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Abstract Mobile ad hoc networks are characterized by having nodes that are co-
operative and communicate without any kind of infrastructure. The mobility and
multihop capability of these networks leads the network topology to change rapidly
and unpredictably; this aspect must be incorporated in effective models to describe
the dynamics of multihop paths.
When modeling the duration of multihop paths, a great part of the literature assumes
that the links of multihop paths behave independently. This simplifies the modeling
and reduces the complexity of computations. However, each link shares a common
node with each of its neighbor links, turning the independent link assumption ge-
nerally not valid. In this paper, we use a piecewise deterministic Markov model that
characterizes the random behaviour of a multihop path not assuming independent
links. We obtain the mean path duration of multihop paths and compare the results
for the used model with the ones obtained by assuming independent links. Numer-
ical results illustrate that independent link approximation results underestimate the
mean path duration, with the most significant differences being observed with low
node mobility and higher path durations.

1 Introduction

The demand for wireless communications is experiencing a steady growth. In this
respect, the integration of Mobile Ad Hoc Networks (MANETs) multihop capa-
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bility into wireless networks is one of the most promising architectural upgrade to
envisage area coverage without significant additional infrastructure cost. The rapid
deployment and low configuration profile of MANETs make them suitable to be
used in emergency and military scenarios, as well in sensor networks and vehicular
networks, among others.

In MANETs the nodes can dynamically form a network in a self-organizing man-
ner without the need of an existing fixed infrastructure. Nodes are expected to act
cooperatively in order to route traffic and to allow the network to adapt to the highly
dynamic status of its links and node mobility patterns. In view of the limited trans-
mission range of nodes, when the source and destination nodes are at a distance
greater than the transmission range, the communication between them is made by
a multiple hop path, using the neighbor nodes to forward the traffic towards the
destination node.

Once a multihop path is active, the mobility of nodes causes the frequent failure
of the path and activation of a new link. Thus, node mobility affects the performance
of a MANET (cf, e.g., [7] and [2]). Therefore, the development of models integrat-
ing mobility and the connectivity demands of MANETs are essential to characterize
the reliability of these networks. The functionality of the network depends on the
reliability of communications paths and these are dependent on the stability of the
links along the multihop path and their dependence structure, with the state of the
links limited by power constraints and channel effects.

Few studies in the literature address the reliability of multihop paths, with an
exact analysis of this issue seeming to be limited to [1]. Moreover, most analytical
studies that focus on link stability extend the analysis for multihop paths assuming
that the links of a multihop path behave independently of each other (e.g., [4, 7, 8]).

One of the earliest analysis that includes mobility was done by McDonald and
Znati [7], who addressed link and path availability assuming independent links and
that nodes move according to a variation of the random walk mobility model. Xu et
al. [8] used a Markov chain mobility model to derive several path metrics assuming
that links behave independently. Han et al. [4] proved that when the link count is
large, the distribution of path duration converges to an exponential distribution. La
and Han [6] relaxed the independence assumption for the links in [4] requiring that
the dependence between links goes away asymptotically with increasing link count.
In addition, Bai et al. [2] investigated path durations under different mobility models
and routing protocols based on simulations.

An effective piecewise deterministic Markov model that describes the random
behaviour of a multihop path in a MANET is proposed in [1]. We will use this
model, which assumes that the links of a multihop path do not behave independently,
to compute the mean path duration and compare the results obtained from this model
with those obtained assuming that links behave independently.

The path is characterized through a Piecewise Deterministic Markov Processes
(PDMP, see [3]) where, for simplicity, the mobility of each node along the path
is given by the random walk mobility model. A PDMP is a Markov process that
follows deterministic trajectories between random jumps, which occur either spon-
taneously, in a Poisson-like fashion, or when the process hits the boundary of its
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state space. The usage of a PDMP to model a multihop path arises naturally, since
PDMPs are a mix of deterministic motion and random events, just like the multihop
path dynamics.

The mean path duration is obtained as the unique solution of a set of ordinary
differential equations (ODEs), that calculated by a recursive method allow to ob-
tain numerical solutions of the mean path duration. The numerical results obtained
for the mean path duration are compared with those obtained when assuming inde-
pendent links. We show that the independent links assumption can lead to a large
underestimation of the mean path duration, especially in scenarios where there is a
small number of links and a low node mobility, which originates larger mean path
durations.

The paper is organized as follows. Section 2 describes the multihop path model.
Section 3 presents a recursive method for the computation of the mean path duration.
Numerical results are presented in Section 4. Finally, Section 5 concludes the paper.

2 Multihop Path Model

We assume that a multihop path is set-up (or already active) at time 0 with N− 1
links and extends from node 1 along nodes 2,3, . . . , until it reaches terminal node
N. We consider a transmission range R equal for all nodes in the multihop path and,
given two consecutive nodes in the path, i−1 and i, with locations in the plane li−1

and li, respectively, they can communicate if ‖li−1− li‖< R.
Each node in the path moves across the plane independently of other nodes ac-

cording to a variation of the random walk mobility model. In this model it is as-
sumed that a node alternates between two phases: pause (0) and move (1). If at a
transition instant a node goes into phase i, the amount of time it stays in phase i is
drawn independently of the past according to a continuous distribution function Fi
with support on the set R+. We assume that the hazard rate function of Fi, denoted
by λi(t) = dFi(t)/(1−Fi(t)), is bounded on the positive reals.

Denote by p j the phase of node j and by m j its mobility vector if p j = 1 (i.e the
node is in the move phase). When the phase of node j changes to move, the node
picks a mobility vector according to a distribution function FM on an open set SM .
Choosing a mobility vector m corresponds to choosing independently a direction
θ and a velocity v through m = (vcosθ ,vsinθ). The node travels from the current
location in the direction and with the velocity drawn for the mobility vector during
the entire phase duration, with distribution F1. Once this time expires, independently
of the past, the node pauses for a random time period with distribution F0 before
starting to move again.

To obtain the duration of a link between two nodes, we need to define the relative
location and relative mobility vector of node i with respect to node i− 1, which
are given, respectively, by li

r = li− li−1 and mi
r = mi−mi−1, where mi (resp. mi−1)

is omitted in the expression if pi = 0 (resp. pi−1 = 0), and if both nodes are in
pause phases mi

r = 0 with 0 = (0,0). Then, the duration of the link i, is given by
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dlink(li
r,m

i
r) = Z(li

r,m
i
r)/‖mi

r‖, for mi
r 6= 0, where Z(li

r,m
i
r) denotes the distance that

node i needs to travel to move out of the range of node i−1.
The multihop path model is characterized by a vector of phase states governed

by an alternating Markov renewal process, and by a vector of phase attributes. The
phase states describe the state of each relay node (moving or paused) while the
phase attributes describe the sojourn time in the current state, the relative location
between two consecutive nodes and its movement characteristics: its velocity and
direction. Thus, we obtain a process X = (P,A) with P = (Pi)1≤i≤N where Pi is
the phase process of node i, and A = (E,M,Lr) denotes the joint attribute process,
where: E = (E i)1≤i≤N denotes the elapsed time since the previous phase transition
of node i, M = (Mi)1≤i≤N denotes the mobility vector of node i, if node i is in move
phase, and is omitted if node i is in pause phase, and Lr = (Li

r)2≤i≤N denotes the
relative location process of node i with respect to node i− 1. From the definition
of X, a state will be denoted by x = (p,a) where a = (e,m, lr) with the vector
p = (p1, . . . , pN) containing the phases of nodes, e = (e1, . . . ,eN) the elapsed times
of the nodes in their current phases, m=(m1, . . . ,mN) including the mobility vectors
of the nodes, having dimension N when all p j = 1 and with m j omitted if p j =
0, and lr = (l2

r , . . . , l
N
r ) the relative locations of nodes 2,3, . . . ,N relative to nodes

1,2, . . . ,N−1, respectively.
When the process departs from a state x, the flow of the process describes the

deterministic trajectory of X until the next jump, and is characterized by φ(t,x) =
(p,φp(t,a)) with

φp(t,a) = (e+ t1,m, lr + tmr), t ∈ R

representing the evolution of the component a over time, where 1 denotes a vector
of 1′s with dimension N and the vector mr = (m2

r , . . . ,m
N
r ) contains the relative

mobility vectors of nodes 2,3, . . . ,N relative to nodes 1,2, . . . ,N−1, respectively.
For a given phase vector p, denote the set

Sp =]0,∞[N×SM
∑ pi ×SL

N−1

where SL = {x ∈ R2 : ‖x‖ < R}, as the set of the possible values of the attribute
process A, that is, the set where all the links of the multihop path are active. Let
∂Sp denote the boundary of the set Sp, ∂−Sp denote the disjoint union of the set
of boundary points that take the process into Sp, and B denote the set of boundary
points at which the multihop path process exits from Sp. When the process hits a
state in the boundary B, which represents the set of states through which the mul-
tihop path disconnects, it means that the path breaks and X jumps to an absorbing
state which is denote by ∆ . The state space of the joint process X is denoted by

S∆
X = SX∪{∆},

where the set SX denotes the disjoint union of the sets S−p = Sp∪∂−Sp.
For x ∈ SX, define dpath(x) as the path duration constrained to no phase tran-

sitions of the nodes when departing from state x (in another words, if the mobile
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nodes maintain their states, is the time to hit a state in B, the set of states at which
the multihop path is disconnected). This time is equal to infinity if all nodes are in
pause phase or all nodes have the same mobility vector.

The function λ : S∆
X → R+

0 is a measurable function that characterizes the jump
rate (or transition rate) from each state of the process. For x ∈ SX the jump rate
depends only on the phase and the time since the last phase transition of each node,
and is given by the sum of the hazard rate functions λi(t) = dFi(t)/(1−Fi(t)) of the
phase duration distributions Fi, λ (x) = ∑

n
i=1 λpi(ei). Since λ (x) denotes the rate at

which the process will leave from a given state x, and we are considering that the
state ∆ (the state of the process when at least one of the links is disconnected) is an
absorbing state, λ (∆) = 0.

The evolution of X starting from state x ∈ SX can be constructed as follows. The
survival function of the first jump time T1 is defined by

Gx(t) =
{

exp
(
−
∫ t

0 λ (φ(s,x))ds
)

t < dpath(x)
0 t ≥ dpath(x)

(1)

and the state at an instant of time before the first jump is given by the deterministic
evolution of the process,

X(t) = φ(t,x), t < T1.

If T1 = dpath(x) the path breaks since the process hits a state in B and the next
state X(T1) is ∆ with probability 1; the process then stays in ∆ forever since the
jump rate out of ∆ is zero. Otherwise, T1 < dpath(x), which means that one of the
nodes in the path changes phase and the next state of the multihop process X(T1)
has distribution Q(φ(T1,x), ·), next defined. The function Q : (SX∪B)×E → [0,1],
is the transition measure where E denotes the event space of SX, and is such that for
x ∈ SX, Q(x, ·) is a probability measure defined by

Q(x,{x( j)}) = λp j(e j)/λ (x); p j = 1
Q(x,dx( j)) = λp j(e j)/λ (x)FM(dm); p j = 0

(2)

where the new state of the process, x( j), is next defined, and for x ∈ B we have
Q(x,{∆}) = 1. The interpretation of P and A makes it clear that from any x =
(p,a) ∈ SX it is only possible to jump to a state where a node changes its phase
characteristics (phase, elapsed time in the phase, and mobility vector) and all the
other values of the components remain the same. Thus, when p j = 1, x( j) coincides
with x except for the fact that the phase of node j is a pause phase, p j = 0, and the
corresponding elapsed time in the phase is null, e j = 0 (and its mobility vector will
be omitted). Conversely, when p j = 0, the new state of the process, x( j), coincides
with x except on the part concerning to node j whose phase becomes a move phase,
p j = 1, the corresponding elapsed time in the phase is null, e j = 0, and the mobility
vector is m. When the new state of the process is chosen, the process restarts from
X(T1) in a similar way. For a detailed description of the multihop path model, please
see [1].



6 Gonçalo Jacinto, Nelson Antunes and António Pacheco

3 Mean path duration

Given the state of the multihop path process x ∈ S∆
X, the mean path duration is de-

noted by

D(x) = Ex

(∫
∞

0
ISX(X(s))ds

)
(3)

where IA is the indicator function of a set A. Note that since ISX(X(s)) denotes the
indicator function that the process X belonging to a state where all the links of the
multihop path are connected, the integral in (3) denotes the amount of time that
the process X remains connected, when departing from a state where all links are
connected. Thus, the expected value, D(x), is in fact the mean path duration of the
multihop path process.

In [1] it is proved that the mean path duration written as the expectation of a
functional of the multihop path process is the unique solution of a system of integro-
differential equations. However, any direct method to solve them is quite problem-
atic and depends very much on the specific characterization of the multihop path
process (number of nodes, deterministic motion, jump rate, transition measure). To
provide a way to calculate numerically D(x) a recursive scheme is proposed for a
feasible computation of the mean path duration.

Let D0 be a function such that D0(x) = 0 for all x ∈ S∆
X and let O be an operator

mapping the set of bounded measurable functions on S∆
X ∪B into itself. The action

of the operator O on D0 originates the function D1 ≡ OD0 defined by

D1(x) = Ex

(∫ T1

0
ISX(X(s))ds+D0(X(T1))

)
, x ∈ S∆

X.

Iterating k(≥ 1) times the operator O on D0 results into the function Dk ≡ OkD0

given by

Dk(x) = ODk−1(x) = Ex

(∫ T1

0
ISX(X(s))ds+Dk−1(X(T1))

)
for x ∈ S∆

X.
The equation above signifies that, if the state of the process after k− 1 phase

transitions is known, the state of the process after k phase transitions is just given by
the evolution of the process until the next phase change. The metric Dk(x) denotes
the mean path duration constrained to at most k jumps of the multihop process X,
when departing from state x. As the number of jumps increases, in the limit, the
mean path duration D(x) defined by (3), is obtained

lim
k→∞

Dk(x) = D(x). (4)

Let f : S∆
X ∪B→ R+ be a bounded measurable function and for x ∈ B define

f (x)≡ limt↓0 f (φ(−t,x)). Denote the expected value of X just after a jump from x
by
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Q f (x) =
∫

S∆
X

f (y)Q(x,dy),

where for x ∈ B, Q f (x) = f (∆).
For x ∈ SX, the state of X after a short time t is, roughly, φ(t,x) with probability

1−λ (x)t + o(t), while with probability λ (x)t + o(t) the process jumps to another
state X(t) with transition measure Q and all other events have probability o(t). Thus,
we have

Ex( f (X(t))) = (1−λ (x)t) f (φ(t,x))+λ (x)tQ f (φ(t,x))+o(t), (5)
so that

1
t
Ex( f (X(t))−f (x))=

1
t
( f (φ(t,x))−f (x))+λ (x)(Q f (φ(t,x))− f (φ(t,x)))+o(1). (6)

Denote by A f (x) the derivative of equation (5) where, in order to define the deriva-
tive of f with respect to the flow φ(t,x) in a rigorous way, we need to define its
phase function fp : S−p → R+ by fp(a) = f (x). Therefore, as t → 0 in equation (6)
we obtain

A f (x) = V f (x)+λ (x)(Q f (x)− f (x)),

for x ∈ SX, where to simplify the notation we write V f (x) instead of the more
accurate Vp fp(a). Also any reference to a function t → f (φ(t,x)) should be read
as t → fp(φp(t,a)). The function Vp is the vector field and φp(t,a) is the unique
integral curve of Vp such that for almost all t,

d
dt

fp(φp(t,a)) = Vp fp(φp(t,a)), φp(0,a) = a

is satisfied, since the function t → fp(φp(t,a)) is differentiable almost everywhere
on [0,dpath(x)[.

The next result follows from theorems 32.2 and 32.10 of Davis [3] conveniently
applied to the expectation functional Dk of the PDMP X with finite time horizon
and taking into account the specific boundary conditions.

Proposition 1. Suppose that the function Dk−1 is given. For each x ∈ SX, t →
Dk(φ(t,x)) is an absolutely continuous function on [0,d(x)[ and Dk is the unique
bounded solution of the equations

V f (x)+λ (x)
(
QDk−1(x)− f (x)

)
=−1, x ∈ SX, (7)

and at a boundary state x ∈ B, f (x) = f (∆) = 0.

Note that in equation (7) the operator Q acts only on the given function Dk−1, so
that the respective equations are ODEs. Combining this result with (4) provides a
recursive way for computing the mean path duration D. For a complete proof of the
results presented in this Section, please see [5].
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Computing Dk requires only to solve first order ordinary differential equations.
The results of these calculations are then used to compute the next iteration k+ 1.
Since they are independent ODEs they can be computed using parallel computation.
The convergence of the solution depends on how large k has to be before Dk is close
to D. Any direct implementation of these equations requires a discretization of the
state space and solving at each grid point an independent ODE, providing the data
for calculating the next iteration. It is unrealistic to hope that numerical solutions
are possible for a medium size number of links in a single workstation due to the
great number of computer processing cycles and the need of storing large amounts
of data. However, it is possible to solve the equations in a single workstation in the
case of one or two links and in one dimensional ad hoc networks.

4 Numerical Results

In this section we illustrate an application of the preceding results and study the
effect of the independence link assumption. The scenario proposed intends to model
a scenario where nodes move with relatively low velocities and pause times. We
consider that the phase durations are exponentially distributed with means of 30 s
and 60 s in move and pause phase, respectively. The transmission range of a node
is set up to 250 m. The mobility vector is obtained choosing a velocity (m/s) and
direction of nodes uniformly distributed in ]1,20[ and ]0,2π[, respectively. For a
multihop path with N nodes, initially each node i (2 ≤ i ≤ N) is deployed inside
node i− 1’s radio coverage with an angle uniformly distributed in ]0,2π[ and with
a distance following a triangular distribution in the interval (0,250) with mode 62.5.
The initial phase of a node is picked randomly with probabilities proportional to the
mean time spent in the phase.

Figure 1 shows the results of the mean path duration after each iteration for dif-
ferent link count. The departure states of the multihop path were sampled according
to the initial distribution and their respective mean path durations were estimated
in each iteration using Monte Carlo methods (in a single workstation). The results
were averaged out in the final of each iteration. The difference between iterations
gets smaller as the number of links increases since it gets more likely that a path
failure occurs after a small number of phase transitions. However, all curves have
converged before iteration 25.

In Figure 2 we investigate the impact of neglecting the dependency between links
in the mean path duration and study the impact of the mean time in pause phase on
the mean path duration. Numerical routines were developed for independent links.
We conclude that the mean path duration increases with the increase of the mean
time in pause phase, and the independent link assumption leads always to an un-
derestimation of the mean path duration. The observed percentage errors from as-
suming independent links were always higher than 3.5% and achieved values higher
than 25%. The results are rather sensitive to the mean time in pause phase and get-
ting an estimate for the mean path duration using the link independence assumption
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Fig. 1 Mean path duration after each iteration.
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Fig. 2 Error (%) between mean path duration using dependent and independent links vs mean time
in pause phase.

may in fact lead to a large bias when the inactive time of a node is large. Smaller
values of the percentage errors occur with paths with a higher number of hops and
in scenarios where mobile nodes have higher mobility (no pause phase).

Figure 3 shows the impact of the mean time in move phase on the mean path
duration. We conclude that with the increase of the mean time in move phase, the
mean path duration decreases and also the percentage error arising from assuming
independent links. We can again observe that higher percentage errors occur in sce-
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Fig. 3 Error (%) between mean path duration using dependent and independent links vs mean time
in move phase.

narios where nodes have low mobility (inclusion of pause phases) and in multihop
paths with a small number of hops.

In Figure 4 we observe the impact of the mobile nodes velocity on the mean path
duration. We conclude that with the increase of the mean node velocity, leading to a
decrease of the mean path duration, the percentage error by assuming independent
links increases, so higher node velocity associated with low node mobility (long
pause phases) increases the underestimation error of mean path durations when the
independent links assumption is used.

5 Conclusion

This paper uses an analytical framework to characterize the random behaviour of a
multihop path under a PDMP that allows to describe the mean path duration through
a set of ordinary differential equations and a recursive scheme for its computation.
The results obtained using this model were compared with the corresponding results
obtained assuming that links behave independently. We concluded that in scenarios
with a small number of links, high velocities, and low node mobility (inclusion of
long pause phases) the independent links assumption can lead to large underestima-
tion of the mean path duration. In these scenarios, the percentage error can achieve
values higher than 25%. In the best case scenario, that is, with no pause phases, low
velocities and high number of links, the observed percentage errors were always
higher than 3.0%. These results can be used to improve the performance of routing
algorithms in MANETs.
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thesis, Instituto Superior Técnico, Technical University of Lisbon, Lisbon, Portugal.
6. La RJ and Han Y (2007) Distribution of path durations in mobile ad hoc networks and path

selection. IEEE/ACM Trans. Netw. 15(5):993–1006.
7. McDonald AB and Znati T (1999) A path availability model for wireless ad-hoc networks.

Proc. IEEE Wirel. Commun. Netw. Conf. 1:35–40, Orleans, LA, USA.
8. Xu S, Blackmore KL, and Jones HM (2007) An analysis framework for mobility metrics in

mobile ad hoc networks. EURASIP J. Wirel. Commun. and Network. 1(16):26–26.


