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We consider a genus 2 surface, M, of constant negative curvature and we construct a 12-
sided fundamental domain, where the sides are segments of the lifts of closed geodesics on M
(which determines the Fenchel-Nielsen-Maskit coordinates). Then we study the linear fractional
transformations of the side pairing of the fundamental domain. This construction gives rise to
24 distinct points on the boundary of the hyperbolic covering space. Their itineraries determine
Markov partitions that we use to study the dependence of the Lyapunov exponent and length
spectrum of the closed geodesics with the Fenchel-Nielsen coordinates.

1. Introduction

The metric and geometric structure on surfaces can
be studied by the closed geodesics spectrum and
the Laplace-Beltrami operator spectrum. To ob-
tain these spectra is not easy but more difficult
is to describe their dependence on the parameters
which determine the metric and geometric structure
of the surface. We study these spectra dependence
through the boundary map dependence from these
parameters, considering a Riemann surface M of
genus 2, thus with negative curvature.

Every Riemann surface M is represented by a
quotient space H?/G of the upper half-plane H?
by a fuchsian group G which is isomorphic to a
fundamental group of M. The discrete group G is
identified with the corresponding system of gener-
ators. A fundamental domain F is defined. The
method is to decompose the Riemann surface into
a set of 2 pairs of pants by simple closed geodesics.
Then the Fenchel-Nielsen coordinates are defined

by geodesic length functions of three simple closed
geodesics and twist angles along these geodesics.

Here we use a real-analytic embedding of the
Teichmiiller space T of closed Riemann surfaces of
genus 2 onto an explicitly defined region R C RS
(see [Maskit, 1999]). The parameters are explicitly
defined in terms of the underlying hyperbolic geom-
etry. The parameters are elementary functions of
lengths of simple closed geodesics, angles and dis-
tances between simple closed geodesics. The em-
bedding is accomplished by writing down four ma-
trices in PSL(2,R), where the entries in these ma-
trices are explicit algebraic functions of the param-
eters. Explicit constructions and side pairing trans-
formations are given to define the fuchsian group G
representing a closed Riemann surface of genus 2.

We start with a Riemann surface M,
and a specific set of normalized generators,
Ap, By, Cy, Dy € PSL(2,R), for the fuchsian group
Gy representing w1 (Mp).
point in 7 as a set of appropriate normalized gener-

Then we can realize a



ators A, B,C, D € PSL(2,R) for the fuchsian group
G representing a deformation M of My (see [Maskit,
1999]). We write the entries in the generators,
A,...,D, as elementary functions of six Fenchel-
Nielsen-Maskit coordinates and we write down ex-
plicit formula.

After we define a Markov map on the boundary
of the hyperbolic covering space. Then, we study
the dynamical properties in the symbolic dynamics
framework.

Our other results are related to dynamical
quantities, in particular Lyapunov exponents, of
boundary map with respect to the variation of
the parameters, the Fenchel-Nielsen-Maskit coordi-
nates. Then we verify that the Lyapunov exponents
decrease when the parameters are going out of the
corresponding to the regular fundamental domain.

2. Preliminaries, Definitions and Geomet-
ric Description

Throughout this paper, all surfaces are closed Rie-
mann surfaces of genus 2, all fuchsian groups are
purely hyperbolic, and all references to lengths, dis-
tances, etc. are to be understood in terms of hy-
perbolic geometry. Given a surface M of nega-
tive curvature and genus g = 2 the universal cov-
ering surface of M is given by the hyperbolic plane
which can be represented by the Poincaré disk,
D? ={z€ C :|z| <1}, with metric

dz.dz

ds® = ————
N TSPFRE

or upper half-plane, H?> = {z =z +iy : y > 0},

with metric
_ dz.dz
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In both realizations, the isometry group is made of
the linear fractional transformations

h(z) =

ds®

az+b
cz+d

In the half-plane H?, the matrices

A:(z Z) ad—be =1

belong to SLy(R), the real unimodular group.
In this work H? is the universal covering space
of M, the fundamental group, G, is a subgroup of

SLy(R). M can be decomposed into a union of two
“pairs of pants” joined along 3 closed geodesics.
The complex structure of a pair of pants P is
uniquely determined by the hyperbolic lengths of
the ordered boundary components of P.

A chain on a surface M is a set of four
simple closed non-dividing geodesics, labelled
Y1, Y2, V3, Y4, Where 7y, intersects 7y; exactly once;
73 intersects 7o exactly once and is disjoint from
713 V4 intersects 5 exactly once and is disjoint from
both v; and 75. We assume throughout that these
geodesics are directed so that, in terms of the ho-
mology intersection number, v; X v, ; = +1.

Given the chain 7, 7vs,73, 74, it is easy to see
that there are unique simple closed geodesics s
and g so that 75 intersects 7y, exactly once and
is disjoint from 7, 7, and 3; and g intersects
both 75 and v, exactly once and is disjoint from
the other ;. As above, we can assume that these
geodesics are also directed so that, using cyclic or-
dering, v; X ;41 = +1. This set of six geodesics is
called a geodesic necklace (see [Maskit, 1999]).

If one cuts the surface My along the geodesics
of a chain, one obtains a simply connected subsur-
face. It follows that we can find elements Ay, By,
Co, Dy of m1(My), so that these elements generate
m1(Mp), and so that the shortest geodesic in the
free homotopy class of loops corresponding to, re-
spectively, Ao, By, Co, Dy, is, respectively, v;, Ya,
v3, Y4- There are several possible choices for these
elements; we make Maskit’s choice which yields to
the defining relation:

AoBoDo Ay Cy Dy CoBy ! = 1.

It is well known that one can identify 7 with
the (quasiconformal) deformation space of the fuch-
sian group Gy, within the space of fuchsian groups
(see [Imayoshi et al., 1992]). We will construct our
particular set of generators, Ay, By, Cy, Dg. These
generators will be normalized so that Cy has its
repelling fixed point at 0, and its attracting fixed
point at oo; the attracting fixed point of Ay is pos-
itive and less than 1; and the product of the fixed
points of Ay is equal to 1.

Sometimes we will use the same symbol to de-
note a orientation-preserving homeomorphisms h
of the H?> — H?, and the matrix A that repre-
sents them in PSL(2,R). A point in 7 can be re-
garded as being an equivalence class of orientation-
preserving homeomorphisms h of the H2. Two such



homeomorphisms are equivalent if the correspond-
ing representations are equivalent; two such repre-
sentations, A and B are equivalent if there is an
element S € PSL(2,R) so that SAS™! =

We know then that the space of metrics of con-
stant curvature can be shown to be homeomorphic
to RS (see [Imayoshi et al., 1992]).

When we choose the rule of the decomposi-
tion (the way of gluing) and the lengths of closed
geodesics we decide the decomposition. The set of
lengths of all geodesics used in the decomposition
into pants and the set of so-called twisting angles
used to glue the pieces is a way of realizing this
homeomorphism.

In the not deformed surface My = H?/Gy
the group Gy is a subgroup of the (2,4, 6)-triangle
group. One could use the fact that Gy is a subgroup
of the (2,4, 6)-triangle group to calculate the corre-

sponding multipliers or traces for g1, ..., gs and we
can write explicit matrices Ag,...,Fy € SL(2,R).
We set
4 2 2v3 3
o - 24 2v3
2
By =
(%)
o — + V3 0
0o — \/g )
-3-2V3
Do ( 3-2v3 2 )
y1=Co Ay, Fy'=DBDy .

We need to prove that the group Gy, gener-
ated by Ag,...,Dp, is appropriately normalized,
discrete, purely hyperbolic and represents our sur-
face My, as described above. We remark that it
would suffice for our purposes to show that G is ap-
propriately normalized, discrete, purely hyperbolic,
and represents some surface of genus 2, which we
could then take to be our base surface.

We first observe that Cj has its attracting fixed
point at oo, and its repelling fixed point at 0. We
also easily observe that the fixed points of Aj are
both positive, with product equal to 1, and that the
attracting fixed point is smaller than the repelling
fixed point. We also observe that Ay,...,Dq all
have the same trace equal to 4 and it is easy to
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compute the trace of Fy and Fy, and observe that
it is equal to —4, and their axes are either disjoint or
meet at right angles to form the hexagon Hy. Thus
we obtain the discrete purely hyperbolic group G,
representing a closed Riemann surface of genus 2.
After doing the above computations, we see
that the axes of Ag,..., Fp split My into four right
angle equilateral hexagons. Since the equilateral
hexagon with all right angles is unique, it follows
that our group and generators are as desired.
Once we have defined Gy, then we define the
normalized deformation space D as the space of rep-
resentations ¢: Gg — PSL(2,R); the image group
G = ¢(Gy) is discrete, with M = H?/G a closed
Riemann surface of genus 2. Also here, the product
of the fixed points of A = ¢(Ay) is equal to 1, with
the attracting fixed point positive and smaller than
the repelling fixed point; the repelling fixed point of
C = ¢(C)) is at 0; and the attracting fixed point of
Cis at 0o. The point of intersection of Cy with the
common orthogonal between Ay and Cj lies at the
point ¢, of the imaginary axe. The normalizations
given in the definition of D make clear that there
is a well defined real-analytic diffeomorphism be-
tween the Teichmiiller space 7 and the normalized
deformation space D (see [Maskit, 1999]).

Definition 2.1. Let 7,5, y3 the oriented decom-
position curves, the functions /;, and 6; , j = 1,...,3
are the length of v;, and the twist angle used to glue
the pieces respectively. The system {I;, Oj}?zlis
called the coordinates of Fenchel-Nielsen.

With this decomposition, in order to obtain a
geometric image and to study the dynamical pro-
prieties, we construct a fundamental domain F. For
each fundamental domain, the fundamental group
G is now generated for the side pairing transforma-
tions g; (and their inverses), that considered when
had chosen the side identifications. If the region
is compact, the generators are hyperbolic transfor-
mation. For this case the group G as subgroup of
SLs(R), is represented by the generators g;

G=<g1,--,96 > -

Definition 2.2. An open set F of the upper half-
plane H? is a fundamental domain for G if F sat-

isfies the following conditions:
i) g(F)NF = ¢ for every g € G with g # id.



Fig. 1. A chain on the surface M

ii) If F is the closure of in H?, then :

" =] 9(F)

geF

iii) The relative boundary 0F of F in H? has
measure zero with respect to the two-dimensional
Lebesgue measure.

These conditions tell us that the Riemann sur-
face M = H?/G is considered as F with points
on 0F identified under the covering group G. With
the hyperbolic geometry is possible to determine
explicit formulas for the generators.

The images of F under G provide a tiling (tes-
sellation) of H? each image is a “tile” of the uni-
versal covering surface of M.

To explicit the construction of the fundamental
domain we consider a chain on the surface M, like
in My, see Fig. 1.

When we cut the surface M along these
geodesics then we divide it into four equilat-
eral hexagons. These geodesics are the shortest
geodesics in the free homotopy class of loops cor-
responding to some elements h; (i = 1,...,6) of
w1 (M), the fundamental group of M. We have the
hexagon H; whose sides s; are the arcs of v; and
these arcs are contained in the axes of the hyper-
bolic transformations h; (i =1,...,6). Their trans-
lation length in the positive direction along these
axis is 2[; where [; denote the length of ~; = I(;).
They are four of the parameters on this construc-
tion.

We choose, as reference a geodesic segment, 7,
axis of h, which is the common orthogonal between
the axes of h; and hs. Remark that if ho is orthog-
onal to hy and hs then ho = h. We called P the
intersection point between h and h; and P, the
intersection point between ho and h;.

Fig. 2. Hexagon H;

The other parameters are the gluing angles. So
we consider the parameter o determined by the dis-
tance between the intersection of A with h; and the
intersection of hy with hq. If ho = h then [5 is equal
to zero. The other two parameters 7 and p are de-
termined by the angles 65 and 6035 between ho, hy
and hq, hs, respectively. So

L =1(71), l2=1(72), I3 =1(73),
la=1(yy), o=[P-P,

T = arctanh (cos(62)) ,

p = arctanh (cos(63))

With the chosen normalization we obtain the
hexagon H; represented in Fig. 2.
Let h, with ¢ # 0, be

(1)

The reflection through an axis h is represented by
the transformation r

r(2) 1 (a—d)z+2b

e E 120 +d—a)

The reflection with respect to the axis of hy
sends H; to another right angled hexagon Hs, see
Fig.3.

Finally the reflection with respect to the imag-
inary axis (symmetry) sends H; and Hs to the
hexagons H3 and H4. Thus, we had construct the
fundamental domain: F = HyUHyUH3UHy. If the
twist angles are zero so the fundamental domain are
a right-angle polygon. That is 0 = 7 = p = 0, see
Fig. 4.

For o,7,p # 0 we can see the twist angle pa-
rameters in the Fig. 5. The way of gluing is not
the same.
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Fig. 3. Hexagon H; U Ho.
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Fig. 4. Hexagon H1 U Ho U Hy U Hy.
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Fig. 5. Dodecagon o, 1,p # 0.
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This construction depends on the choice of the
original geodesics v;, ¢ = 1,...,4. The chain is then
dependent of the parameters /; = [(7;).

The sides are obtained by the intersection of the
axis, they are geodesic segments. We called vertex
the single point which is the intersection between
two consecutive sides. The circular arc that con-
tains a side s; intersects the real axis in two points
p; and g;. The sides are labelled s, ..., 12 reading
counterclockwise from the zero.

It is known (see [Beardon, 1983]) that if F is
any locally finite fundamental domain for a Fuch-
sian group G, then

{geG:g(F)NF = ¢}

generates G.

Let M = H?/G our compact surface of genus
2. The fundamental domain F is a bounded fun-
damental polygon whose boundary dF consists of
the 12 geodesics segments s1, ..., s12. Each side s;
of F is identified with s;, by an element g € G and
so each g € G produces a unique side s, namely,
s = F N g(F). There is a bijection between the set
of the sides of 7 and the set of elements g in G for
which F N g(F) is a side of F.

We construct a map from the set of the sides of
F onto itself, g : s; — s; where s; is identified with
sj. This is called a side pairing of . The side pair-
ing elements of G generate G. In this construction
we choose the side rule for the pairing

g1 : 81 —>87, g2: 82— S12, (g3 :@83 — S5,

g4 * S4—2>810, 9g5: Se — S8, g6 :S9 — S11

3. Deformations, Parameters and the Pa-
rameter Map

Let ¢ : Gy — PSL(2, R) be a deformation in D.
We define A,...,F by A= ¢(Ay), ..., F = p(Fy),
and let G = ¢(Gy). Since ¢ can be realized by
an orientation-preserving homeomorphism of the
closed disc, the axes of A,...,F form a hexagon,
H, and the axes of A and C' do not meet, even
on the circle at infinity. Also G is normalized so
that the axis of C lies on the imaginary axis, with
0 as the repelling fixed point, so that the point of
intersection of the axis of C' with the common or-
thogonal to the axes of A and C' lies at the point
i (given the orientation, and given that the axis of



C lies on the imaginary axis, this is equivalent to
saying that the product of the fixed points of A is
equal to 1). We observe that H necessarily lies in
the right half-plane. We let A,..., F be the sides
of H, where A lies on the axis of A, etc. We orient
each side so that its orientation agrees with that of
the positive direction of the corresponding hyper-
bolic Mébius transformation.

The axes of A, ..., F form a geodesic necklace
on the underlying Riemann surface M = H? /G.
This necklace divides M into four hexagons, which
we can also label as Hi,...,Hs. In this section,
we consider a general deformation ¢ € D; we set
(4,B,C,D) = (¢(A0),¢(Bo), »(Co), p(Cp)). We
define Maskit eight basic parameters, and we write
down matrices (A, B,C, D), such that the entries
in these matrices are particular functions of these
parameters. In the same way define E = A~'C~1,
and F = D~'B~!. Then, since ¢ is a deformation,
the axes of 4, ..., F form a hexagon Hi, with sides
A,...,F, where A lies on the axis of A, etc. Let
G =(A,B,C,D), and let M = H?/G.

Maskit basic parameters are «, 3, 7, 6, o, T,
p and p, defined as follows. Set o = [;/2, 8 =
lo/2, v = 13/2, § = l4/2. Let L be the common
orthogonal between the axes of A and C and / its
length define y by cothy = cosh/. Let o be the
distance, measured in the positive direction along
the axis of C, between L and the point where the
axis of B crosses the axis of C. Let 6, be the angle
inside H between the axes of B and C; and let
03 be the angle inside H? between the axes of C
and D. Define 7 and p by tanh7 = cosfs and
tanh p = — cos 03.

We note that a, 8, v, 6 and p are necessarily
positive. We define A,..., D as being matrices in
SL(2, R), with positive trace, representing, respec-
tively, A,...,D.

Maskit in [1999] introduced the following rep-
resentations

A - 1 sinh(y — @) sinha

~ sinhpy \ —sinha sinh(p+ ) )’
B — 1 cosh(t + ) €%sinhf

~ coshr \ e %sinhf  cosh(r — ) )’

e’ 0
o (in)
1 cosh(p — 6) —e? 7 sinh §
coshp \ —e 7 7sinhd cosh(p + 9) ’

El = 04, F1=BD.

Like the projection of the axes of Ag,...,Fp,
form a geodesic necklace on M, the projection
of the axes of A,..., F form a geodesic necklace
on M. The length of A is half the length of the
closed geodesic formed by the projection of the
axis of A; it follows that trace(A) = 2coshq;
trace(B) = 2coshf; trace(C) = 2cosh~y and
trace(D) = 2coshé. We easily compute that the
matrices above all have unit determinant.

Here we use the same normalization. It fol-
lows from the normalization that the common or-
thogonal L between the axes of A and C' intersects
the axis of C' at the point i, with the attracting
fixed point of A positive and smaller than the re-
pelling fixed point; the repelling fixed point of A
is at e# and the attracting fixed point of A is at
Maskit defined o to be the distance, mea-
sured along the axis of C, in the positive direction,
between the point of intersection with L, which has
been normalized to be at the point ¢, and the point
of intersection with the axis of B. Then the axis of
B crosses the imaginary axis at the point 7e?; the
attracting fixed point of B is at €7 and the re-
pelling fixed point is at —e’~". Easy computations
show that 7 and 6, are related by tanh 7 = cos 0-.

We observed above that the distance, along the
axis of C, between the point of intersection with
the axis of B and the point of intersection with the
axis of D must be half the translation length of C.
Hence this point of intersection is the point 7717,
the repelling fixed point of D is at 777, and the
attracting fixed point is at —e?t7"?. Then p and
05 are related by tanh p = — cos8s.

e H.

Proposition 3.1. (Maskit coordinates [Maskit,
1999]) The parameters, sinha, sinhf, sinhv,
sinhd, sinhyu, sinho, sinh7, sinhp, depend alge-
braically on the point X € D.

Observe that 2cosha = trace(A); 2coshf =
trace(B); 2 coshy = trace(C); 2 cosh § = trace(D);
2 cosh p is the sum of the fixed points of A; €% is
the product of the fixed points of B; 2e¢? sinhT is
the sum of the fixed points of C; and 2e’17 sinh p
is the sum of the fixed points of D.

We also remark that the entries in the matri-
ces A, B, C, D are algebraic functions of the param-
eters, sinh q, sinh 8, sinh+y, sinh{, sinhy, sinho,



sinh 7 and sinh p.

We will see below that sinhy and sinhé can
be written as algebraic functions of the other pa-
rameters. Maskit defined the map v: D—R®, by
(X)) = (sinh @, sinh 8, sinh v, sinh o, sinh 7, sinh p).

Now we assume that the matrices, A,...,D,
are defined by the formulas as functions of the eight
parameters, «, ..., p. We denote the corresponding
Mobius transformations by A,...,D. And we as-
sume that there is a deformation ¢ € F, so that
(A,...,D) = (¢(Ao),--.,V(Dy)). We also explic-
itly assume that p > 0. Let G = p(Gyp).

We have normalized C so that 0 is the repelling
fixed point; this means that v > 0. It also follows
from our normalization that the attracting fixed
point of B is positive; it follows that 5 > 0. We
have normalized A so that its attracting fixed point
lies between 0 and 1; this, together with our as-
sumption that g > 0, implies o > 0.

We state these three inequalities as Maskit first
condition

a>0, >0 ~v>0. (1)
For future use, we remark that it also follows
from Maskit normalization that the attracting fixed
point of D is negative; this implies that 6 > 0.
Maskit [1999] determines the non-trivial inequali-
ties

1 + cosh a cosh ~y

coth y > (2)

sinh asinh y

cosh(p + o) < coshy cosh  — coth asinhysinh y
®3)

and the following equalities

cosh 4 = coth B cosho cosh 7+sinhosinh7, u >0
(4)

cosh 7y cosh 4 — coth aesinh vy sinh
cothd = _

cosh o cosh p
sinh o sinh p

()

cosh o cosh p

Then Maskit has shown the following.

Proposition 3.2. Let R C R® be the region de-
fined by the inequalities (1), (2) and (3), where p is
defined by equation (4) and 6 is defined by equation
(5). Then the image of 1 is contained in R. R is
equal to the image of 1.
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We now assume that we have a point
(o, B,7,0,7,p) € R, defined by inequalities (1), (2)
and (3); we assume that g is defined by (4) and
that 0 is defined by (5). We write the matrices
A,...,D. We need to show that there is a ¢ € D,
with (4,...,D) = (¢(Ao),---,¢(Dy)).

Finally, as above in the regular case, we ob-
tain a purely hyperbolic discrete group, G =
(A, B,C, D), representing a closed Riemann surface
of genus 2.

Also, since the above construction uses combi-
nation theorems in exact analogy with their use in
the construction of Gy, there is a topological defor-
mation of Gy onto GG, where this deformation takes
(Ao,...,Dp) onto (A,...,D). It follows from our
normalization that this deformation is orientation-
preserving. It is well known that an orientation-
preserving topological deformation can be approx-
imated by a quasiconformal one. The mapping
x: T — R is a real-analytic embedding of the Te-
ichmiiller space of surfaces of genus 2 onto the re-
gion R C RS

R = {sinh , sinh 3, sinh 7, sinh ¢, sinh 7, sinh p}.

As remarked above, sinhq, ..., sinh p are algebraic
functions of the entries in the matrices.

With this choice we obtain the explicit formulas
for the generators hy = B, ho = A, h3 =F, hy = F,
hs = BD, hg = DF™', hy = h', .., h1a = hg',
whose determine the axes.

We label the end points of the axes of h; on
OF, pi, ¢i, t = 1,...,12, with p; = —1, ¢ = 1 and
p; occurring before g; in the anti-clockwise order.
These points are the intersections of circular arcs
C(h;), axes of h;, orthogonal to OF.

With this choice we explicitly calculate formu-
las for the side pairing transformations ¢y, ..., gs,
gr = gl_l,..., gi2 = gﬁ_l. This mean that s; =
91(81), -y 89 = g6(s11), 81 = g7(87), oy 511 =
912(39). Let be

gi(z) = (aiz + b;) /(ciz + d;),

for g;(s;) = sk, with

ri = (¢—pi)/2,
¢ = 1/(rjre)/?,
by = (aid; —1)/c;,



then we solve the system of equations

{ (aip; + bi)/(cipj + di) = qx,
(aigj + bi)/(cigj + di) = px

and we determine {a;,d;}, thus we obtain explicitly
the generators g; = g;i(a, 8,7,0,7,p), i =1,...,12.

Until now we had made an explicit geometri-
cal description of the surface. All construction are
generic for any choice of a surface of constant neg-
ative curvature and genus 2. So we can obtain a
symbolic dynamics for the geodesic flow on these
surfaces that involves the geometry and the struc-
ture of its fundamental group.

Bowen & Series in [1979] introduce a bound-
ary map fg : OF — OF, defined by piecewise
linear fractional transformations in the partition
P = {IZ = [pi,pi+1), 1= 1,..., 11, [plg,pl)}, which
is orbit equivalent to the action of the fundamental
group G on 0F, see Fig. 6. With the linear frac-
tional transformations defined above it is possible
to obtain the boundary map. The boundary map
is represented by

fG H U IZ — U Iz

i=1,...,12 i=1,...,12

fa(@); = gi(x), i=1,...,12

In general f¢(pi) ¢ {pi}}2,, then we need to re-
fine the partition P. Now, we consider the finite or
infinite Markov partition M = {Jj}év:l introduced
by the itineraries of the lateral limits pz?t of the dis-
continuous points p;. Let

W = { lim f&(pi — €), lim f&(pi + )12,

for all £ € N, where {Jj}é-v:l are the subintervals
defined by the partition points W and fg is the k
iterate of fg. With this set we obtain a Markov
map for the partition M.

Definition 3.3. A map fg is a Markov map for M
if fg satisfies

i) piecewise smoothness,

ii) local invertibility,

iii) Markov property: each fg(J;) is a union of
intervals of the partition M.

Now we can study the dependence of the
boundary map with the parameters.
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Fig. 6. Graph of fg.

We are able to define a map that codifies the
expansion of boundary points of F. And we deter-
mine the Markov matrix Ag associated to G.

The matrix Ag is given by

G — 1 if Jj Cfc;(Ji)
Y71 0 otherwise

Now we can prove the following result.

Theorem 3.4. The partition introduced by the
family of boundary map fa(a,B,7,8,0,7) through
points in W is stable under deformation, i.e., it
does not depend on the wvariation of the Fenchel-
Nielsen-Maskit coordinates («, 8,7,0,0,7) € R.

Proof. It is known, in the regular case
(a, @, ,,0,0), with @ = arccosh(2), that the
Markov transition matrix has 24 x 24 elements
and is determined by the transition of the inter-
vals J; under fg (see [Adler & Flato, 1991] and
[Gricio & Sousa Ramos, 1999]). In this regular
case W = {pi,qi}}1,, where now we put in index,
tmod 12, the Markov partition M determines the
24 intervals Jojt1 = [pit1,4i), Joite = [¢isPit+2),
and the transitions

9i(Pi) = Qn(i)s

9i(gi-1) = qr(i)+1>

gi(pi-H) = qr(i)-1>
where 7 = 0, ..., 11 and 7 is defined by
if i odd

if 7 even

. (8 — i) mod 12
(i) :{ (2 _3) mgd 12

Now we prove that, when we change the coordinates
of Fenchel-Nielsen-Maskit this matrix remains con-
stant. The entries in the matrices A, B, C, D (and



E,F) are algebraic functions of the parameters,
sinh(a), sinh(5), sinh(y), sinh(d), sinh(o), sinh(7),
Thus their fixed points {p;,q}i%,
also depends algebraically in these Fenchel-Nielsen-
Maskit coordinates. Finally the hyperbolic pair-
ing linear fractional transformations determined by
these fixed points also has a algebraic dependence in
theses coordinates. One time we choose the pair-
ing type, we have unique pairing transformations
that transform the set W = {p;, ¢;},., into itself,
according the same rules, then it determines the
same Markov matrix.[]

as we Saw.

Corollary 3.5. The topological entropy

htop(fG(aa B,7,90,0, T)) = logp‘max(AG)]’

where Amax(Ag) is the spectral radius of the matrix
Ag, do not depend on the variation of the Fenchel-
Nielsen-Maskit coordinates («, 3,7,0,0,7) € R (it
is a topological invariant).

For the closed Riemann surface of genus 2,
Amax(Ag) = 6.97984.... (see [Gricio & Sousa
Ramos, 1999)).

Now, we could give explicit formula which show
the dependence of others dynamical quantities of
the boundary map fg(a,,7,0,0,7) with the pa-
rameters. When we change the Fenchel-Nielsen-
Maskit coordinates we modify the metric struc-
ture of the surface and the quantities that de-
pends of the metric. Thus we obtain the depen-
dence the Lyapunov exponent with the Fenchel-
Nielsen-Maskit coordinates. The Lyapunov expo-
nent \(fe(a,B,7,0,0,7)) (resp. Lyapunov multi-
plier m(fa(«, 8,7,6,0,7))) is given by

Afa(a,B,7,8,0,7),x) = lim 1/k log|(£8)' (@)

‘l/k

m(fo(e, 8,7,6,0,7),) = lim |(£4) (@)
and the pressure P(f¢(a, B,7,0,0,7), s) is
. _ ky/
lim 1/k log f}% exp(~s (/&) (x)])
G )=

Also we can define the zeta function (see [Pol-
licott & Rocha, 1997] and [Gracio & Sousa Ramos,
1999])

Z(t,s) = det [I —tQ_s105 (o))

e A

o0 tk
= eap(= ) Qs 1gi(s0y x))))
k=1
where
exp (— (fg)'( )
(@) = 2 1= (&) (@)~
zeFiz(fE)

Remark 3.6. This zeta function is a generalization
of Selberg zeta function associated to the group G

o
=[ITI—expl(s + k) £(0])
k=0 v
s(s) = Z(t, ),
for t = 1, where £(7) denotes the length of the
closed geodesic .

Recalling that £((y) = 2arccosh (tr(g)/2) and
that there is a bijection between primitive geodesics
on M and the conjugacy classes [g] for G, we
can enumerate the length spectrum £(v;) of the
primitive closed geodesics through periodic or-
bits of fg(a,B,7v,d,0,7). The allowed primitive
words of the associated Markov shift determine
elements gx = i, 9i,.--9i, such that ¢ (y,) =
2arccosh (tr(ge)/2) = log((f&)' (. B,7,6,0,7)).
Then we obtain the zeta function in terms of the
length spectrum

Z(t,s) =1+ izk(s) tk
k=1

where zj(s) is given by

Z (=D" exp(=s(€{y1) + - +€(vn)

<. (I —exp(=£(y1))--(1 — exp(—£(y,)))
\71|+ Hynl=k

We finish illustrating the dependence for the
Lyapunov multiplier with the parameter a =
01 (1) /2, see Fig.7.
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