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SUMMARY

A new active-contraction visco-elastic numerical model of the pelvic floor (skeletal) muscle is presented.
Our model includes all elements that represent the muscle constitutive behavior, contraction and relaxation.
In contrast with the previous models, the activation function can be null. The complete equations are shown
and exactly linearized. Small verification and validation tests are performed and the pelvis is modeled
using the data from the intra-abdominal pressure tests. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Pelvic floor muscles are neuronally controlled and held together by connective tissue arranged in a
unique three-dimensional (3D) arrangement. Together, the structure formed of three classes of tissue
affects pelvic organ support and function. They are tonically active in all positions and contract
phasically in reaction to bladder filling and intra-abdominal pressure (IAP), whereas activity ceases
with micturition. In this study we develop a biomechanical model of skeletal muscles when the
activation falls with no excitation.

From the mechanical viewpoint, the material behavior of muscles is highly nonlinear. They
undergo large deformations, changing shape significantly. However, models of this kind require
realistic constitutive relations between stress and strain measures that are difficult to determine in
an inhomogeneous material. Since data measuring is intricate, simulations are hard to validate. We
ensure that the mathematical problem is well-posed with numerical verification.

The present approach is based on the use of the finite element method (FEM). The material
behavior of the muscle is split into an active (representing the movement of the actin and myosin
filaments—the muscle contraction) and a passive part (representing the connective tissue in series
with the sarcomeres and the parallel connective tissue that surround the contractile element).
To describe the passive part, special unit cells consist of one triangular shell element (S3R in
ABAQUS). The passive properties can be described by nonlinear hyperelastic and incompressible
constitutive relations [1]; moreover, because of the presence of a single muscle fiber direction they
may be considered as transversely isotropic.
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The first mathematical model was created by Archibald Vivian Hill [1–3] and was one-
dimensional (1D). It was composed of three elements: a (active) contractile element in series with
an (passive) elastic element, both of them in parallel with a third (passive) elastic element. This
phenomenological Hill-type model accounts for the force–length–velocity property of muscle and
can be used to calculate the muscle force if values of muscle length, velocity, and muscle activation
are known. The contractile element is responsible for the free change in length of the muscle (when
not activated) and for the force production in the muscle (when activated). The model discussed
here is derived from the inaugural Hill model.

These types of models are used in the movement analysis and muscle performance studies
of multibody dynamics [3–16] in which current medical imaging capabilities, segmentation and
meshing software have been used to capture and model the 3D geometry and movement of skeletal
muscles. Recently, Van Loocke et al. [17] provided experimental data on the compression behavior
of skeletal muscles along the fibers and transversely, and it was compared with those obtained by
Grieve and Armstrong [18] and Bosbbom et al. [19].

In some cases, the evaluation of the unknown kinematic, force, activation and neural stimulation
variables in a time interval involves forward dynamic calculations and requires the resolution of
optimal control problems. An important property of the discrete models proposed by Otten and
Hulliger [20] and van Leeuwen and Kier [21] is the separation of the tissue in a fiber–solid part
and a fluid part. The solid part is described by hydrostatic pressure. In a continuum model, both
aspects are interrelated. His model includes hydrostatic pressure as a property of the whole tissue
and requires volume conservation as a geometrical constraint.

The Hill model can be used to calculate the generated force from electromyography (EMG)
measurements at the middle of the muscle. Assuming that each muscle unit produces the same
force, the total muscle force is the sum of all parallel units in each muscle.

2. GOVERNING EQUATIONS

The constitutive equation adopted in this work for 3D skeletal muscles includes both their passive
and active behaviors. Here we present a modified form of the incompressible transversely isotropic
hyperelastic model proposed by Humphrey et al. [22] for passive cardiac tissues. Similar to the
skeletal muscles, the anisotropy of the passive cardiac model follows the criterion of Spencer [23]
for fiber-reinforced incompressible hyperelastic composites. The strain energy density function
follows the Humphrey model, which corresponds to the sum of the terms of stress fiber and
embedding matrix, assumed to be isotropic. The modifications we make here ensure compatibility
between the passive and active longitudinal behaviors of the skeletal muscles in tension. They
are consistent with the available experimental results on passive compression of skeletal muscles
presented by Grieve and Armstrong [18]. This is consistent with the 1D models of skeletal muscles
proposed by the Hill model.

The constitutive equation for the Cauchy stress tensor r has the contributions of the incom-
pressibility or quasi incompressibility of the muscle, and an assumed embedding matrix as well
as the longitudinal (tension) behavior of the muscle fibers:

r=rincomp+rmatrix+rfiber (1)

The first contribution, in the case of the perfect incompressible (J=detF=1), has the form

rincomp=−pI (2)

where p is the hydrostatic pressure and I is the second-order identity tensor; in the case of quasi
incompressible it has the following form:

rincomp= 1

D

dUJ

dJ
I (3)

where D is the compressibility compliance and UJ is an energy function that grows with J in
order to penalize the volume change, and grows unbounded as J→0, to prevent material collapse.
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Before specifying the constitutive laws for rmatrix and rfiber, the conditions �it3=0, it ∈{1,2,3},
must be introduced; it is sufficient to specify p. The condition �33=0 imposes a particular form
for the pressure, which is easily shown to be

p= 1
3 [2U ′I (tr[bp]−2C33)+� f U

′
f (np⊗np)] (4)

The deformation gradient is decomposed as

F=
[
Fp 0

0 F33

]
(5)

with

F33=det[Fp]−1 (6)

The left Cauchy–Green tensor, b, is given by

b=

⎡
⎢⎢⎣
FpFT

p︸ ︷︷ ︸
bp

0

0 F2
33

⎤
⎥⎥⎦ (7)

and the right Cauchy–Green tensor, C, follows its definition:

C=

⎡
⎢⎢⎣
FT
pFp︸ ︷︷ ︸
Cp

0

0 F2
33

⎤
⎥⎥⎦ (8)

Remark 1
Antman and Schuricht [24] provide a more complete derivation for the incompressibility problem
in a shell. Ours is a convenient method appropriate for the present application.

The matrix contribution is isotropic hyperelastic, similar to those adopted in other soft tissues;
the specific form is

rmatrix=2bcexp[b(I C1 −3)]dev[bp] (9)

where b and c are constitutive constants, bp is the left Cauchy–Green strain tensor and dev[•]=
(•)− 1

3 tr[•]I with •∈Lin being the deviatoric operator in the spatial configuration (a projection
linear transformation).

The Cauchy stress contribution of the muscle fibers has the form

rfiber=dev[� f Tnp⊗np] (10)

where it is assumed that the muscle is incompressible. The scalar T represents the nominal stress
in the fiber, the force per unit area of the cross-section of its reference configuration, and the
current muscle fiber vector np has the form:

np= FpNp

� f
(11)

with � f being the stretch ratio of the muscle fibers, which have the direction of the unit vector
Np in the undeformed configuration given by

� f =
√
NT

pCpNp (12)
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Remark 2
Consider � f = L/LM

0 in the reference configuration with direction N and an elementar length ds0,
whereas in the current configuration we have the direction N and an elementar length ds, then
dsn=Fds0N←→� f n=FN and �2f n.n=(FN) ·(FN).

The longitudinal muscle stress T is additively decomposed as

T =T PE+T SE (13)

where T PE and T SE are the parallel and series elements.
The stress TCE in the contractile element equals the stress in the series elastic element:

TCE=T SE (14)

and must be given in general by the product of

1. A function of the contractile stretch with maximum value at the muscle rest length.
2. A function of the strain rate of the contractile element, which corresponds, for the contracting

rates, to Hill’s hyperbolic law.
3. An activation variable �∈[�min,1] with �min�0.

Wemake use of the multiplicative stretch split of the fiber stretch (� f ) into a contractile stretch (�CE)

and an elastic stretch (�SE):

� f =�CE�SE (15)

This corresponds to an additive Hencky strain decomposition.
The stress T PE in the parallel elastic element is a product of the maximum muscle stress at rest

(at rest, the muscle can withstand stresses up to TM
0 but no more):

T PE(� f )=TM
0 f PE(� f ) (16)

where

f PE(� f )=
{
2aAexp[a(� f −1)2](� f −1), � f >1

0 otherwise
(17)

which is a rederived version of the proposal by Pandy et al. [3]. Constitutive parameters a and
A were introduced, for cardiac tissue, by Humphrey and Yin [25]. The stress T SE in the series
element is given by an analogous decomposition

T SE(�SE,�CE)=T M
0 f SE(�SE,�CE)

with

f SE(� f ,�
CE)= 1

10 {exp[100(� f −�CE)]−1}, � f ��CE (18)

This expression was obtained by rederiving Pandy et al. [3] equations. The functions T PE(� f )

and T SE(�SE,�CE) are strictly positive. A representation of the two non-dimensional forces and
their sum is shown in Figure 1.

The TCE stress follows the relatively standard form, adapted from Pandy et al. [3]:
TCE(�CE, �̇

CE
,�)=T M

0 f CEL (�CE) f CEV (�̇
CE

)�

where

f CEL (�CE)=8

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�CE
2−�CE+0.25, 0.5��CE<0.75

−�CE
2+2�CE−0.875, 0.75��CE<1.25

�CE
2−3�CE+2.25, 1.25��CE<1.5

0 otherwise

(19)
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Figure 1. Passive ( f PE) and active ( f SE) non-dimensional forces.

Figure 2. Representation of f CEL for our model and references [26, 27].

and

f CEV (�̇
CE

)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(�̇
CE+10)�, �̇

CE�−10s−1

−arctan(−0.5�̇
CE

)

arctan(5)
+1, −10s−1<�̇

CE
<2s−1

(�̇
CE−2)�+ �

4arctan(5)
+1, �̇

CE�2s−1

(20)

The functions f CEL and f CEV are proposed here for the first time and avoid finding the inverse func-

tions. The value of � is sufficiently small, and is introduced to avoid f CEV =0 when �̇
CE�−10s−1.

The specific form (19) is introduced in this work as the definite remedy for the well-known discon-
tinuities. Alternatives to this function were provided recently by Böl and Reese [26] and Mclean

et al. [27]. The functions f CEL and f CEV map (�CE, �̇
CE

)∈]0,+∞[×R into TCE∈R. A comparison
between the three models can be seen in Figure 2.

Our non-smooth f CEV function is represented in Figure 3. We can note the following:

1. Böl and Reese use � f and �̇ f replacing �CE and �̇
CE

, respectively. This simplification
is required to circumvent the singularity problem. We solved the singularity problem and
therefore can do without this simplification.

2. Our model, in contrast with all other we have seen in the literature, allows u=0 (null neural
stimulus) with no singularity problems.
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Figure 3. Representation of f CEV for our model and Reference [26].

3. In contrast with the model by Böl and Reese (see Table III in [26]), our model requires no
parameters.

The time-dependent activation process involves the contractile element and is caused by neural
excitation. It is represented at the macroscopic level by the first-order ordinary differential equation
(ODE) and follows Pandy et al. [3]:

�̇(t)= 1

�rise
(1−�(t))u(t)+ 1

�fall
(�min−�(t))(1−u(t))

Remark 3
The contraction process is controlled neurologically, not all muscles fibers are simultaneously
excited. However, we consider that hypothesis as valid.

Remark 4
The total contraction muscle force depends on the number of excited fibers.

Remark 5
Muscle activation appears as an intermediate variable integrating the sequence of neural discharge
and describing the level of contraction. An increase of tension implies an increase in the stimulation
rate.

Remark 6
In an isometric test, the tension depends only on the activation function, since � f =�CE and
f CEL f CEV =1.
In this equation the �rise and �fall are characteristic time constants for activation and deactivation

of the muscle, and �min is the minimum value of activation. The function u(t) ranges from 0
to 1, and represents the neural excitation, and is the input data for the model. The activation �(t)
ranges from �min�0 to 1. The time-dependent inputs are the normalized activation level of the
muscles (u) and the muscle length changes (�PE).

The present constitutive behavior can be written by

r=−pI+2dev
[
F

�U
�C

FT
]

which represents the Cauchy stress.
The incompressibility constraint is imposed, and the time rate of change of the internal variable

�CE is governed by a differential inclusion of the type

�̇
CE∈LCE(� f ,�

CE,�, �̇ f ,u)
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The other internal variable is controllable by the mentioned differential equation of �̇(u, t). In
terms of strain energy U is given by

U=U (C,�CE)=Umatrix(I
C
1 )+UPE(� f )+USE

(
� f

�CE
,�CE

)

3. INTEGRATION

To solve the constitutive problem stated before, we need to obtain the value of �CE in all study
cases, like isometric, isotonic and quick-release in different situations: with or without neural
excitation, and/or with and without load:

�̇
CE

(� f ,�
CE,�, �̇ f ,u)= f CE

−1
V (� f ,�

CE,�, �̇ f ,u) (21)

�̇(u, t)= 1

�rise
(1−�(t))u(t)+ 1

�fall
(�min−�(t))(1−u(t)) (22)

The method used is backward Euler (implicit and unconditionally stable) for the two differential
equations above mentioned, with initial conditions. These equations are

��̇
CE

��CE
=
(

� f CEV

��CE

)−1
(� f ,�

CE,�, �̇ f ,u) (23)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

�

� f CEV

��CE
,

�

4arctan(5)+1< f CEV <0

2arctan(5)
� f CEV

��CE

cos2(arctan(5)( f CEV −1))
otherwise

(24)

and with �CE(0)=0.9959455676, �(0)=u(0)=0. Also, � f (0)=1. The value of �CE(0) is obtained
by the following system:

f CEV f CEL (�CE)�= f SE(� f ,�
CE) (25)

f CEV �= 1 (26)

� f = 1 (27)

without deformation. The constants are taken from Humphrey and Yin [25], for incompressible
isotropic cardiac tissue (see Table I). Note that our �min is zero because no singularity occurs. The
ratio between the time constants is usually �rise/�fall=0.1.

Table I. Material properties for the cardiac tissue.

Variable Value

a 12.43
b 23.46
c 3.79517355×10−4MPa
A 5.7270836×10−4MPa
T M
0 6.5586872×101MPa

�rise 20×10−3 s
�fall 200×10−3 s
�min 0
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As we see in Equation (23), to find the root we have used the trust region method. All equations
mentioned above are implemented in a module of the subroutine UMAT from ABAQUS. There
are three dependent state variables: � f , �CE and �.

4. CONSISTENT LINEARIZATION

The reduced Cauchy stress tensor is calculated using the following constitutive formula:

rp=2U ′I (bp−b33Ip)+� f U
′
f (np⊗np) (28)

The tangent modulus (consisting of the derivative of rp with respect to ė) is required to calculate
the stiffness matrix:

Cis jsksls =
1

2

(
��pis js

�Fksls
Frsls+

��pis js

�Frsls
Fksls

)
(29)

Observing (29) we conclude that the derivatives of U ′I , bp, B33, � f and U ′f are required to
determine the tangent modulus. The corresponding derivatives of np are filtered by Abaqus, due to
minor-symmetry. The calculation of these derivatives is straightforward and was performed with
Mathematica 6.0 software. The only exception is the one for U ′f that requires the derivative with

respect to �CE, obtainable by using the implicit function theorem. We, therefore, present the details
of this calculation.

After integration, the residual of contractile element stretch follows the backward-Euler form:

r�=�CE−�CEold−�t �̇
CE

(� f ,�
CE) (30)

from which (when the solution holds, r�≈0) the derivative of �CE with respect to F is obtained
by implicit differentiation:

��CE

�F
=

⎛
⎜⎜⎜⎝

�t
��̇

CE

��f

1−�t
��̇

CE

��CE

⎞
⎟⎟⎟⎠ �� f

�F
�0 (31)

We can directly obtain the derivative of U ′f as

�U ′f
�F
= �FPE

�� f

�� f

�F
+ �FSE

�� f

�� f

�F
+ �FSE

��CE
��CE

�F︸ ︷︷ ︸
dFSE/dF

(32)

=

⎡
⎢⎢⎢⎢⎣

�FPE

�� f
+ �FSE

�� f
+ �FSE

��CE

⎛
⎜⎜⎜⎜⎝

�t
��̇

CE

�� f

1−�t
��̇

CE

��CE

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦

�� f

�F
(33)

In (32), the derivative of FPE with respect to � f is straightforward and therefore all quantities are
easily calculated.

The derivative of rp with respect to Fp follows the chain rule

�rp
�Fp
= 2(bp−b33Ip)⊗

(
�U ′I
�Fp
+ �U ′I

�b33

�b33
�Fp

)
+2U ′I

(
�bp

�Fp
−Ip⊗ �b33

�Fp

)

+U ′f (np⊗np)⊗ �� f

�Fp
+� f (np⊗np)⊗

�U ′f
�Fp

(34)
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The Voigt notation form of C is identified as Cv and given by the components iv , jv as

Cviv jv
= 1

4 (Cis(iv) js(iv)ks( jv)ls( jv)+C js(iv)is(iv)ks( jv)ls ( jv)

+Cis(iv) js(iv)ls( jv)ks( jv)+C js(iv)is(iv)ls ( jv)ks( jv)) (35)

5. NUMERICAL EXAMPLES

The thickness of pelvic floor is obtained from Hoyte et al. [28] and it is equal to 6mm. The
transverse shear stiffnesses are k11=k22=2.982574837×105MPa. The distributed load applied in
all elements is IAP=1.43×10−2MPa, which represents the standing cough state [29].
5.1. Verification

We will begin with three schematic examples (isometric, isotonic and quick-release), see Figures 4.
The square membrane has dimensions 10mm along the sides and 1mm thickness. It is discretized
by 14×14 triangular shell elements.

In the isometric test, the whole boundary is fixed in directions 1 and 2. The neural excitation
of 0.5 is applied and no load is used. The initial conditions are u(0)=0, �(0)=0 and �CE(0)=
0.99594534892. In the isotonic test, the material is stretched along the direction 1 of the fibers but
is allowed to deform freely along direction 2. The boundary nodes in the left side are fixed in the
direction 1 and the middle node of this side is also fixed in the direction 2. Then, the membrane
is subjected to a traction along direction 1, increasing with time until it reaches the value of
0.6MPa. Thereafter, the applied traction in kept constant and the neural excitation is the same as
before and removed 1 s later. After the initial passive load, the Cauchy stress reaches a value of
0.59, consistent with a nominal stress of 0.6MPa multiplied by the quotient between the reference
and current cross-section areas. The effect of the activation reduces the muscle length along the
direction fiber, and incompressibility implies that the cross-section area grows. Finally, the end of
the neural excitation leads the system back to the state it was before the activation started. Similar
results (with a distinct model) can be seen in [30].

Finally a quick-release test of the muscle is performed. The membrane is stretched 1% of the
shell dimensions while stimulating to tetanus, then it is released. The initial conditions used are
u(0)=1.0, �(0)=1.0 and �CE(0)=0.976073.

Figure 4. Isometric, isotonic and quick-release tests.
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Figure 5. Isometric, isotonic and quick-release test: (a) isometric test; (b) isotonic
test; and (c) quick-release test.

The evolutions in time of the Cauchy stress �11 and the displacement in direction 1 of the right
boundary of the membrane, for the isotonic test, are shown in Figure 5. In the isometric test, the
time variation of the corresponding stress has the same shape as the evolution of the activation
variable, since the length of the membrane along the fiber direction is constant. In case of the
isotonic test, the stress curve increases linearly with time in the half second. For the quick-release
test, the Cauchy stress is similar to the isometric test once this test involves the static contraction
of the membrane without any visible movement before the stretch.
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Figure 6. Undeformed mesh obtained from the point-set: two perspectives.

5.2. Pelvis

Owing to the thin nature of the levator ani muscle, it is very difficult to construct geometrical
models of the pelvic floor from MRI or CT data. Although this has been done successfully in
the past for visualization purposes [11], we found these models inadequate for a finite element
simulation, since the meshes used were inappropriate. Hence, we opted to use the geometrical
point data obtained from cadaver measurements by Janda et al. [31] to reconstruct the surface of
the levator ani muscle. All measurements were performed on one embalmed 72 year old female
cadaver obtained for scientific research with no known pathologies of the pelvic floor. The result
is a 3D point-set of the pelvic floor that is available on the internet. We constructed a surface
from this point-set in two consecutive steps. First, the edges of the muscles are defined using
splines. Afterward, from these splines, NURBS surfaces are created using the Rhino software.
Once triangulated, these surfaces provide a good geometrical model for an FEM simulation. The
perspectives (x− y) and (x−z) of the undeformed mesh are shown in Figure 6.

The thickness of pelvic floor is obtained from Hoyte et al. [28] and it is equal to 6mm. The
transverse shear stiffnesses are k11=k22=2.982574837×105MPa. The distributed load applied
in all elements is IAP=1.43×10−2MPa, which represents the standing cough state [29]. While
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Figure 7. u1−u2 diagram for the pelvis.

Figure 8. Pelvis simulation: von-Mises stress contour plots for steps 3 and 5.

maintaining the IAP, the muscle is activated for approximately 2 sec with a neural excitation
u(t)=0.5. After that, the muscle is deactivated. The initial direction of the fibers is chosen to be in
the direction of the maximum principal Cauchy stress in the elements when applying only anIAP.

The u1−u2 diagram is shown in Figure 7.
The Cauchy stress contour plots for steps 3 and 5 are shown in Figure 8. It is clear that the IAP

applied to the inner surface of the levator ani has the expected effect of widening the urogenital
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Figure 9. Pelvis u1 displacement and S11 stress.

hiatus. Figures 8 and 9 show that the muscle activation has the expected opposite effect and also
a rising effect. It is also important to observe that when the muscle is passively submitted to an
IAP, the regions of maximum stress occur at the sling attachment points of the levator ani, where
the most postpartum lesions occur.

6. CONCLUSIONS

In this work we developed a new constitutive model and FE implementation of the passive and active
behaviors of the skeletal muscles that extend the previous related works in the field [30, 32, 33].
One of the simulations involved passive and active deformations of a muscle of the pelvic floor.
The present incorporation in the computational model of the three elements is relevant to model
faster contractions, as, for instance, to prevent urinary incontinence in coughing situations.
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