under the supplementary
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assumption of proximal regularity of C, equalities (90) also take place near x, and in
order to have smoothness of the time-minimum function it is enough to require that
the intersection in (90) is a continuous singleton. So, we have the first smoothness
result.

Theorem 5.2. Let x ∈ H�C be such that z 7→ πF
C (z) is single-valued and Hölder

continuous with an exponent 1/2 < β ≤ 1 on a neighbourhood U (x). Assume, more-
over, that the target set C is proximally regular at each point near x̄ := πF

C (x), and
that the mapping Φ : U (x)→ ∂F 0, Φ (y) := −∂ρF (ȳ − y)∩Np

C (y), is single-valued
and continuous. Then the function TF

C (·) is (Fréchet) continuously differentiable at
x, and ∇TF

C (x) = −Φ (x).

Remark 5.3. In a finite dimensional space the mapping Φ (·), obviously, admits a
closed graph. So, in Theorem 5.2 it is enough to require only that the sets Φ (y),
y ∈ U (x), are singletons.

Taking into account that the subdifferential ∂ρF (·) is represented through the nor-
mal cone to the (convex) set F , we can express the last assumption of Theorem 5.2
in terms of the smoothness properties of the involved sets and obtain nice formulas
for the gradient of the time-minimum function.

Corollary 5.4. Assume as in Theorem 5.2 that the time-minimum projection πF
C (·)

is single-valued and Hölder continuous with an exponent 1/2 < β ≤ 1 in a neigh-
bourhood U = U (x) of a point x ∈ H�C, and that the set C is proximally regular
near x̄ := πF

C (x). Then the value function TF
C (·) is (Fréchet) continuously differ-

entiable at x if at least one of the two following conditions holds:

(i) C has smooth boundary at x̄ with the unit normal vector nC (·);
(ii) F is smooth at ξ := x̄−x

ρF (x̄−x) .

Furthermore, in the first case we have

∇TF
C (x) =

nC (x̄)

ρF 0 (−nC (x̄))
, (97)

while in the second

∇TF
C (x) = −∇ρF

(
x̄− x

ρF (x̄− x)

)
. (98)

Proof. It is enough to observe that the set Φ (y) from Theorem 5.2 is contained

either in
{
− nC(ȳ)

ρ
F0 (−nC(ȳ))

}
or in

{
∇ρF

(
ȳ−y

ρF (ȳ−y)

)}
whenever, respectively, the condi-

tion (i) or the condition (ii) is fulfilled. On the other hand, Φ (y) 6= ? for y ∈ U (x)
due to equalities (90).

Combining the previous statement with the Hölder continuity we have

Corollary 5.5. Under the assumptions and notations of Corollary 5.4 suppose, in
addition, that the normal vector nC (·) (respectively, ∇ρF (·)) is Hölderian near x̄
(respectively, near ξ) with the exponent 0 < α ≤ 1. Then the value function TF

C (·)
is of class C1,αβloc (U).
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Proof. In the first case it is enough to observe that the gradient ∇TF
C (·) given by

the formula (97) is the composition of the normal vector nC (·) and the projection
πF
C (·). Therefore, taking into account the bounds of ρF 0 (−nC (·)), for all x1, x2 ∈

U (x) we can write

∥∥∇TF
C (x1)−∇TF

C (x2)
∥∥ ≤ 2hC ‖F‖

∥∥F 0
∥∥2

hα ‖x1 − x2‖αβ ,

where hC > 0 is the Hölder constant of nC (·) near x̄ and h > 0 is the Hölder
constant of πF

C (·) on U (x).

If, instead, F is smooth at ξ with the Hölderian gradient ∇ρF (·) then assuming

without loss of generality that U (x) ⊂ x+
TF
C(x)

2‖F 0‖B, taking x1, x2 ∈ U (x) and setting

ρi := ρF (x̄i − xi), ξi :=
x̄i−xi

ρi
, i = 1, 2, we obtain that

‖ξ1 − ξ2‖ =
1

ρ1ρ2
‖(x̄1 − x1) ρ2 − (x̄2 − x2) ρ1‖

≤ 1

ρ1ρ2
(‖x̄1 − x1‖ |ρ1 − ρ2|+ ρ1 ‖x̄1 − x̄2 + x2 − x1‖)

≤ 1

ρ2

(
‖F‖

∣∣TF
C (x1)− TF

C (x2)
∣∣+ ‖x1 − x2‖+

∥∥πF
C (x1)− πF

C (x2)
∥∥)

≤ 1

TF
C (x2)

[(
‖F‖

∥∥F 0
∥∥+ 1

)
‖x1 − x2‖+ h ‖x1 − x2‖β

]
(99)

and

TF
C (x2) ≥ TF

C (x)−
∥∥F 0

∥∥ ‖x− x2‖ ≥
1

2
TF

C (x) . (100)

Since the gradient ∇TF
C (·) in this case is given by formula (98), combining inequal-

ities (99), (100) and

∥∥∇TF
C (x1)−∇TF

C (x2)
∥∥ ≤ hF ‖ξ1 − ξ2‖α ,

where hF > 0 is the Hölder constant of ∇ρF (·), we find that

∥∥∇TF
C (x1)−∇TF

C (x2)
∥∥ ≤ h̄ ‖x1 − x2‖αβ

for some h̄ > 0 depending on the point x only.

The previous statements are proved under an a priori assumption that the time-
minimum projection πF

C (·) is enough regular (Hölder continuous with an exponent
β > 1/2) in a neighbourhood of a fixed point outside the target set. Let us return
now to the hypotheses (A) and (B), which, according to the results of Section 3,
guarantee such regularity in proximity of the target.

Observe that the hypothesis (A) gives automatically the Hölder continuity of πF
C (·)

with β = 1 (see Theorem 3.1), while (B) guarantees a priori the Hölder continuity
only with the exponent β = 1/2 (Theorem 3.3), which is not enough even for the
Clarke regularity of the value function. However, imposing a smoothness assump-
tion either on the target set or on the dynamics (Hölderianity of the respective
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normals with an arbitrary exponent α > 0) we improve the Hölder regularity of the
projection up to the exponent β = 1

2−α > 1
2
(Theorem 3.8) and can apply Corollary

5.5 to treat the smoothness of TF
C (·). Let us formulate the respective theorems.

Theorem 5.6. Let x0 ∈ ∂C. Suppose that

(a) the pair of sets (F,C) satisfies the condition (A) at the point x0;

(b) the target set C is proximally regular near x0;

(c) for each x /∈ C close to x0 one of the properties below is fulfilled:
(i) C has smooth boundary at x̄ := πF

C (x), and the unit normal nC (·) is
Hölderian near x̄ with an exponent α > 0;

(ii) F is smooth at ξ := x̄−x
ρF (x̄−x) , and ∇ρF (·) is Hölderian near ξ with an

exponent α > 0.

Then the value function TF
C (·) is of class C1,αloc on U (x0)�C where U (x0) is defined

by (22).

Theorem 5.7. Let x0 ∈ ∂C. Suppose that

(a) the pair of sets (F,C) satisfies the condition (B) at the point x0;

(b) for each x /∈ C enough close to x0 one of the properties (i) or (ii) from
Theorem 5.6 holds.

Then the time-minimum function TF
C (·) is of class C1,

α
2−α

loc on U (x0)�C where
U (x0) here is given by (23).

Remark 5.8. In accordance with Theorems 4.1 and 4.2 the condition (B) in the
previous statement can be substituted for the assumption that the set C∩

(
x0 + δB

)

(with nonempty interior) is strictly convex of second order, and the boundary ∂C
is smooth near x0 (F is assumed to be an arbitrary gauge here). Below we refer to
the latter property as to the condition (C) imposed on the pair (F,C) at the point
x0.

Remark 5.9. Observe more that the conditions (i) and (ii) of Theorem 5.6 are
formulated in terms of the time-minimum projection x̄ := πF

C (x), which a priori is
not assumed to be known. However, in the place of (i) we can require clearly the
Hölder regularity of ∂C near x0 ∈ ∂C (due to continuity of the projection), while
(ii) should be substituted for the condition (ii) of Theorem 3.8, i.e., for the Hölder
regularity of ∂F on the total image of a neighbourhood of x0 (eventually, without the
point x0 itself) under the mapping x 7→ JF (−Np

C (x) ∩ ∂F 0). The latter assertion
follows from the fact that x̄−x

ρF (x̄−x) ∈ JF (y) for some y ∈ −Np
C (x) ∩ ∂F 0 (this is a

direct consequence of the necessary condition of optimality applied to the function
y 7→ ρF (y − x) + IC (y)).

In conclusion let us formulate a global version of Theorems 5.6 and 5.7 assuming
that at each point x0 ∈ ∂C at least one of the conditions (A), (B) or (C) is fulfilled.
Since the results above give different exponents for the Hölder regularity of ∇TF

C (·)
we need to reduce them to the common one. Namely, fixed 0 < β ≤ 1 we determine
0 < α ≤ 1 from the condition β = α

2−α , i.e., α = 2β
β+1

. So, as an immediate
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Figure 6.1: Example 6.1

consequence of the two previous theorems (and of Remark 5.8 as well) we have

Theorem 5.10. Let us suppose that the pair of sets (F,C) satisfies at each point
x0 ∈ ∂C one of the conditions (A), (B) or (C), and that C is proximally regular.
Moreover, we assume that the hypothesis (c) of Theorem 5.6 is fulfilled with α = β
if the condition (A) holds, and with α = 2β

β+1
under the condition (B) or (C). Then

there exists an open set A ⊃ C such that the time-minimum function TF
C (·) is of

class C1,βloc (A�C).

6. Examples

For the sake of geometric vizualization we give here some simple examples in finite
dimensions (precisely, H = R2). Notice that the results obtained in the previous
sections are new also in this case.

Example 6.1. We set

F :=
{
(ξ1, ξ2) ∈ R2 : |ξ2| ≤ 1− ξ41 , − 1 ≤ ξ1 ≤ 1

}
;

C :=

{
(x1, x2) ∈ R2 : x1 ≤ min

(
x2
2,

(
x2 −

1

2

)2

+
1

2
,

(
x2 +

1

2

)2

+
1

2

)}
.

The same dynamics and a similar target set were considered already in [16] for the
scope to illustrate the well-posedness results. Let us supplement inferences made
there with the regularity properties of both the time-minimum projection and the
value function.

Here F is closed convex bounded with 0 ∈ intF , and the set C is closed and ϕ-convex
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with ϕ (·) given by

ϕ (x) = max





1√

1 + 4x2
2

,
1√

1 + (2x2 − 1)2




 , x = (x1, x2) ∈ C.

Furthermore, C has smooth boundary at each point except b± =
(

9
16
,±3

4

)
with the

(unit) normal vector

nC (x) =






1√
1+4x2

2

(1,−2x2) if |x2| < 3
4
;

1√
1+(2x2−1)2

(1,−2x2 + 1) if x2 >
3
4
;

1√
1+(2x2+1)2

(1,−2x2 − 1) if x2 < −3
4
,

(101)

while at the points b± we have

N
p
C

(
b±

)
=

{
λ1e

±
1 + λ2e

±
2 : λ1 ≥ 0, λ2 ≥ 0

}
,

where e±1 =
(
1,∓1

2

)
and e±2 =

(
1,∓3

2

)
(see Figure 1). Proceeding as in [16, Example

8.4] we conclude that the condition (B) holds at each point x0 = (x0
1, x

0
2) ∈ ∂C.

On the other hand, the gauge set F is smooth at every ξ = (ξ1, ξ2) ∈ ∂F� {(±1, 0)}
with the respective unit normal

nF (ξ) =
∇ρF (ξ)

‖∇ρF (ξ)‖ =
1√

16ξ61 + 1

(
4ξ31 , sgn ξ2

)
, (102)

which is, moreover, locally Lipschitzean on that domain. It is easy to see that given
x0 ∈ ∂C with |x0

2| > 1/8 there exists δ > 0 such that

⋃

x∈Cδ(x0)

JF

(
−Np

C (x) ∩ ∂F 0
)
⊂ ∂F� {(±1, 0)} . (103)

Indeed, choosing an arbitrary x ∈ ∂C close to x0 and assuming x2 > 0 (the other
case is symmetric) we consider three situations. In the first one 1/8 < x2 < 3/4,
and by direct calculations we obtain from (101) that

v (x) := − nC (x)

ρF 0 (−nC (x))
=

8x
1/3
2

3 + 16x
4/3
2

(−1, 2x2) .

Hence, for a (unique) ξ = (ξ1, ξ2) ∈ JF (v (x)) we have

ξ1 = −
1

2x
1/3
2

∈ ]−1, 0[ .

If instead x2 > 3/4 then similarly

v (x) =
3 + 44/3 (2x2 − 1)4/3

44/3 (2x2 − 1)1/3
(−1, 2x2 − 1) ,
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and comparing with (102) we find, in particular, that

ξ1 =
1

41/3 (1− 2x2)
1/3
∈

[
− 1

21/3
, 0

[
.

Finally, although at the points x = b± the boundary of C is not smooth, the image
JF (−Np

C (b±) ∩ ∂F 0) (the bold part of ∂F on Figure 1) is far from (±1, 0), and
(103) follows.

Thus the condition (ii) of Theorem 3.8 is fulfilled for each x0 ∈ ∂C, |x0| > 1/8,
with α = 1, and we can affirm that the time-minimum projection πF

C (·) is Lipschitz
continuous on a neighbourhood U (x0). Furthermore, from Theorem 5.7 (see the
hypothesis (ii) of Theorem 5.6) and from Remark 5.9 we can infer that the value
function TF

C (·) is of class C1,1loc on the open set U (x0)�C. Notice that in the case
x0 6= b± we can apply also either the condition (i) of Theorem 3.8 (because C has
smooth boundary near x0 with Lipschitzean normal vector nC (·) (see (101))) or
Theorem 3.1 (due to Lipschitz continuity of the composed function x 7→ JF (v (x))).

On the other hand, if |x0
2| ≤ 1/8 then to guarantee the Lipschitz continuity of πF

C (·)
we can use only the last two hypotheses (i.e., either the local regularity of ∂C or the
condition (A)), since in this case ξ0 := JF (v (x0)) = (−1, 0), and the smoothness
of ∂F at ξ0 fails. However, the condition (A) is not sufficient for the Lipschitz
continuity of the gradient ∇TF

C (·), and in accordance with Theorem 5.6 we should
anyway use the Lipschitzeanity of nC (·) near this point.
Thus, summarizing everything said above we conclude that the projection πF

C (·) is
Lipschitz continuous on some open set A ⊃ C, and that the time-minimum function
TF

C (·) is of class C1,1loc (A�C).

Example 6.2. Let

F :=
{
(ξ1, ξ2) ∈ R2 : ξ21 + (ξ2 − 1)2 ≤ 4, ξ2 ≤ 1

}
;

C :=
{
(x1, x2) ∈ R2 : x1 ≤ f (x2)

}
,

where the function f : R→ R is given by

f (t) =






− t
3
− 1

3
if t < −1;

−
√
1− t2 if − 1 ≤ t ≤

√
3
2
;

−1
2

if t >
√
3
2
.

Observe that F is closed convex bounded with 0 ∈ intF , and C is closed and
ϕ-convex with ϕ (x) ≡ 1/2. Furthermore, C has smooth boundary at each x =
(x1, x2) ∈ ∂C except (0,−1) and

(
−1/2,

√
3/2

)
with the unit normal vector

nC (x) =






−x if − 1 < x2 <
√
3
2
;

(1, 0) if x2 >
√
3
2
;

1√
10
(3, 1) if x2 < −1.
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x2

C

x̄

e1
e2

−1 0 x1

x′
e3

e4
e e3

F

−e4 0

−e3

Figure 6.2: Example 6.2

As concerns the dynamics F , resolving a simple mathematical programming prob-
lem we obtain that

ρF 0 (ξ∗) =






2 |ξ∗1 |+ ξ∗2 if ξ∗2 ≥ 0;

2
√

(ξ∗1)
2 + (ξ∗2)

2 + ξ∗2 if ξ∗2 < 0.

It is obvious that the (scaled) curvature {F (ξ, ξ∗) is equal to zero at each ξ = (ξ1, 1),
−2 < ξ1 < 2 (here ξ∗ = (0, 1) ∈ ∂F 0 is the unique normal to F at ξ), while
{F (ξ, ξ∗) = 1

4‖ξ∗‖ for each ξ∗ ∈ ∂F 0, ξ∗ = (ξ∗1 , ξ
∗
2), with ξ∗2 ≤ 0 and for the respective

(unique) ξ ∈ JF (ξ∗) (see (13)). When both ξ∗2 > 0 and ξ∗1 < 0 we have instead that
the (finite) scaled curvature {F (ξ, ξ∗) ≥ 1

4‖ξ∗‖ , while clearly {F (ξ, ξ∗) = +∞. In

this case ξ = (−2, 1).
Let us check now that the pair (F,C) verifies the condition (B) at each point
x0 = (x0

1, x
0
2) ∈ ∂C. To this end it is enough to estimate the scaled curvature of F

w.r.t. every vector associated to x = (x1, x2) ∈ ∂C. If −1 < x1 < −1/2 and x2 > 0

then the vector v (x) = − nC(x)
ρ
F0 (−nC(x))

supports the set F at the point (−2, 1) and as

observed above

{F ((−2, 1) , v (x)) ≥ 1

4 ‖v (x)‖ ≥
1

4 ‖F 0‖ . (104)

Similarly, if −1 ≤ x1 < 0 and x2 ≤ 0 then the vector v (x) supports F at a unique
point ξ belonging to the circumference, and, consequently,

{F (ξ, v (x)) =
1

4 ‖v (x)‖ ≥
1

4 ‖F 0‖ (105)



V. V. Goncharov, F. F. Pereira / Geometric Conditions for Regularity in ... 667

as well. It is easy to see that the same inequalities for the curvatures take place
if x belongs to the affine pieces of ∂C. Finally, for each ξ∗ ∈ −Np

C (x̄) ∩ ∂F 0 (see
Figure 2) we have JF (ξ∗) = {(−2, 1)} and {F ((−2, 1) , ξ∗) ≥ 1

4‖F 0‖ , while the image

JF (−Np
C (x′) ∩ ∂F 0) (the bold part of ∂F on Figure 2) is strictly contained in the

circumference. So, the estimates on the curvature hold also for the points x̄ and x′.

Thus the condition (B) is fulfilled at each x0 ∈ ∂C, and the projection πF
C (·) is

well defined on an open set A ⊃ C. Moreover, by (23) taking into account that
‖F 0‖ = 1 the estimates (104) and (105) imply that

A =
{
x ∈ R2 : 2TF

C (x) < 1
}
.

By Theorem 3.3 we have also that πF
C (·) is Hölder continuous on A with the expo-

nent 1/2. In order to improve the Hölder regularity of the projection as well as to
show the smoothness of the value function (if any) we should exploit the smoothness
either of the target set or of the dynamics. Since ∂C is smooth at each x0 6= x′, x̄,
and the normal vector nC (·) is Lipschitzean near x0, we apply first Theorem 3.8(i)
and then Corollary 5.5(i) to conclude that πF

C (·) is Lipschitz continuous near x0,
and the time-minimum function TF

C (·) is of class C1,1loc in a neighbourhood of that
point (out of C).

Considering the point x′ = (0,−1) we see that F is smooth at each ξ from

⋃

x∈Cδ(x′)

JF

(
−Np

C (x) ∩ ∂F 0
)

with some δ > 0, and the normal vector ∇ρF (ξ) / ‖∇ρF (ξ)‖ is Lipschitz continuous
on the latter set, which is little larger than the bold part on Figure 2. Therefore, the
Lipschitz continuity of πF

C (·) (of the gradient∇TF
C (·)) holds also in a neighbourhood

of x′ by Theorem 3.8(ii) (Corollary 5.5(ii), respectively).

Let us consider now the point x̄ =
(
−1/2,

√
3/2

)
. Since the cone −Np

C (x̄) being
contained inN

p
C (−2, 1) does not touch the vertical semiline R+e3, the condition (A)

is fulfilled at x̄ as well. In turn, this implies (see Theorem 3.1) that the projection
πF
C (·) is, in fact, Lipschitz continuous near x̄, and we can apply Proposition 5.1,

which states that the value function TF
C (·) is Clarke (and lower) regular at each

x /∈ C, close to x̄. On the other hand, taking the vector e = (−2, 1) we directly
see that πF

C (x̄− εe) = {x̄} for all ε > 0 small enough. Then for xε = x̄ − εe the
intersection

−Np
C (x̄) ∩NF

(
x̄− xε

ρF (x̄− xε)

)
∩ ∂F 0 (106)

is reduced to {λ1e1 + λ2e2 : λ1 ≤ 0, λ2 ≤ 0} ∩ ∂F 0, which is not a singleton. On
the other hand, due to formula (90) the set (106) is nothing else than −∂fTF

C (x).
So, we have no even Fréchet differentiability of the value function near the point
x̄. This justifies importance of the supplementary regularity hypothesis on F or C
(see Theorems 5.6 and 5.7) for differentiability of the value function.
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