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Spectrum of the Laplacian on hyperbolic surfaces

Clara Grácio and José Sousa Ramos

Abstract

Our main tool is a method for studying how the hyperbolic metric on a

Riemann surface behaves under deformation of the surface. We study the

variation of the first eigenvalue of the Laplacian and the conductance of the

dynamical system, with the Fenchel-Nielsen coordinates, that parameterizes

the surface.

1 Introduction

The present paper is part of a program to understand the behavior of the spectrum,
in particular of the first eigenvalue λ1(M) of the Laplacian of a compact Riemannian
manifold M , endowed with a metric of constant curvature −1. So a fundamental
goal of our program is computing λ1 under variations throughout moduli space.
We use techniques link between combinatorial structures (symbolic dynamics) and
algebraic-geometric structures. When there are graph theoretic analogous of these
notions and results, we pass back and forth between the geometric and graph models.
Given a compact Riemannian manifold M , the Laplace-Beltrami operator ∆ on
functions on M is an elliptic operator with discrete spectrum

λ0 = 0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · → ∞.

The eigenvalues which are less than 1/4 its call small eigenvalues in particular, 0
is taken to be a small eigenvalue (see [17]). Whereas in the case of surfaces of genus
zero and one the explicit computation is possible, this is not the case for surfaces of
higher genus.

For surfaces of genus τ = 2 we computed the geodesic length spectrum of M
(lengths of closed geodesics)(see [8], [9])

0 < `1 ≤ `2 ≤ · · · ≤ `k ≤ · · · → ∞.
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These surfaces were obtained by gluing together pairs of pants with no twists on
the boundary components. This corresponds to Riemann surfaces in Teichmüller
space for which the Fenchel-Nielsen coordinates are of the form (`(γ1), `(γ2), `(γ3),
0, 0, 0), where `(γi), with i = 1, 2, 3, are the lengths of 3 geodesics on the surface,
see Figure 1. We will denote for `i the length `(γi) with i = 1, 2, 3. The special
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Figure 1: Compact Riemann surface of genus 2 and the geodesics γ1, γ2, γ3.

nature of genus 2 has made it more accessible to produce more detailed results.
There are several different ways to describe a closed Riemann surface of genus 2:
representations as a hyperbolic manifold, an algebraic curve, a Fuchsian group, pe-
riodic matrices, the Fenchel-Nielsen (F-N) coordinates, etc. In this paper we use
the F-N coordinates (see [14], [19]). They consist of the lengths and twists of 3τ − 3
disjoint simple closed geodesics. This space of coordinates is homeomorphic to the
Teichmüller space T and the Teichmüller modular group acts on any such space
of F-N coordinates as a group of algebraic diffeomorphisms. A general reference
for this is [13]. The set of equivalence classes of hyperbolic metrics (or equivalently
complex structures) under orientation preserving diffeomorphisms on M forms the
moduli space M of compact Riemann surfaces of genus τ . It is represented by a
quotient space M = H2/Γ of the upper half-plane H2 by a Fuchsian group Γ which
is isomorphic to the fundamental group of M . The discrete group Γ is identified
with the corresponding system of generators. A fundamental domain F is defined.
The method is to decompose Riemann surface into a set of 2 pairs of pants by sim-
ple closed geodesics. Then the Fenchel-Nielsen coordinates are defined by geodesic
length functions of three simple closed geodesics, γi and twist angles σi, along these
geodesics, with i = 1, 2, 3. With explicit constructions and side pairing transfor-
mations (see [9]), we define the Fuchsian group Γ representing the closed Riemann
surface of genus 2, see Figure 2.

One approach to the Laplacian spectrum is made trought the Selberg trace for-
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Figure 2: Hyperbolic plane and the fundamental domain.

mula. This trace formula has been of great interest to mathematicians for almost
50 years. It was discovered by Selberg in 1965, (see [16]), who also defined the
Selberg zeta function, by analogy with the Riemann zeta function, to be a product
over prime geodesics in a compact Riemann surface. An analogue of the Riemann
hypothesis is provable for the Selberg zeta function. The trace formula shows that
there is a relation between the length spectrum of these prime geodesics and the
spectrum of the Laplace operator on the surface.
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In this case the geodesic length spectrum exactly determines the eigenvalues of the
Laplacian, (see [20]).

Here we study the variation of the first eigenvalue λ1(M) of a compact Riemann
surface M of genus 2 with the F-N coordinates.
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2 Isoperimetric constant and Laplacian on hyper-

bolic surfaces and graphs

Let G be a discrete group. A mean is a linear functional µ : L∞(G) → R on the space
of bounded real-valued functions such that µ(1) = 1 and u ≥ 0 ⇒ µ(u) ≥ 0. A group
is amenable iff it admit a G-invariant mean, for the action (g.u)(x) = u(xg). The free
group G =< r, s > is not amenable and the fundamental group of a closed surface of
genus τ ≥ 2 is also nonamenable. The Cayley graph G of a finitely generated group
G is a graph whose set of the vertices V (G) represent the elements of the group G
and whose edges connect elements differing by a generator. If U ⊂ V is a subset
of the Cayley graph we define its boundary ∂U to be the vertices connected to, but
not lying in U. The isoperimetric constant, Cheeger constant or conductance ϕ(G)
of the graph G is given by

ϕ(G) = inf
U

|∂U |
min(|U |, |V − U |)

where the infimum is over all finite sets U and |X| is the number of vertices in X.

Theorem 1 (Folner) Let G be a finitely generated group. Then G is amenable iff
the isoperimetric constant of its Cayley graph is null.

The Laplacian on functions is defined by

∆u = − ∗ d ∗ du.

The least eigenvalues of the Laplacian can be defined by minimizing the Ritz-
Rayleigh quotient

λ0(M) = inf

∫

|∇u|2
∫

|u|2 .

On H with the metric ds2 = (dx2 + dy2)/y2 of constant curvature −1, we have

∆u = − ∗ d ∗ du = −y2(
∂2u

∂x2
+

∂2u

∂y2
).

It can be shown that λ0(H) = 1/4. Given a closed Riemannian manifold M (com-
pact without boundary) its Cheeger constant is defined by

h(M) = inf
X

area(X)

min(vol(A), vol(B))
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where the infimum is over all compact separating hypersurfaces X ⊂ M , and where
M − X = A ∪ B. If vol(M) = ∞ then the Cheeger constant reduces to the
isoperimetric constant

h(M) = inf
A

area(∂A)

vol(A)

where the inf is over all compact submanifolds A.
A celebrated inequality (see [5]) relates the first non-trivial eigenvalue of a

compact manifold to an isoperimetric constant, the Cheeger constant.

Theorem 2 (Cheeger) Let M be a closed Riemannian manifold we denote by
λ1(M) the first nontrivial eigenvalue of M , if vol(M) is finite, and by λ0(M) the
bottom of the spectrum if vol(M) is infinite. Then

λi(M) ≥ 1

4
h(M)2

where i = 0 or 1.

This inequality is remarkable for its universal character.

Theorem 3 For a closed hyperbolic surface Mτ of fixed genus τ , the λ1(M) is small
iff M has a collection of disjoint simple geodesics γ1, γ2, ..., γk, k ≤ 3τ −3, such that
the length of C = ∪k

i=1γi is small and C separates M.

This theorem with an added hypothesis on curvatures establish an upper bound
for the first eigenvalue and was proved by Buser (1984) (see [4]).

Theorem 4 Suppose that M is a smooth Riemannian manifold with curvature
Ricc(S) ≥ −c. Then there are constants c1 and c2 depending on c so that λ1 ≤
c1h + c2h

2.

There are graph theoretic analogous of notions and results given above. A prob-
lem which appears difficult from one point of view may be more easy from the other
point of view. Thus we return to graphs. In the analogous way one defines the
Laplacian ∆ of a graph. On a regular graph, like the Cayley graph G of a group, the
degree d of its vertices x ∈ V is a constant. We define the combinatorial Laplacian
for functions u : V → R by

(∆u)(x) = u(x) − 1

d

∑

y∼x

u(y)

the sum is over the d vertices y adjacent to x.
Then, the Cheeger’s inequality becomes (see [1], [2]).
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Theorem 5 Let G a regular graph of degree d. Then smallest non-zero eigenvalue
of the Laplacian

λi(G) ≥ 1

2d2
h(G)2,

where i = 0, if |G| = ∞, and i = 1 if |G| < ∞.

Theorem 6 A finitely generated group G is amenable iff the smallest non-zero
eigenvalue of the Laplacian λ0(G) = 0, where G is the Cayley graph of the group
G.

In the next section we extend for discrete dynamical systems the notion of the
isoperimetric constant or conductance (see [6], [7]). In true, conductance distin-
guishes isospectral Riemann surfaces.

Theorem 7 (Brooks) There exist two isospectral Riemann surfaces M1 and M2,
such that M1 is isospetral to M2, but h(M1) 6= h(M2).

3 The notion of conductance of a discrete dynam-

ical system

Let be (I, f) a discrete dynamical system defined by the iterates of a map f on the
interval I. We associate a Markov partition and a transition matrix as usual, which
is representable by a non-regular, oriented graph (digraph) Gf . The edges E of Gf

are now ordered pairs of vertices, defined by the adjacency matrix Af = (aij).

Definition 1 Let Af = (aij)
n
i,j=1 be the adjacency matrix associated to (I, f) and

Gf the Markov graph. Define the diagonal matrix Df = (dij)
n
i,j=1, putting in the

diagonal dii the number of edges that is incident (in and out) in the vertex i (loops
contribute with 2). We call the matrix

∆f = Df − (Af + AT
f )

the Laplacian matrix of the graph Gf , where we designate by AT the transpose matrix
of A.

Here also, the smallest non-zero eigenvalue of the Laplacian is closely related
with the conductance of the system, (see [7]). This result can be proved by symbolic
dynamic methods.
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Let be again H2/Γ a compact surface of genus τ = 2. A possible fundamental
domain is a bounded fundamental polygon F whose boundary ∂F consists of the
12 geodesics segments s1, ..., s12, (see [8], [9] and Figure 2).

We construct a map from the set of the sides of F onto itself, g : si → sj where
si is identified with sj. This is called a side-pairing of F . The side-pairing elements
of Γ generate Γ. In this construction we choose the side rule for the pairing

s1 → s7, s2 → s12, s3 → s5,

s4 → s10, s6 → s8, s9 → s11.

With this choice we explicitly calculate formulas for the side pairing transfor-
mations g1, ..., g12. We obtain explicitly the generators gi = gi(`1, `2, `3, σ1, σ2,
σ3), i = 1, ..., 12, where `1, `2, `3, σ1, σ2, σ3 are the F-N coordinates. With the linear
fractional transformations defined above it is possible to obtain the boundary map:
fΓ : ∂F → ∂F , defined by piecewise linear fractional transformations in the par-
tition P = { Ii = [pi, pi+1), i = 1, ..., 11, [p12, p1)}, which is orbit equivalent to the
action of the fundamental group Γ on ∂F . The boundary map is represented by

fΓ :
⋃

i=1,...,12

Ii →
⋃

i=1,...,12

Ii,

fΓ(x)|Ii
= gi(x), i = 1, ..., 12.

We determine the Markov matrix AfΓ
associated to fΓ. Let be AfΓ

the matrix

aij =

{

1 if Jj ⊂ fΓ(Ji)
0 otherwise

(see [8]). We obtained the length spectrum of the closed geodesics by computing

`(g) = 2 cosh−1[tr(g)/2].

We can associate to the matrix AfΓ
a stochastic matrix S and an invariant

measure (the measure of the Parry) (S, π). We get thus what we call random walk
where Suv =auvzv/(βzu) denotes the probability of moving from vertex u to v, β is
the spectral radius and z the right eigenvector of AfΓ

. Clearly, Suv > 0 only if (u, v)
is an edge and

∑

v Suv = 1. The Perron-Frobenius theorem states that an irreducible
matrix with non-negative entries has a unique (left and right) eigenvector with all
entries positive. Let π denote the left eigenvector of S. We will call π the Perron
vector of S. If G is strongly connected and aperiodic, the random walk converges to
the stationary distribution, the Perron vector.
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Now, with this Markov measure (S, π) we compute the conductance of the dis-
crete dynamical system with stationary distribution π. The isoperimetric constant
or conductance ϕ(G) of the graph G is given by

ϕ(G) = min
∅ 6= U ⊂ V
|U | ≤ 1/2

∑

i∈U, j∈U

πiSij

∑

i∈U

πi

where the infimum is over all finite sets U and |X| is the number of vertices in X.
In the context of the geometry there exists the following property, that states the

existence of constants, who guarantees a certain limitation of hyperbolic structures
under deformation of the hyperbolic surface.

We remember that eigenvalues which are less than 1/4 are called small eigenval-
ues, in particular, 0 is taken to be a small eigenvalue (see [17]).

Theorem 8 A compact hyperbolic surface M of genus τ = 2 has at most two small
eigenvalues of the Laplacian (see [17]).

With the construction and computation above we can study the variation of the
conductance (see Figure 3) and the first eigenvalue of the Laplacian (see Figure
4) with the Fenchel-Nielsen coordinates. We note that F-N coordinates are global
coordinates so, define each surface.
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Figure 3: Variation of conductance ϕ with the Fenchel-Nielsen coordinate `3. For
regular case `3 = `0 = Log(2 +

√
3) = 1.31696...
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Figure 4: Variation of first eigenvalue λ1 of the Laplacian with the Fenchel-Nielsen
coordinate `3. For regular case `3 = `0 = Log(2 +

√
3) = 1.31696....

Definition 2 Let be a geodesic chain γ1, γ2, γ3, γ4 where the four geodesics have
equal length, `0, and the twist parameters are zero. We obtain the figure that we
designate regular fundamental domain of the closed Riemann surface M (genus τ =
2), for this Fenchel-Nielsen coordinates choice (see [14]).

With the last construction it is possible to establish a upper bound for the
conductance of the Laplacian.

Finally the main result, we denote by ϕ(`0) the conductance in the regular case,
where `0 = Log(2 +

√
3) (see [9]) then we have.

Theorem 9 Let M be a closed Riemannian manifold and let `i arbitrary Fenchel-
Nielsen coordinates. Then the conductance ϕ(`i) ≤ ϕ(`0).

The proof can be obtained following with analytic arguments the algorithms we
had used to compute the conductance ϕ(`i) as a function of the F-N coordinates `i

with i = 1, 2, 3.
At the Figure 3 it is possible to observe that the conductance has its maximum,

exactly, when we consider the regular case, i.e., when Fenchel-Nielsen coordinates
`i = `0 with i = 1, 2, 3.

Thus the Cheeger constant h(GfΓ
) and the conductances ϕ(`i) are maximum on

Mt, where t = t(`1, `2, `3, σ1, σ2, σ3) is a point of the Teichmüller space T , when
t = t(`0, `0, `0, 0, 0, 0)(see Figure 3).

We also had studied the variation of the first eigenvalue λ1(∆fΓ
) of a Riemann

surface (the smallest non-zero eigenvalue of the Laplacian) with t ∈ T and its
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relationship with the notion of conductance ϕ(fΓ) of the dynamical system defined
by fΓ : ∂F → ∂F .

For each value of parameter of F-N coordinate, `i, we compute explicitly that

λ1(∆fΓ
) ≥ 1

4
ϕ(fΓ)2

i.e. the conductance verifies the Cheeger’s inequality (Cheeger’s Theorem) (see
Figure 5).
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Figure 5: Variation of ϕ(fΓ)2/4 and the first non-zero eigenvalue λ1(∆fΓ
) of the

Laplacian with the Fenchel-Nielsen coordinate `3

4 Systolic ratios

From a classical point of view the hyperelliptic surfaces are the most simple Riemann
surfaces. They can be denned by an algebraic curve y2 = F (x) where F (x) is a
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polynomial of degree 2τ + 1 or 2τ + 2 with distinct roots (τ is the genus of the
surface). Hyperelliptic surfaces of genus τ are characterized by the fact that the
number of different Weierstrass points is minimal, namely 2τ +2 (the fixed points of
the hyperelliptic involution), while on the other hand, the weight of each Weierstrass
point is maximal, namely 1

2
τ(τ − 1).

For us two results about surfaces (see [18]) are important:

Theorem 10 A closed surface M of genus τ ≥ 2 is hyperelliptic if and only if M
contains 2τ −2 different simple closed geodesics which all intersect in the same point
and mutually intersect in no other point.

Theorem 11 All closed surfaces of genus 2 are hyperelliptic.

For the next definition we denote by sysπ1(M,m) the least length of a noncon-
tractible loop of M . We define the systolic ratio SR of (M,m) as

SR(M,m) =
sysπ1(M,m)2

vol(M,m)
, (1)

and the optimal systolic ratio of M as

SR(M) = sup
m

SR(M,m), (2)

where m runs over the space of all metrics, (see [12]).
The optimal systolic ratio of a genus 2 surface is unknown, but it satisfies the

Loewner inequality SR(M) ≤ 2/
√

3, the best available upper bound for the optimal
systolic ratio of an arbitrary genus two surface, (see [11]). But the latter ratio
is known for the Klein bottle in addition to the torus and real projective plane.
Note that averaging a conformal metric by the hyperelliptic involution improves the
systolic ratio of the metric.

Systolic geometry has recently seen a period of great growth, (see [10], [12]).
Thus a surface is Loewner if SR(M) ≤ 2/

√
3, and in [11] has recently been show

that the genus 2 surface is Loewner.
Like some isoperimetric inequalities on manifolds can be generalized to graphs

the same occurs for the systolic ratios. Let (G, w) be a weighted graph. The volume
of (G, w) denoted by Vol(G, w), is the sum of the weight of its edges

Vol(G, w) =
∑

e∈E

w(e).

The systole of (G, w) (or girth) is defined as

sys(G, w) = inf{`w(γ) | γ non trivial cycle of G},
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where the length of a cycle γ, noted `w(γ), is the sum of the weights of its edges.
With this we can define the optimal systolic ratio of G as

SR(G) = sup
w

sys(G, w)2

Vol(G, w)
.

where the supremum is taken over all the weight functions on the graph G.
With the topological Markov chains, (ΣAΓ

, σAΓ
), or subshift of finite type, as-

sociated to the 24 × 24 matrix AΓ, and with the corresponding weighted matrix
QΓ(`1, `2, `3) introduced in [8] and [9], we compute the systole of (G, w) and the
optimal systolic ratio of G, SR(G). The set ΣAΓ

can be identified with the space
of bi-infinite paths of an oriented graph GAΓ

whose vertices lie in Z24 and edges
are the pairs (i, j) of vertices such that ai,j = 1. We define the systole, girth or
minimal period of (ΣAΓ

, σAΓ
), as the smallest period of a periodic point of the dy-

namical system (S1, fΓ). It coincides with the shortest length of an oriented cycle
of GAΓ

. Thus we compute explicitly this geometric quantities and its variation with
the Fenchel-Nielsen coordinates.
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