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Abstract

In this work we discuss the complete synchronization of two identical double-well Duffing
oscillators unidirectionally coupled, from the point of view of symbolic dynamics. Working
with Poincaré cross-sections and the return maps associated, the synchronization of the two
oscillators, in terms of the coupling strength, is characterized. We obtained analytically the
threshold value of the coupling parameter for the synchronization of two unimodal and two
bimodal piecewise linear maps, which by semi-conjugacy, under certain conditions, gives us
information about the synchronization of the Duffing oscillators.

1 Introduction

Symbolic dynamics is a fundamental tool available to describe complicated time evolution of a
chaotic dynamical system. Instead of representing a trajectory by numbers, one uses sequences
of symbols of a finite alphabet which symbols correspond to the intervals defined by the turning
points of a mapf . We define the concept of symbolic synchronization in terms of a distance
between the symbolic sequences generated by the iterates ofthe mapf on its turning points. We
show numerically that this distance may be considered a goodmeasure of the synchronizability,
since it converges to zero as the coupling parameter grows.

The analysis of synchronization phenomena of dynamical systems started in the 17th century
with the finding of Huygens that two very weakly coupled pendulum clocks become synchro-
nized in phase. Recently, the search for synchronization has evolved to chaotic systems. Two or
more, identical, separated, chaotic systems starting fromslightly different initial conditions would
evolve in time, with completely different behaviour, but ifthey are coupled, we may see that after
some time they exhibit exactly the same behaviour. Synchronization is a process wherein two or
more systems adjust a given property of their motion to a common behaviour, due to coupling or
forcing. Various types of synchronization have been studied. This includes complete synchro-
nization (CS), phase synchronization (PS), lag synchronization (LS) generalized synchronization
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(GS), anticipated synchronization (AS), and so on [2]. The coupled systems might be identical or
different, the coupling might be unidirectional, (master-slave or drive-response), or bidirectional
(mutual coupling) and the driving force might be deterministic or stochastic.

In [6], Kyprianidis et al. observed numerically the synchronization of two identical single-well
Duffing oscillators as a function of the coupling parameter.In [5], Vincent and Kenfack studied
numerically the bifurcation structure of a double-well Duffing oscillator coupled with a single-
well one. To detect synchronization they use the quantityp defined by the time during which the
distance between two trajectoriesx(t) andy(t) is not greater thenε divided by the total time span
on the considered trajectory. They consider that there is synchronization ifε 6 0.01 and obtain,
for several values ofω a region in the parameterβ ,k plane where the oscillators are synchronized.
This is not a complete synchronization because the two oscillators are not identical.

In this work we investigate the synchronization of two identical unimodal and bimodal piece-
wise linear maps. We obtain, analytically, the value of the coupling parameter for which the
complete synchronization is achieved. Then, we examine numerically the synchronization of two
identical unidirectionally coupled double-well Duffing oscillators for fixed values of the parame-
tersα andβ in terms of the coupling parameterk. We verify that the synchronization threshold
agrees with the theoretical results obtained for the unimodal and bimodal piecewise linear maps.

2 Main Results

Consider the coupling of two identical mapsxn+1 = f (xn) andyn+1 = f (yn), denoting byk the
coupling parameter. To be able to say if the two systems are synchronized we must examine the
differencezn = yn−xn and see if this difference converges to zero, asn→ ∞.

If the coupling is unidirectional
{

xn+1 = f (xn)
yn+1 = f (yn)+k[ f (xn)− f (yn)]

then

zn+1 = (1−k) [ f (yn)− f (xn)] . (2.1)

These two systems are said to be in complete synchronizationif there is an identity between the
trajectories of the two systems. In [9] and [10] it was establish that this kind of synchronization
can be achieved provided that all the conditional Lyapunov exponents are negative. Since then,
some authors [12] have reported theirs computational experiments showing that apparently, it is
possible to achieve synchronization without the negativity of all conditional Lyapunov exponents
and some others (see [3] and references there in) have reported that sometimes there is brief lack of
synchronization in the region where all the conditional Lyapunov exponents are negative. How to
explain these situations? In fact, there is a numerical trapwhen coupling identical systems. Near
the synchronization manifold, the two identical systems looks like in complete synchronization
due to finite precision of numerical calculations (see [11]). As a matter of fact, the negativity of
the conditional Lyapunov exponents is a necessary condition for the stability of the synchronized
state (see [2]). The negativity of the conditional or transverse Lyapunov exponents is a mathemati-
cal expression of the decreasing to zero of the logarithm average of the distance of the solutions on
the transverse manifold to the solutions on the synchronization manifold. So, if there is a strong
convergence of this distance to zero, this average must decrease to zero. But the converse is not
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true. Indeed, even when all the conditional Lyapunov exponents are negative, it is possible that
some orbits escape from the synchronization manifold. Thisis only a weak synchronization, in the
sense of Milnor (see [11]). Only Lyapunov functions give necessary and sufficient conditions for
the stability of the synchronization manifold. Besides thefact that the stability based on the nega-
tivity of the conditional Lyapunov exponents be only a weak stability, there are other phenomena
like bubbling, riddling and blowout bifurcation that can explain the brief and persistent events of
desynchronization in the region where all the conditional Lyapunov exponents are negative, see [2]
and references therein. When coupling two systems, as the coupling parameterk grows from zero,
we may find first a region(kc,kc,max) where there is weak (in the sense of Milnor) synchronization
and then a region(kc,max,+∞) where there is strong (in the topological sense) synchronization, see
[11] and references therein. Note that, if the coupling involves more then two systems (network
[3]) the synchronization interval may be bounded.

Nevertheless, if the coupled systems are defined by piecewise linear maps, which is the case
we are going to study in the next section, the weak and the strong concepts of synchronization
coincides and it occurs fork > kc. The synchronization thresholdkc obtained from the assumption
that all conditional Lyapunov exponents are negative, is expressed in terms of the Lyapunov expo-
nent of the local mapf . If this local map f is a piecewise linear map with slope±s everywhere,
then its Lyapunov exponent is exactly log|s| .

2.1 Synchronization of Unimodal Maps

Consider the tent mapfs: [0,1] → [0,1] defined by

fs(x) =

{

sx−s+2, if 0 6 x < 1− 1
s ,

s−sx if 1− 1
s 6 x 6 1.

Recall that any piecewise monotonic map of positive entropyand growth numbers is topologi-
cally semi-conjugated to a piecewise linear map with slope±severywhere, see [8]. This map can
be written as

fs(x) = sx−s+2+2θ (s−sx−1) , (2.2)

with

θ(x) =

{

0 if 0 6 x < 1− 1
s ,

1 if 1− 1
s 6 x 6 1.

The symbols{0,1} correspond to the usual alphabet{L,R} in the symbolic dynamics, see [8] and
[7]. As the value ofk grows, the number of initial equal symbols in thex andy symbolic sequences
(see section 4), grows also. This is a numerical evidence that the two systems will be synchronized
and can be expressed by the following definition of distance.Compare with [4].

Definition 1. LetS= S1S2... be a symbolic sequence, using symbolsSi belonging to some alphabet
A . Define a distance between two symbolic sequencesSx = Sx1

Sx2
...Sxp... and Sy = Sy1

Sy2
...Syq

...
by

d(Sx,Sy) = e−n, where n = min{n > 1 : Sxn 6= Syn} .
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We may say that two symbolic sequencesSx andSy are synchronized if their distanced(Sx,Sy),
as defined above, converges to zero and two systemsxn+1 = f (xn) andyn+1 = f (yn) are symbolic
synchronized if the symbolic sequencesSx andSy, of each turning point, are synchronized.

Theorem 1. Let xn+1 = f (xn) and yn+1 = f (yn) be two identical coupled systems, with f given by
(2.2), s the growth number of (2.2), with1 < s6 2 and k∈ [0,1] the coupling parameter. If

∃n∈ N : d(θ(yn+ j ),θ(xn+ j )) 6 e−n, ∀ j > 0,

then, the unidirectional coupled systems (2.1) are completely synchronized if k> s−1
s .

Proof. Considering (2.1) and (2.2),
zn+1 = (1−k) [syn−s+2+2θyn (s−syn−1)−sxn +s−2−2θxn (s−sxn−1)] .

If θyn+ j = θxn+ j , ∀ j > 0, thenzn+1 = (1−k)(1−2θ)szn.
It follows that, zn+m = [(1−k)(1−2θ)s]mzn.

Thus, ifθ = 0, thenzn+m = [(1−k)s]mzn and ifθ = 1, zn+m = [(1−k)(−s)]mzn. In both cases,
zn+m = rmzn, with |r| = (1−k)s.

So, lettingm→ ∞, we have lim
m→∞

rmzn = 0, iff |r| < 1, i.e., |(1−k)s| < 1 ⇒ k > s−1
s , for

k∈ [0,1] , as desired. �

2.2 Synchronization of Bimodal Maps

Consider the bimodal piecewise linear mapfs,r : [0,1] → [0,1] , with slopes±s, ands> 1, defined
by

fs,r(x) =







−sx+1 if 0 6 x < c1

sx+ r −1 if c1 6 x < c2

−sx+s if c2 6 x 6 1

with r = 3+s
2 − s(c1 +c2) and critical pointsc1 = 2−r

2s andc2 = 1+s−r
2s . Recall that any transitive

bimodal map is semi-conjugated to such a map. This map can be written as

fs,r(x) = −sx+1+ θc1 (2sx+ r −2)+ θc2 (−2sx+s− r +1) , (2.3)

with

θci (x) =

{

0, if 0 6 x < ci

1, if ci 6 x 6 1
(i = 1,2).

Note that, in this case, we may defineθ(x) = θc1(x)+ θc2(x), i.e.,

θ(x) =







0 if 0 6 x < c1

1 if c1 6 x < c2

2 if c2 6 x 6 1
.

The symbols{0,1,2} correspond to the usual alphabet{L,M,R} in the symbolic dynamics,
see [8] and [7].
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Theorem 2. Let xn+1 = f (xn) and yn+1 = f (yn) be two identical coupled systems, with f given by
(2.3), s the growth number of (2.3), with1 < s6 2 and k∈ [0,1] the coupling parameter. If

∃n∈ N : d(θ(yn+ j ),θ(xn+ j )) 6 e−n, ∀ j > 0,

then, the unidirectional coupled systems (2.1) are completely synchronized if k> 3s−1
3s .

Proof. Considering (2.1) and (2.3)

zn+1 = (1−k)
{[

−syn +1+ θc1yn
(2syn + r −2)+ θc2yn

(−2syn +s− r +1)
]

−
[

−sxn +1+ θc1xn
(2sxn + r −2)+ θc2xn

(−2sxn +s− r +1)
]}

.

If θc1yn
= θc1xn

= θc1 andθc2yn
= θc2xn

= θc2, then

zn+1 = (1−k)(−1+2(θc1 −θc2))szn.

It follows thatzn+m = [(1−k)(−1+2(θc1 −θc2))s]mzn.
Denotingr = (1−k)(−1+2(θc1 −θc2))s, we havezn+m = rmzn. Thus, if θc1 − θc2 = 0 or 1,

then|r| = (1−k)s< 1⇒ k > s−1
s . If θc1 −θc2 = −1, then|r| = 3(1−k)s< 1⇒ k > 3s−1

3s . So, as
3s−1

3s > s−1
s , to have synchronization it suffices thatk > 3s−1

3s . �

3 Duffing Oscillator Application

Consider two identical unidirectionally coupled Duffing oscillators
{

x′′(t) = x(t)−x3(t)−αx′(t)+ β Cos(wt)
y′′(t) = y(t)−y3(t)−αy′(t)+k[x(t)−y(t)]+β Cos(wt)

(3.1)

wherek is the coupling parameter, see [5] and references therein. We will choose parameter values
for which each uncoupled oscillator exhibits a chaotic behaviour, so if they synchronize, that will
be a chaotic synchronization.

3.1 The Uncoupled Case

The system (3.1) withk = 0 (uncoupled) reduces to

x′′(t) = x(t)−x3(t)−αx′(t)+ βCos(wt).

Attending to the complexity of the above equation, a basic tool is to do an appropriate Poincaré
section to reduce the dimensionality. In our case, we did a section defined byy = 0, since it is
transversal to the flow, it contains all fixed points and captures most of the interesting dynamics.
In order to see how the first return Poincaré map change with the parameters we did bifurcation
diagrams. See in Fig. 1 the variation of the coordinatexn of the first return Poincaré map, versus
the parameterβ ∈ [0.15,0.5], for a fixed value ofα = 0.25. It is clear the growing of complexity
as the parameterβ increases.

We found in the parameter plane(α ,β ), a regionU where the first return Poincaré map be-
haves like a unimodal map and a regionB where the first return Poincaré map behaves like a
bimodal map, see Fig. 2.

Consider parameter values and initial conditions for whicheach uncoupled system exhibits a
chaotic behaviour and its first return Poincaré map is like aunimodal or like a bimodal map. We
choose, for example,w= 1.18,x0 = 0.5, x′0 =−0.3, y0 = 0.9, y′0 =−0.2 andα = 0.4, β = 0.3578,
for the unimodal case andα = 0.5, β = 0.719, for the bimodal case.
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Figure 1: Bifurcation diagram forxn as a function ofβ ∈ [0.15,0.5], for a fixedα = 0.25.

Figure 2: Unimodal and bimodal region in the parameter(α ,β ) plane.

3.2 The Coupled Case

In Fig. 3 the bifurcation diagram for the unidirectional coupled system (3.1) withα = 0.4, β =
0.3578 and the coupling parameter,k∈ [0.001,0.03], shows several kind of regions. In section 4,
we will compute the topological entropy in some points of these regions.

We choose for example the valuesk = 0, k = 0.05, k = 0.13, k = 0.5 andk = 0.301. We
will see that fork larger thank ≈ 0.13 the topological entropy remains constant, but positive.
Meanwhile we find values, of thek parameter, where the entropy is zero, that is, where there
is chaos-destroying synchronization, see [11]. Numerically we can also see the evolution of the
differencez= y− x with k. The synchronization will occur whenx = y. See some examples in
Fig.4 to the unimodal case and in Fig.5 to the bimodal case.

Notice that, the pictures in Fig.4 and Fig.5 confirms numerically the theoretical results given
by theorems 2 and 3, respectively. Forα = 0.4 andβ = 0.3578 (Fig.4) which correspond to
s= 1.272. . . , the synchronization occurs fork > 0.214. . . . For the bimodal case,α = 0.5 andβ =
0.719, (Fig.5), which correspond tos= 2,618. . . , the synchronization occurs fork > 0.873. . . .
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Figure 3: Bifurcation diagram forxn as a function ofk∈ [0.001,0.3], for fixed values ofα = 0.4
andβ = 0.3578.
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Figure 4: Evolution ofx versusy for the unimodal case (α = 0.4, β = 0.3578) for some values of
k: 0.003, 0.005, 0.022, 0.103, 0.111, 0.12, 0.136, 0.195 and 0.306.

4 Symbolic Dynamics

Using techniques from Symbolic Dynamics, see [8] and [7], wecompute the topological entropy
htop for some values of the coupling parameter. Considering the return map for the second equa-
tion of system (3.1), withα = 0.4 andβ = 0.3578 (unimodal case), we obtain fork = 0.13, the
kneading sequence(CRLRRRLRLR)∞. Using kneading theory we obtain the kneading matrix

N(t) =

[

(1− t2)
(

−1+ t2+ t4− t6+ t8
)

1− t20

−(1− t)2
(

−1+ t2+ t4− t6+ t8
)

1− t20

]
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Figure 5: Evolution ofx versusy for the bimodal case (α = 0.5, β = 0.719) for some values ofk:
0.003, 0.014, 0.08, 0.095, 0.1, 0.113, 0.126, 0.875 and 0.916.

and the kneading determinant

D(t) =
(−1+ t)

(

−1+ t2+ t4− t6+ t8
)

1− t20 .

Denotingt∗ = min{t ∈ [0,1] : D(t) = 0} = 0.813014. . . ands the growth number off , then
s= 1

t∗ and the topological entropy of the mapf is htop( f ) = logs≈ 0.20701. By this method, we
compute some values of the topological entropyhtop for other values of the coupling parameterk.
Notice the correspondence of these values for the topological entropy with the evolution ofk in
the bifurcation diagram, see Fig. 3.

k Sx D(t) htop

0 (CRLRRR)∞ (−1+t)[(−1+t2)+t4]
1−t12 0.24061. . .

0.05 (CRLR)∞ −(1+t)(−1+t2)
1−t8 0

0.13 (CRLRRRLRLR)∞ (−1+t)[(−1+t2)(1−t4)+t8]
1−t20 0.20701. . .

0.5 (CRLRRRLRLR)∞ (−1+t)[(−1+t2)(1−t4)+t8]
1−t20 0.20701. . .

0.301 (CRLRRRLRLR)∞ (−1+t)[(−1+t2)(1−t4)+t8]
1−t20 0.20701. . .

As the value ofk grows, the number of initial equal symbols in thex andy symbolic sequences,
grows also. This can be expressed by the distance defined above and it is a numerical evidence
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that the two systems will be synchronized.

k n
Sx : RLRRRLRLRRRLRRR 0.006
Sy : RLRRRLRRRLRRRLRRRLRRRLRRRLRLRR 7
Sx : RLRRRLRLRLRLRRRLRLRLR 0.03
Sy : RLRRRLRRRLRLRLRRRLRRRLRLRRRLRR 7
Sx : RLRRRLRLRRRLRRRLRLRRRLRRRLRRRL0.045
Sy : RLRLRLRRRLRLRLRLRRRLRRRRRLRRRL 3
Sx : RLRRRLRLRRRLRRRLRLRLRLRRRLRRRL0.066
Sy : RLRRRLRLRLRRRLRLRLRLRRRLRLRRRL 9
Sx : RLRRRLRRRLRRRLRRRLRRRLRRRLRLRR0.1
Sy : RLRRRLRRRRRLRLRRRLRRRRRLRLRRRR 9
Sx : RLRRRLRLRRRLRRRLRLRRRLRRRLRRRL0.1577
Sy : RLRRRLRLRRRLRRRLRLRLRLRLRLRLRL 19
Sx : RLRRRLRLRLRLRRRLRRRLRRRLRLRRRL0.1595
Sy : RLRRRLRLRLRLRRRLRRRLRRRLRLRRRL 30
Sx : RLRRRLRLRRRLRRRLRLRRRLRRRLRRRL0.3
Sy : RLRRRLRLRRRLRRRLRLRRRLRRRLRRRL 30

5 Conclusions

When doing Poincaré sections withy = 0, we obtained regionsU andB where the Poincaré map
behaves like a unimodal and bimodal map respectively. By a result from Milnor and Thurston [8]
and Parry it is known that everym-modal mapf : I = [a,b] ⊂ R → I , with growth rates and pos-
itive topological entropyhtop (logs= htop( f )) is topologically semi-conjugated to ap+ 1 piece-
wise linear mapT, with p 6 m, defined on the intervalJ = [0,1], with slope±s everywhere and
htop(T) = htop( f ) = logs, i.e., there exist a functionh continuous, monotone and onto,h : I → J,
such thatT ◦h = h◦ f . If, in addition, h is a homeomorphism, thenf andT are said topologi-
cally conjugated. It is proved that in the case of topological conjugacy the synchronization of the
two piecewise linear mapsT implies the synchronization of the two conjugated m-modal maps f .
Furthermore, by a result of Preston [1], iff is topologically transitive, then the mentioned semi-
conjugacy is in fact a conjugacy. By a result of Blokh [1], a sufficient condition for a mapf to
be topologically transitive ishtop( f ) > (1/2) log 2. So, the study and conclusions about synchro-
nization of piecewise linear unimodal and bimodal maps, expressed in theorems 2 and 3, can be
applied to guarantee the synchronization of more general maps.
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