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Abstract

In this work we discuss the complete synchronization of tdentical double-well Duffing
oscillators unidirectionally coupled, from the point oewi of symbolic dynamics. Working
with Poincaré cross-sections and the return maps assdcidie synchronization of the two
oscillators, in terms of the coupling strength, is chanaptel. We obtained analytically the
threshold value of the coupling parameter for the synclzation of two unimodal and two
bimodal piecewise linear maps, which by semi-conjugacgiearcertain conditions, gives us
information about the synchronization of the Duffing osdilrs.

1 Introduction

Symbolic dynamics is a fundamental tool available to déscdomplicated time evolution of a
chaotic dynamical system. Instead of representing a tajebdy numbers, one uses sequences
of symbols of a finite alphabet which symbols correspond ¢oititervals defined by the turning
points of a mapf. We define the concept of symbolic synchronization in terina distance
between the symbolic sequences generated by the iteraties wfapf on its turning points. We
show numerically that this distance may be considered a gmasure of the synchronizability,
since it converges to zero as the coupling parameter grows.

The analysis of synchronization phenomena of dynamicaésys started in the 17th century
with the finding of Huygens that two very weakly coupled pdnduclocks become synchro-
nized in phase. Recently, the search for synchronizatisnelialved to chaotic systems. Two or
more, identical, separated, chaotic systems starting $lahtly different initial conditions would
evolve in time, with completely different behaviour, buthky are coupled, we may see that after
some time they exhibit exactly the same behaviour. Synékatian is a process wherein two or
more systems adjust a given property of their motion to a combehaviour, due to coupling or
forcing. Various types of synchronization have been stlidi€his includes complete synchro-
nization (CS), phase synchronization (PS), lag synchatioiz (LS) generalized synchronization
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(GS), anticipated synchronization (AS), and so on [2]. Tinpded systems might be identical or
different, the coupling might be unidirectional, (mastéave or drive-response), or bidirectional
(mutual coupling) and the driving force might be determtinisr stochastic.

In [6], Kyprianidis et al. observed numerically the synafimation of two identical single-well
Duffing oscillators as a function of the coupling parametar[5], Vincent and Kenfack studied
numerically the bifurcation structure of a double-well Bxg oscillator coupled with a single-
well one. To detect synchronization they use the quamtithefined by the time during which the
distance between two trajectorie@) andy(t) is not greater them divided by the total time span
on the considered trajectory. They consider that thereristapnization ife < 0.01 and obtain,
for several values ab a region in the parameté, k plane where the oscillators are synchronized.
This is not a complete synchronization because the twolato® are not identical.

In this work we investigate the synchronization of two ideat unimodal and bimodal piece-
wise linear maps. We obtain, analytically, the value of tbepting parameter for which the
complete synchronization is achieved. Then, we examineenigaily the synchronization of two
identical unidirectionally coupled double-well Duffingaitators for fixed values of the parame-
tersa and S in terms of the coupling parametkr We verify that the synchronization threshold
agrees with the theoretical results obtained for the unahadd bimodal piecewise linear maps.

2 Main Results

Consider the coupling of two identical mags.1 = f(X,) andyn+1 = f(yn), denoting byk the
coupling parameter. To be able to say if the two systems arehsgnized we must examine the
differencez, = y, — X, and see if this difference converges to zeron as .

If the coupling is unidirectional

{ Xni1 = f(Xn)
Y1 = F(¥n) +K[f(Xa) = f(yn)]

then
Zor1 = (1-K) [f(yn) — F(x0)]- (2.1)

These two systems are said to be in complete synchronizétiwere is an identity between the
trajectories of the two systems. In [9] and [10] it was essdbthat this kind of synchronization
can be achieved provided that all the conditional Lyapun@ogaents are negative. Since then,
some authors [12] have reported theirs computational @rpats showing that apparently, it is
possible to achieve synchronization without the negativitall conditional Lyapunov exponents
and some others (see [3] and references there in) haveedpbdt sometimes there is brief lack of
synchronization in the region where all the conditional fiyraov exponents are negative. How to
explain these situations? In fact, there is a numericalwiagn coupling identical systems. Near
the synchronization manifold, the two identical systenwkinlike in complete synchronization
due to finite precision of numerical calculations (see [1H$ a matter of fact, the negativity of
the conditional Lyapunov exponents is a necessary conditiothe stability of the synchronized
state (see [2]). The negativity of the conditional or trarse Lyapunov exponents is a mathemati-
cal expression of the decreasing to zero of the logarithmagecof the distance of the solutions on
the transverse manifold to the solutions on the synchrtinizananifold. So, if there is a strong
convergence of this distance to zero, this average mustaseno zero. But the converse is not



104 A Canecocet al.

true. Indeed, even when all the conditional Lyapunov exptsare negative, it is possible that
some orbits escape from the synchronization manifold. iBtosly a weak synchronization, in the
sense of Milnor (see [11]). Only Lyapunov functions give essary and sufficient conditions for
the stability of the synchronization manifold. Besides fénet that the stability based on the nega-
tivity of the conditional Lyapunov exponents be only a wetdbdity, there are other phenomena
like bubbling, riddling and blowout bifurcation that canpéxin the brief and persistent events of
desynchronization in the region where all the conditionalfunov exponents are negative, see [2]
and references therein. When coupling two systems, as tipicg parametek grows from zero,
we may find first a regioiike, ke max) Where there is weak (in the sense of Milnor) synchronization
and then a regiofk: max, +) where there is strong (in the topological sense) synchatioiz, see
[11] and references therein. Note that, if the coupling ivwe more then two systems (network
[3]) the synchronization interval may be bounded

Nevertheless, if the coupled systems are defined by pieedimsar maps, which is the case
we are going to study in the next section, the weak and thagtroncepts of synchronization
coincides and it occurs fdr> k.. The synchronization threshokd obtained from the assumption
that all conditional Lyapunov exponents are negative, jg&ssed in terms of the Lyapunov expo-
nent of the local mag. If this local mapf is a piecewise linear map with sloges everywhere,
then its Lyapunov exponent is exactly st

2.1 Synchronization of Unimodal Maps

Consider the tent mafy: [0,1] — [0, 1] defined by

sx—s+2, if0<

1
X

N
Rol-

S—SX |

0l X
NN

Recall that any piecewise monotonic map of positive entanpy growth numbesis topologi-
cally semi-conjugated to a piecewise linear map with stapeverywhere, see [8]. This map can
be written as

fs(X) = sx—s+2+20(s—sx—1), (2.2)
with

[0 ifogx<1-1%,
Q(X)_{l if1—1<x<1.

The symbols{0,1} correspond to the usual alphaljét R} in the symbolic dynamics, see [8] and
[7]. As the value ok grows, the number of initial equal symbols in thandy symbolic sequences
(see section 4), grows also. This is a numerical evidenaghbawo systems will be synchronized
and can be expressed by the following definition of dista@mampare with [4].

Definition 1. LetS=5,S,... be a symbolic sequence, using symtglselonging to some alphabet
</ . Define a distance between two symbolic sequefigesS, S ...S,... and§ =S, §,..§; ...

by
d(S.§)=¢€", wheren=min{n>1:S #S,}.
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We may say that two symbolic sequen&andS, are synchronized if their distancgS,, S, ),
as defined above, converges to zero and two systgms= f(x,) andyn;1 = f(yn) are symbolic
synchronized if the symbolic sequen&sandS,, of each turning point, are synchronized.

Theorem 1. Let .1 = f(X,) and w1 = f(yn) be two identical coupled systems, with f given by
(2.2), s the growth number of (2.2), with< s< 2 and ke [0, 1] the coupling parameter. If

INEN:d(8(Ynij),0(xnyj) <€, Vj=0,
then, the unidirectional coupled systems (2.1) are corafyletynchronized if k- 5;51

Proof. Considering (2.1) and (2.2),

Znr1=(1-K)[Sth—S+24+28,,(S—Sph—1) =S¥ +S—2— 26, (S—s% —1)].

If 6., =6k, Vi =0,thenz 1 = (1K) (1-26)sz.

It follows that, zy.m = [(1—K) (1—20)5"z,.

Thus, if6 =0, thenz, m=[(1—K)g"z,and if @ = 1, z,, m = [(1— K) (—S)]™ z». In both cases,
Znim ="z, with |r| = (1—-K)s.

So, letingm — o, we have lim "z, =0, iff |r| <1, ie.,|(1-Ks <1=k> s, for
k € [0,1], as desired. [ |

2.2 Synchronization of Bimodal Maps

Consider the bimodal piecewise linear mip: [0,1] — [0,1], with slopests, ands > 1, defined
by

sx+r—1 if g<x<ocp

—sx+1 if 0<x<
fsr(X) =
—SX+S if co<x«<1

with r = 3%5 —s(c1+¢p) and critical pointsc; = % andc, = % Recall that any transitive
bimodal map is semi-conjugated to such a map. This map camitiemas

fsr(X) = =S+ 14 6, (2SX+r1 —2) + B, (—2Sx+s—r+1), (2.3)
with

] 0,if0<x<g
GQ(X)_{ 1ifg<x<1

Note that, in this case, we may defi@éx) = 6, (x) + 6, (x), i.e.

B(x)=<¢ 1 ifcg<x<cy .

0 fogsx<qg

2 if Co < XK 1

The symbols{0,1,2} correspond to the usual alphaldét, M,R} in the symbolic dynamics,
see [8] and [7].
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Theorem 2. Let %1 = f(X,) and w1 = f(yn) be two identical coupled systems, with f given by
(2.3), s the growth number of (2.3), with< s < 2 and ke [0, 1] the coupling parameter. If

INEN:d(O(Yn+j), (%)) <€, Vj=>0,
then, the unidirectional coupled systems (2.1) are corafyletynchronized if k- 353—;1
Proof. Considering (2.1) and (2.3)

Zhi1= (1-Kk { [—S)h + 1+ 6, (2% +T1 —2)+ 6, (—2S%h+S—T+ 1)}
— [—sxq + 1466, (2% +T1 —2)+ 6, (—29%+s—T1+ 1)} } .
If 8, = 6, = 6, andb, =6, =6, then
Zop1 = (1—K) (=1+2(6c, — 6,)) St

It follows thatzy m = [(1—K) (—1+2(6c, — 6c,)) 9" zn.
Denotingr = (1—k) (—=1+2(6;, — 6,)) S, we havez,m =r"z,. Thus, if 6, — 6, =0 or 1
then|r| = (1-k)s<1=k> L. If 6, — 6, =—1,thenr|=3(1-k)s< 1=k> %1 So, as

31 > -1 to have synchronization it suffices that- 332 |

3 Duffing Oscillator Application

Consider two identical unidirectionally coupled Duffingcokators

{ X' (t) = x(t) —x3(t) — ax (t) + B Cogwt) 3.0)
y'(t) = y(t) =y (1) — ay (1) +k[x(t) - y(t)] + B Cogwt) '
wherek is the coupling parameter, see [5] and references therednwilchoose parameter values
for which each uncoupled oscillator exhibits a chaotic be&ha, so if they synchronize, that will
be a chaotic synchronization.

3.1 The Uncoupled Case

The system (3.1) witlk = 0 (uncoupled) reduces to
X'(t) = x(t) —x3(t) — aX (t) + BCogwt).

Attending to the complexity of the above equation, a bagititoto do an appropriate Poincaré
section to reduce the dimensionality. In our case, we didcticsedefined byy = 0, since it is
transversal to the flow, it contains all fixed points and cegstunost of the interesting dynamics.
In order to see how the first return Poincaré map change witparameters we did bifurcation
diagrams. See in Fig. 1 the variation of the coordingtef the first return Poincaré map, versus
the parameteB < [0.15,0.5], for a fixed value ofr = 0.25. It is clear the growing of complexity
as the parametg? increases.

We found in the parameter plarie, 3), a region% where the first return Poincaré map be-
haves like a unimodal map and a regighwhere the first return Poincaré map behaves like a
bimodal map, see Fig. 2.

Consider parameter values and initial conditions for widalh uncoupled system exhibits a
chaotic behaviour and its first return Poincaré map is likmianodal or like a bimodal map. We
choose, for exampley = 1.18,% = 0.5, x5 = —0.3,yp = 0.9, y; = —0.2 anda = 0.4, 3 = 0.3578,
for the unimodal case amal= 0.5, 3 = 0.719, for the bimodal case.
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Figure 1: Bifurcation diagram fox, as a function of3 € [0.15,0.5], for a fixeda = 0.25.

Figure 2: Unimodal and bimodal region in the paraméter3) plane.

3.2 The Coupled Case

In Fig. 3 the bifurcation diagram for the unidirectional pted system (3.1) witlr = 0.4, B =
0.3578 and the coupling parametkr: [0.001,0.03], shows several kind of regions. In section 4,
we will compute the topological entropy in some points ostheegions.

We choose for example the valuks= 0, k = 0.05, k = 0.13 k= 0.5 andk = 0.301. We
will see that fork larger thank ~ 0.13 the topological entropy remains constant, but positive.
Meanwhile we find values, of thie parameter, where the entropy is zero, that is, where there
is chaos-destroying synchronization, see [11]. Numdyicaé can also see the evolution of the
differencez = y — x with k. The synchronization will occur when=y. See some examples in
Fig.4 to the unimodal case and in Fig.5 to the bimodal case.

Notice that, the pictures in Fig.4 and Fig.5 confirms nunadiycthe theoretical results given
by theorems 2 and 3, respectively. For= 0.4 and = 0.3578 (Fig.4) which correspond to
s=1.272..., the synchronization occurs far> 0.214.... For the bimodal case = 0.5 andf =
0.719, (Fig.5), which correspond t8= 2,618..., the synchronization occurs far> 0.873....
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Figure 3: Bifurcation diagram fax, as a function ok € [0.001,0.3], for fixed values ofr = 0.4
andp = 0.3578
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Figure 4: Evolution ok versusy for the unimodal casex(= 0.4, B = 0.3578) for some values of
k: 0.003 0.005, 0022, 0103, 0111, 012, 0136, 0195 and (BO6.

4 Symbolic Dynamics

Using techniques from Symbolic Dynamics, see [8] and [7].campute the topological entropy
htop for some values of the coupling parameter. Consideringehem map for the second equa-
tion of system (3.1), witlh = 0.4 andf3 = 0.3578 (unimodal case), we obtain fore= 0.13, the
kneading sequend€RLRRRLRLF. Using kneading theory we obtain the kneading matrix

(1-t2) (—1+t2 4+t —t®+18)  —(1-t)? (—14+t2+t*—t0+1B)

N(®) = 1-t20 1-t20
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Figure 5: Evolution ok versusy for the bimodal casea( = 0.5, 8 = 0.719) for some values df
0.003 0.014, 008, 0095, 01, 0113, 0126, 0875 and M16.

and the kneading determinant

(—1+41) (—14+t2+t*—15+19)

D(t) = —

Denotingt* =min{t € [0,1] : D(t) =0} = 0.813014.. ands the growth number of, then
S=g L and the topological entropy of the mdps heop(f) = logs~ 0.20701 By this method, we
compute some values of the topological entrbpy, for other values of the coupling parameker
Notice the correspondence of these values for the topabagittropy with the evolution of in
the bifurcation diagram, see Fig. 3.

K S D) Pron
0 (CRLRRR® (1) [Ejtlljtz)“ﬂ 0.24061 ..
0.05 (CRLR® % 0
0.13 | (CRLRRRLRLR | Z2IE 1*:22 -9+ 1 520701 ..
05 | (CRLRRRLRLR | “EOICHOROMT g 50701
0301 | (CRLRRRLRLR | SO | 656701

As the value ok grows, the number of initial equal symbols in thandy symbolic sequences,
grows also. This can be expressed by the distance define@ amolit is a numerical evidence
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that the two systems will be synchronized.

k n
: RLRRRLRLRRRLRRR 0.006
:RLRRRLRRRLRRRLRRRLRRRLRRRLRLRR 7
: RLRRRLRLRLRLRRRLRLRLR 0.03
: RLRRRLRRRLRLRLRRRLRRRLRLRRRIRR 7
: RLRRRLRLRRRLRRRLRLRRRLRRRLRRRL0O45
: RLRLRLRRRLRLRLRLRRRLRRRRRLRRRL 3
:RLRRRLRLRRRLRRRLRLRLRLRRRLRRRL0O66
:RLRRRLRLRLRRRLRLRLRLRRRLRLRRRL 9

: RLRRRLRRRLRRRLRRRLRRRLRRRLRLRR.1
: RLRRRLRRRRRLRLRRRLRRRRRLRLRRRR 9
: RLRRRLRLRRRLRRRLRLRRRLRRRLRRBI577
: RLRRRLRLRRRLRRRLRLRLRLRLRLRLRL 19
: RLRRRLRLRLRLRRRLRRRLRRRLRLRRRL1595
: RLRRRLRLRLRLRRRLRRRLRRRLRLRRRL 30
: RLRRRLRLRRRLRRRLRLRRRLRRRLRRRD.3
: RLRRRLRLRRRLRRRLRLRRRLRRRLRRRL 30

S PN RN R N NN RO R QIR N R RN IR

5 Conclusions

When doing Poincaré sections with= 0, we obtained region® and.% where the Poincaré map
behaves like a unimodal and bimodal map respectively. Bgaltrérom Milnor and Thurston [8]
and Parry it is known that evergr-modal mapf: | = [a,b] C R — I, with growth rates and pos-
itive topological entropyop (I0gs = hyp(f)) is topologically semi-conjugated to+ 1 piece-
wise linear magr, with p < m, defined on the interval = [0, 1], with slope+s everywhere and
hop(T) = hiop(f) = logs, i.e., there exist a functioh continuous, monotone and onto; | — J,
such thafT oh = ho f. If, in addition, h is a homeomorphism, thefiand T are said topologi-
cally conjugated. It is proved that in the case of topoldgicajugacy the synchronization of the
two piecewise linear mapk implies the synchronization of the two conjugated m-modapsaf.
Furthermore, by a result of Preston [1],fifis topologically transitive, then the mentioned semi-
conjugacy is in fact a conjugacy. By a result of Blokh [1], dfisient condition for a mapf to

be topologically transitive isop(f) > (1/2)log 2. So, the study and conclusions about synchro-
nization of piecewise linear unimodal and bimodal mapsresged in theorems 2 and 3, can be
applied to guarantee the synchronization of more generpbma
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