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We consider a discrete-time economic model which is a particular case of the
Kaldor-type business cycle model and it is described by a two-dimensional dy-
namical system. Under certain conditions the map can be reduced to a skew map
whose components, the base and the fiber map, both have entropy. Our proposal
is to study and measure the complexity of the system using symbolic dynamics
techniques and the topological entropy.

1. Introduction

The manifestation of nonlinear effects can be easily detected in almost
all real world systems. In the particular case of economics, many of its
important fluctuations arise out of nonlinear dynamic phenomena. The
most interesting theories of business cycles in the Keynesian vein are the
ones that utilizes non-linear functions. In this work we present a variation
of the model considered by Bischi et al.? and Dieci et al.?. It departs from
a discrete time-version of the Kaldor model described by a two-dimensional
system. We intend to introduce nonlinearity in a variable of the model in
order to study the effect it produces.
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Firstly, consider the Kaldor-type business cycle model

{Y}-H =Y = a(l; — S) (1)
Kt+1 = (1 - 5)Kt + It

which depends on four variables, Y, K, I and S, representing, respectively,
income, capital stock, investment and savings. We have also two param-
eters, a and ¢, verifying the inequalities, & > 0 and 0 < § < 1. The
parameter « represents the speed of reaction to the excess demand and ¢
is the capital stock depreciation rate.

The function describing investment is assumed to take the form of an in-
creasing arc tangent type function of income, like suggested in Bischi et al.2
and Dieci et al.3. Since Kaldor® concluded it might be sensible to assume
that the S and I curves are nonlinear, in general, he assumed I = I(Y, K)
and S = S(Y, K), where investment and savings are nonlinear functions of
income and capital. In order to introduce nonlinearity to the capital stock
variable, instead of considering it just a linear decreasing function, we shall
propose it as the sum of two functions: one linear decreasing and other a
trigonometric function of the sin type. This sum, depending on the param-
eters, is monotone decreasing or has consecutive decreasing local maxima
(or minima) when K increases (see Fig.1). Therefore, let

L=op+m, (% - Kt) + arctan(Y; — p) — Bsin(0.2 Ky — p),  (2)

where the parameters o and § are such that 0 < ¢, < 1 and the parameters
ﬂa ’717 H, o are pOSitiVG (/87 717 M, O > 0)

K

Figure 1. Effect of the nonlinearity in the capital stock variable, K. In plot a) vy, =
2.0, B =10, u =100 and in plot b) y; = 0.8, f = 9.5, u = 100.
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Concerning the savings function, we also modify the assumption of pro-
portionality to the income assuming, as in many versions of the Kaldor
business cycle models, that savings are nonlinear. We consider that it de-
pends also on the capital stock in a decreasing way:

o .
St =0Y: + vy (TH - Kt) — Bsin(0.2 Ky — p), (3)
with v, a positive parameter.

Replacing expressions (2) and (3) in (1) and considering the particularly
interesting case when v; = v, = v we get the following two dimensional
system in income and capital stock variables:

{ Yit1 =Y, + aop + aarctan(Y; — p) — acY;
Ky =(1—0)Ki +op+ (% — Ky) + arctan(Y; — p) — Bsin(0.2 Ky — p)
(4)
This paper is organized as follows: in Section 2 we present the model and
the main results concerning triangular maps and the topological entropy.
In Section 3 we explore its complex dynamic behavior. We also illustrate
the computation of the topological invariant in an example and finally in
Section 4 we make some final considerations.

2. The model and some considerations about triangular
maps

Let us change the notation in the model (4) to: y := Y and k := K.
We consider a family of two-dimensional continuously differentiable maps
F:R? — R? given by

(Y = y + aop + aarctan(y — p) — aoy
"\k) \(A—-0k+op+~v (% —k)+arctan(y — p) — Bsin(02 k —p) /’

(5)
where o, 4, 3, 7, p, o are real parameters such that @ > 0,0 <o < 1, >
0,0<d<1l,y>0,8>0.

This dynamical system is generated by a skew map (triangular map)
since it has the form F (y,k) = (f (v), g (y, k)), that is, the first component
doesn’t depend on the second variable. So, from the economic point of
view, the dynamics of income is only affected by income itself. The map f
is called the basis map and g is called the fiber map. Due to this triangular
structure it is possible to apply mathematical methods to compute relevant
quantities that characterize the system as chaotic or non chaotic. In Fig.2
we present the graphical representation of the map F' for some values of
the parameters.



March 3, 2006 10:40 WSPC/Trim Size: 9in x 6in for Proceedings cjcgsr final

68.5
68
k
WROLTI R WL ot s
67.5

RO A e LR
X aad

s Y -,
222 el St R

PO % 0 L
6 7 :"".iw.m’:\*&wxﬂ' R '#1: g 8 0 -
93 94 95 96 97 98 99 100 94 96 98 100 102 104 106
y y

Figure 2. Graphical representation of the map F' for some values of the parameters. In
plot a) @ = 10, p = 100, ¢ = 0.3, § = 0.4, 8 = 9.5, v = 1.0 and in plot b) a = 10,
uw=100,0 =0.32,6 =0.4, 8 =9.5, v =0.8.

Let P = {zg, z1, ..., Zp_1} be a periodic orbit of period p of the map
f such that f(z;) = 241 fori =0,...,p—2 and f (zp—1) = x¢. We define
themap g, : Y — Y as

9p (Y) = 9 (xp-1, 9(Tp-2,-..9 (21, 9(20, Y))-..))- (6)

If Q@ = {yo, ¥1, .-, Yg—1} is a periodic orbit of period g of the map g, such
that g, (y;) = yiy1 for i = 0,...,¢ — 2 and g, (yp—1) = Yo, we can define the
product P.Q) as the set containing the p.q pairs:

(w0,%0) (71,9 (®0,%0)) - - - (Tp-1,9 (Tp—2, -9 (%1,9 (T0,Y0)) ---))
(zo0,y1) (1,9 (@o,91)) - - - (%p-1,9(Tp-2,--9 (%1, 9 (T0,y1)) ---))
(xOJ yq—l) (1'1,9 (:L'O; yq—l)) R (:L'p—lag (xp—27 g (-Tl;g (:L'anq—l)) )) .

The orbits of the one-dimensional maps f and g, determine the orbits
of the triangular map T, as we show in the following Lemma:

Lemma 2.1. LetT = (f,9) : X xY — X xY be a continuous triangular
map. Then the following hold:

(1) If f has a periodic orbit P and g, has a periodic orbit Q, then P.Q)
s a periodic orbit of T.

(2) Conversely, each periodic orbit of T can be obtained as a product of
a periodic orbit P of f by a periodic orbit of g,.
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Proof. See Alseda-Llibre!. O

The topological entropy is a measure of complexity of a dynamical sys-
tem. Let T be a triangular map like defined in the earlier Lemma. The
Bowen’s formula for the inferior and superior values of the topological en-
tropy of T', hiop(T), is valid, that is,

max {hsop(f); htop(9p) } < hiop(T) < btop(f) + hiop(gp)s (M)

where hyp(f) and hop(gp) represent, respectively, the topological entropy
of the basis map, f, and the topological entropy of the fiber map associated
to the orbit P, g,.

3. Chaotic behavior in the map F

It is possible to prove the existence of chaotic behavior in the map F if there
are parameter values that correspond to a positive value of the topological
entropy.

Let us consider first the basis map f. It is an one-dimensional map and
it can be easily proved that f is a bimodal map when ao — 1 > 0. In this
case there are two turning points, whose expressions are:

[« a
1 =p— aa—l_l and ¢ =p+ aa—l_l'

The first one corresponds to the relative minimum and the second cor-
responds to the relative maximum. Fixing the parameters x = 100 and
o = 0.3, f depends only on a which is the most interesting parameter from
the economics point of view. In Fig.3 we present the long term behavior of
the map f when a changes between 7 and 14.

For a = 11.1726, f has an orbit, P = {yo, 1, ¥2, y3}, of period 4, such
that f (f (c1)) = co, described in Fig.4. The corresponding kneading data
(ALBR, BRAL) generates a three interval Markov partition of the line y,
which corresponds to the transition matrix:

110
M(f)=|[111
011

The maximum eigenvalue is A, = 2.41421 and the value of the topological
entropy of the basis map is

hiop(f) = log (Ay) = 0.881374....
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Figure 3. Bifurcation diagram of the basis map f as a function of «, with initial con-
ditions ¢; and ca.
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Figure 4. Period-4 orbit of the map f, when o = 11.1726, x = 100 and ¢ = 0.3.

Let us consider now the points of the orbit P ordered like:
Yo=92,...; y1=101,...; y3=107,...; y4=098,....
Consider also the function g, (k), depending on the variable k and defined,
according to (6), by
9po (k) =g (y3, 9 (y2, 9(y1, 9(¥o, k))))-

If we fix 8 = 9.5 and § = 0.52, the bifurcation diagram of g,, as a function of
v, the free parameter, is presented in Fig.5. The study of this function can
give us significant information about the long term behavior of the original
map F. Let’s consider, for example, the case v = 0.8518. The function
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Figure 5. Bifurcation diagram of the map gp, (k) as a function of .

9p (k), whose graphical representation is showed in Fig.6 is continuous,
limited and has many critical points but its dynamics reduces to the values
where there is an intersection with the diagonal line. If we iterate all the
critical points of g, (k) it is all reduced to an orbit of period 4 or to a fix
point (see Fig.7).

k

20 40 60 80 100 120 140

Figure 6. Graphical representation of the map g, (k) for v = 0.8518.

It is very interesting to notice what happens if we change the order of
appearance of the points yg, y1, y2, y3, of the orbit P, in the construction
of the function g, (k). We have three more possibilities. We can also define
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Figure 7. A magnification of the graphical representation of the map gp, (k) for v =
0.8518.

9p, (k) 9p, (k) and gp, (k) in the following way:

9p: (k) = g (o, 9 (y3, 92, 9(y1, k)))),
gp2 (k) = g (y1, 9 (W, 9 (3, 9(y2, k)))),
and  gp3 (k) = g (y2, 9 (Y1, 9(yo, 9 (ys, k))))-

We obtain functions, all very different from each other, but the dynamic
behavior of all these maps asymptotically goes to a period 4 orbit or to a fix
point. In Fig.10 are shown the stable orbits for the considered parameter
values. The periods of the orbits are in agreement with the considerations
made in Section 2: the period of the orbit of F' is equal to 16 or to 4
depending on the initial conditions. In each fiber we can see the orbit of
period 4, in black, and the fix point, in grey. The first fiber corresponds to
the stable orbits of the function g,, (k) and the others respectively to the
stable orbits of functions g,, (k) , gp, (k) and g,, (k).
The transition matrix is:

010
M(f)= (001
111

which corresponds to a topological entropy given by:

hiop(9p,) = log (1.83929...) = 0.609378....
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Figure 8. Graphical representation of the functions g5, and gp,.
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Figure 9. 1In plot a) graphical representation of the function gp, and in plot b) graphical
representation of the functions gp,, ¢ = 0,1,2,3 in the same plot.

The earlier value doesn’t depend on the function g,, , that is, doesn’t de-
pend on the fiber.

So we can conclude that the topological entropy of the original triangular
map F is such that:

0.881374... < hyop(F) < 1.574521....
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Figure 10. The stable orbits of the triangular map F for o = 11.1726, u = 100, 0 = 0.3,
B =295, =0.52 and v = 0.8515.

The map F certainly has a value of the topological entropy that is positive,
and therefore, the system is chaotic for these parameter values.

4. Final conclusions

In this paper we presented a Kaldor-type business cycle model described by
a two-dimensional map. The model is a modification of the one proposed
in Bischi et al.? and Dieci et al.?> and can be reduced to a map of triangular
type with income and capital stock as variables. Due to its triangular struc-
ture it is possible to compute the topological entropy, for certain values of
the parameters, as a measure of complexity of the system. The introduction
of nonlinearity in the capital stock variable, into the investment and savings
functions allows us to have chaotic basis map and chaotic fiber map, since
we found a positive value for the topological entropy in both cases.
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