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SUMMARY7

The aim of this work is to introduce an alternative framework to solve problems of finite strain elasto-
plasticity including anisotropy and kinematic hardening coupled with any isotropic hyperelastic law. After9
deriving the constitutive equations and inequalities without any of the customary simplifications, we arrive
at a new general elasto-plastic system. We integrate the elasto-plastic algebraico-differential system and11
replace the loading–unloading condition by a Chen–Mangasarian smooth function to obtain a non-linear
system solved by a trust region method. Despite being non-standard, this approach is advantageous, since13
quadratic convergence is always obtained by the non-linear solver and very large steps can be used
with negligible effect in the results. Discretized equilibrium is, in contrast with traditional approaches,15
smooth and well behaved. In addition, since no return mapping algorithm is used, there is no need to
use a predictor. The work follows our previous studies of element technology and highly non-linear17
visco-elasticity. From a general framework, with exact linearization, systematic particularization is made
to prototype constitutive models shown as examples. Our element with non-local pressure support is used.19
Examples illustrating the generality of the method are presented with excellent results. Copyright q 2009
John Wiley & Sons, Ltd.21
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1. INTRODUCTION23

Association of the return-mapping technique [1–3] and well-founded mixed formulations [4, 5] led
to a standardization of elasto-plastic modeling with finite elements (see the treatise by Belytschko25
and co-workers [6]). However, the return-mapping algorithm still poses challenges to systematiza-
tion: the predictor in the presence of damage may give a false indication and there is an implied27
inequality for the plastic multiplier. Another problem for implicit return mapping occurs when the
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hardening law depends on the plastic strain rate and temperature, such as in the Johnson–Cook1
model and certain Nemat-Nasser models [7]: the predictor can also give a false indication, since
typically the plastic strain rate may raise the yield stress and produce spurious results. Empirical3
integration methods have been devised for each case (see, e.g. [8]).

Besides the problems with the predictor, the convergence radius is often not satisfactory (Crisfield5
and Norris [9] show dense clouds of points due to step halving). Here, we introduce a new
finite strain elasto-plastic algorithm able to include, in the same underlying framework, kine-7
matic hardening, anisotropy, damage, etc. This differs from our recent application to non-linear
viscoelasticity [10], where the constitutive system was smooth.9

Few, if any, attempts have been made to integrate the general finite strain elasto-plastic consti-
tutive system. Typically, strong assumptions and simplifications are made, which substantially11
reduce the true complexity of the problem (small elastic strains and/or isotropic plasticity and
coaxiality are often assumed). For the continuum case, a notable exception has been the work13
of Nemat-Nasser [3], which showed the complete system in continuum form. However, to our
knowledge, no attempt to implicitly integrate it has been made.15

As for the finite element part, recent experiments with the inf–sup (IS) test (e.g. [5]) led to a
simple element with non-local pressure support (see also [10]).17

Concerning certain simplified (small strain or coaxial) constitutive models, solutions based
on the dual formulation are now strongly established both with predictor/corrector [1] and19
Shur-based methodologies [11]. We propose here an alternative that consists of smoothing the
loading/unloading condition (also called complementarity condition, see Han and Reddy [12, p.21
60, Equation 3.37] and solving monolithically the resulting system. That system can therefore be
solved by classical Newton-based root finders. Accuracy of the solution depends on the smoothing23
parameter, which measures the distance to the origin of the complementarity graph. Mathematical
foundations of this method were established by Chen and Mangasarian [13].25

Numerous works have shown the advantages of ordinary differential equation (ODE) integration
and correct calculation of the derivatives in loading for elasto-plastic problems. This is often called27
‘consistent linearization’ and was introduced for smooth constitutive calculations context by Hughes
and Taylor [14] and for non-smooth problems by Simo and co-workers (see the monograph [2]).29
The linearization consists of an application of the chain rule and, in the finite strain case, use of
Lie group theory.31

For elastoplasticity, however, the overall problem remains non-smooth [12, 15, 16]. For a
sequence of global iterations, a given quadrature point can have successive loading/unloading33
or reloading/unloading states. Because derivatives are not continuous, erratic behavior is often
observed.35

The primal version of the FEM in small strains has a relatively straightforward weak form
with a differential inclusion. For finite strains, because the elastic part of the deformation gradient37
depends implicitly on the stress, this simplicity cannot be retained. The dual form is advantageous
from the implementation point of view. Numerous papers have dealt with J2 [17–20] plasticity in39
finite strains including kinematic hardening. Cost-effective algorithms are then adopted for von-
Mises plasticity, based on radial-return technique (parallel trial elastic strain and final deviatoric41
stress [1]) that reduces the constitutive solution to one algebraic equation. In that case, for finite
strains the additional condition of coaxiality of the strain measures and the Kirchhoff stress is43
either verified or imposed. This started with the paper by Weber and Anand [21]. Semi-implicit
methods, which freeze the flow vector in the solution, hence retaining the attractiveness of the Key45
and Krieg approach for more complex cases, have been disseminated by Moran and co-workers

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2009)
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(see, e.g. [22]). Other yield functions require the direct use of Lee’s decomposition [23] and1
monolithic integration. This has been done for a similar case by Hartmann et al. [24] and it was
applied to the von-Mises yield criterion. The lack of smoothness of the problem is still not tackled3
consistently for this case. We first enumerate our requirements to clarify the options:

• Use of isotropic hyperelastic law: Tt ≡Tt (Ve), where Ve is the left elastic stretch tensor and5
Tt is the Kirchhoff stress measure (see [25, p.142] for the isotropy limitation).

• Unique framework for viscoelasticity, viscoplasticity and elastoplasticity with no restrictions7
in the form either of the flow law or the yield function.

• Use of any kinematic hardening model (including multi-surface models) as an additional9
equations to the system.

• Element-independence: specific properties of the elements, such as mixed or hybrid techniques11
should not be used to simplify the constitutive calculations.

For moderate elastic strains (often the case for metals), simplified methods are often used, such13
as the ‘rotated configuration’ by Areias and Belytschko [26]. With the previous work [10], topics
covered are:15

• Quantified evaluation of absence of locking and spurious modes in the nearly incompressible
regime.17

• Integration of the constitutive ODE and incompressibility preservation.
• Objectivity and monotonicity of the back-stress treatment.19
• Smoothing the loading/unloading condition or use of a non-smooth solver.

The first two themes were treated in our previous work. In the essence, the behavior of an element21
with constraints introduced by the material it represents is indicated by the inspection of the IS
value with mesh refinement. We evaluated this behavior [10] and it confirms, for the specific23
conditions shown here, that the stability and convergence are satisfied.

2. FORMULATION OF THE COUPLED EQUILIBRIUM/CONSTITUTIVE PROBLEM25

2.1. Governing equations

A given open set �0⊂R3 is the reference configuration of a given body: each point X is associated27
by a bijective map to its position in that configuration: X→X∈�0. See Figure 1 for a clarification
of this notation. In the absence of discontinuities of maps defined in �0, a unique deformation map29
�(X)∈H1(�0)

nsd exists such that any position besides the reference one is determined x=�(X)

with a the difference being u=x−X. We use the standard notation nsd as the number of space31
dimensions. The deformation gradient is obtained as F=∇0�(X), where ∇0 represents the gradient
with respect to X. The Jacobian of the deformation map is given by J =detF and represents the33
local volume ratio.

The deformation gradient is decomposed into elastic (e) and plastic (p) parts, using Lee’s35
decomposition [23]: F=FeFp where Fe includes the lattice rotation, in the sense of Nemat-Nasser
(see [3, p. 250]), but with a redefinition of Fe37

F=VeQUp (1)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2009)
DOI: 10.1002/nme
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Figure 1. Problem description: finite strain elastoplasticity with non-local pressure.

with Ve being the left elastic stretch tensor, Q the orthogonal rotation tensor (such that Fe=VeQ,1
a variant of [3] valid for isotropic elastic laws) and Up=Fp the right plastic stretch tensor. Since
there is no danger of mixing Ve and Up with their total counterparts we drop the superscripts from3
this point on. From the elastic part we extract the elastic left Cauchy–Green tensor V

2 =FeFeT

and from the plastic part the right Cauchy–Green tensor C=U
2
is obtained (we also omit the5

superscripts e and p for V and C, respectively). The first Piola–Kirchhoff stress P is related to
the body forces B0(X)∈ L2(�0) by the equilibrium equation. Cauchy stresses (required for the7
elasto-plastic model) are obtained as r= (1/J )PFT. Body forces are assumed to be defined in the
reference configuration.9

The outer boundary of �0 is partitioned into two sets: the Neumann set, �0t where some stress
components are known and the Dirichlet set, �0u where some components of displacement are11
known. Also used is the Kirchhoff stress, Tt = Jr that depends on V, which indeed restricts the
elastic law to be isotropic [25]. Since for metals, elastomers and other materials often J ∼=1 then13
we can write r∼=Tt .

After introducing a yield function, �, we can calculate the flow vector N, which is the gradient15
with respect to its tensorial argument. This is convenient to remove one term in the lineariza-
tion operation. When writing the back stresses B, it is assumed that these are Kirchhoff back17
stresses.

The strong form of the governing equations is first shown. The system consists of equilibrium19
equations, essential and natural boundary conditions and the constitutive laws for both stress, plastic
rate and rate of back stresses. In addition, there is the loading/unloading condition (also known as21
the complementarity condition [12]), a switch between purely hyperelastic and hyperelastic/plastic
behavior. After regularization of the governing equations, we introduce a smooth version of the23

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2009)
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complementarity condition and perform a semi-discretization of the partial differential equation1
(PDE) part of the equations followed by a backward time-stepping method.

For isotropic elasticity and symmetric flow vector, the problem can be written as:3
Find u(X, t),U(X, t), �̇(X, t) and B(X, t) such that

∇0 ·PT+B0 = 0 in �0 (2)

u= u on �u (3)

t= t on �t (4)

T=T(FU−1) (5)

P= �F−T+TF−T (6)

N=N(T,B,�) (7)

U̇= arg
U̇t

[(FU−1U̇tF−1)symm.− �̇N=0] (8)

◦
B= �̇g(T,B,�) (9)

�(T,B,�) � 0 (10)

�̇ � 0 (11)

�(T,B,�)�̇ = 0 (12)

where (•)symm. indicates the symmetric part of •.
The system consists of a second-order PDE (2) with boundary conditions (3)–(4), three algebraic5

equations (5)–(7), two first-order ODEs (8)–(9) and the complementarity condition (10)–(12). The
latter can be replaced by a first-order non-smooth ODE7

cd �̇−[cd �̇+�(T,B,�)]+ =0 (13)

where [x]+ =max(0, x) for x ∈R and cd ∈R+ is a dimensional parameter ensuring dimensional9
consistency. In (8) U̇t is unknown.

Frequently, authors fail to recognize the intricate form of the flow law (8) and provide ill-11
explained explicit approximations to it. However, authoritative works in the subject clearly advertise
this fact (see, e.g. Equation 4.9.27 in [3] and the derivations in [27]). Note that a closed-form13
solution of (8) exists and is used here, perhaps for the first time. Using Voigt notation (identified
by a subscript v) we can write Equation (8) as15

U̇v = �̇U−1Nv (14)

with U−1 being calculated by Mathematica [28] with the AceGen add-on.17
In Equation (9) we use the Lie derivative with respect to the elastic velocity gradient. As stated

by Johansson et al. [20] the material derivative is not objective, the fact that being overlooked by19
many authors, even in recent papers.

The constitutive pressure, �̃, is completely defined given J , by means of a constitutive21
equation [29]. In contrast, the equilibrium pressure, �, which is used in the equilibrium system, is

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2009)
DOI: 10.1002/nme
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obtained indirectly from �̃ by a inhomogeneous Helmholtz equation which is added to the global1
system. The constitutive pressure, �̃, is obtained using a convex bulk strain energy density and
reads3

�̃≡g(J )=�[J 2− J + ln(J )] (15)

and the equilibrium pressure, �, is obtained from the solution of the following inhomogeneous5
Helmholtz equation [30]:

�−c0∇2
0�− �̃=0 (16)7

where ∇2
0 is the Laplace operator with respect to the material coordinates. The parameter c0 controls

the non-locality of the pressure field. After imposing a zero flux in the boundaries, ∇0�·N0=9
0 for X∈�0 (this was introduced by Lasry and Belytschko [31]) we can write a weak form
of (16)11 ∫

�0

[��(�− �̃)+c0∇0�
� ·∇0�]dV0=0 (17)

for all admissible variations �� ∈[H1(�0)
1] with [H1(�0)

nsd] denoting the Sobolev space of13
square-integrable functions with weak derivatives up to order one with range in Rnsd . The stabilizing
effect of (17) in the solution is illustrated in the diagram of Figure 2. In this diagram, we show15
the effect of

√
c0 and the distribution of �̃ in the response �. We can observe that c0 has a

strong effect in the width and height of the equilibrium pressure and that spikes in pressure are17
filtered.

2.2. Smoothing of the complementarity condition19

Owing to the presence of the plus function in (13), the constitutive system is non-smooth. Although
specific solvers have been developed to solve this type of problems, (e.g. [32]) smoothing methods21
have also been very successful (the paper by Areias and Rabczuk [33] shows an example). By
using the Chen and Mangasarian [13] smoothing method, we can use a smooth root finder. The23
‘plus’ function [x]+ is replaced by the smooth ramp function S(x) : [x]+ ∼= S(x).

This function is given by25

S(x)= x+ 1

�
ln(1+e−�x) (18)

where � is a parameter controlling the accuracy of reproduction of the original function. The27
parameter � is obtained as a fraction of the initial yield stress �y0 as

�= 0.693147

tol�y0
(19)

29

where tol is a new constitutive property. This value of � is obtained by solving:

min
x

⎧⎨⎩x2+
[
ln(1−e−�x)

�

]2
⎫⎬⎭ (20)

31

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2009)
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Figure 2. Effect of c0 and the spatial distribution of �̃. We use the conditions �′(x=0)=0 and
limx→∞ �′ =0. Smearing of �̃ occurs and this allows an artificial support for the pressure. The equation

�−c0�′′− �̃=0 is solved in x ∈]0,+∞[ and �̃=1 for x�a.

After performing the necessary substitutions, the graph of cd �̇−S[cd �̇+�]=0 for normal-1
ized � is shown in Figure 3 for several values of tol. We can see that tol corresponds to the
maximum difference in the yield function near the tip of the complementarity condition, i.e. �̇�=0.3
It converges to the exact result as tol is decreased, since

lim
�→+∞

[S(x)−[x]+]=0 ∀x ∈R (21)
5

can be proved.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2009)
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Figure 3. The smoothed complementarity condition for tol∈{0.25,0.5,1}.

2.3. Time integration, constitutive solution and linearization1

Time integration provides constitutive quantities at time step t given all quantities in t0<t and F
at time step t; F is provided by the equilibrium iteration. To calculate the remaining constitutive3
quantities, we introduce a general integration procedure, prone to exact linearization of most
particular elasto-plastic laws. Specific laws will be casted into this framework.5

To simplify the notation we introduce the following auxiliary quantities:

Z = (U
−1

)v (22)

vZ0 = (U
−1

0 )v (23)

with the subscript v being the Voigt form of the corresponding argument, which must be a symmetric
tensor. In general, using the Voigt matrix v,7

v=

⎡⎢⎢⎣
1 4 5

4 2 6

5 6 3

⎤⎥⎥⎦ (24)

we obtain Zvi j =[U−1]i j , i, j =1,2,3; the matrix form of Z being denoted as Z. The notation9
(•)′=�•/��� is also used for conciseness.

To clarify the notation, blackboard style is used for the Voigt form of full minor-symmetric11
fourth-order tensors, calligraphic style is used for the Voigt form of fourth-order tensors with

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2009)
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minor symmetry in the first two indices only; sans–serif notation is reserved for the Voigt form of1
second-order tensors.

Using this notation, the smoothed complementarity condition is integrated implicitly as3

	��−S{	��+�[T(Z),B,��]}=0 (25)

and the integrated flow law is given by5

[(FZZ−1
0 F−1)symm.]v︸ ︷︷ ︸

PZ

={I−��N[T(Z),B,��]} (26)

with I={1 1 1 0 0 0}T. The fourth-order symmetric tensor P is calculated using Mathematica7
6.0 [28] as the derivative of the left-hand side with respect to Z.

Back stresses are integrated using the approximation �tL∼=(FF−1
0 −I) as9

B−B0=BB+��g[T(Z),B,��] (27)

with B being also calculated as a derivative of the corresponding Truesdell rate with respect to B.11
Linearization of Equations (25)–(27) is required both for the constitutive solution and the

application of the equilibrium Newton–Raphson method. When solving the constitutive system,13
unknowns are ��, Z and B. For the equilibrium Newton–Raphson method, the derivative of T
with respect to F is required:15

E= �T
�F

(28)

The non-linear constitutive system consists of finding the roots of the following equations:

R1 = 	��−S{	��+�[T(Z),B,��]} (29)

R2 = PZ− I+��N[T(Z),B,��] (30)

R3 = B−B0−BB−��g[T(Z),B,��] (31)

with zero left-hand sides.17
The Jacobian of this system is concisely written as

J=

⎡⎢⎢⎣
J11 JT12 JT13

J21 J22 J23

J31 J32 J33

⎤⎥⎥⎦ (32)

19

where

J11 = 	−S′(	+�′) (33)

J12 = −S′NT
2M (34)

J13 = S′N2 (35)

J21 = N (36)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2009)
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J22 = P+��UM (37)

J23 = −��U (38)

J31 = −g−��g′ (39)

J32 = −��GM (40)

J33 = I−B−��H (41)

and

N2 = ��

�T
(42)

M = �T
�Z

=
(

�T
�FeT

F
)

v

(43)

U = �N
�T

(44)

G = �g
�T

(45)

H = �g
�B

(46)

1
Note that N �=N2 since, in the latter, the Voigt form of T is used. We can write

N2= I6N (47)3

where I6 is obtained from the 6×6 identity matrix by replacing 1 by 2 in the (4,4), (5,5) and
(6,6) components.5

It can be observed that the deformation gradient is present in P, B and T; the infinitesimal
variation of T with F is simply given as a differential form as7

dT=En+1 : dF=MdZ+N : dF (48)

where9

N= dT
dFeZ (49)

The remaining non-trivial derivatives are

D=
[

d

dF
(FZZ−1

0 F−1)symm.

]
v

(50)

B= d

dF
(BB) (51)

which we calculate using Mathematica 6.0 [28] with the AceGen add-on.11

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2009)
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Linearization follows directly from the solution of the modified linear system (whose coefficient1
matrix is still J)

J

⎧⎪⎨⎪⎩
d�

dZ

dB

⎫⎪⎬⎪⎭=−

⎧⎪⎨⎪⎩
J1F : dF
J2F : dF
J3F : dF

⎫⎪⎬⎪⎭ (52)

3

where:

J1F = −S′NT
2N (53)

J2F =D+��UN (54)

J3F = −B−��GN (55)

Of course, only the second equation in (52) is relevant, which can be re-written as

dZ=−[(J−1)21⊗J1F +(J−1)22J2F +(J−1)23J3F ]︸ ︷︷ ︸
TZ F

: dF (56)

5

resulting in the sum of an elastic and an elasto-plastic tangent:

E=N+MTZ F (57)7

Accuracy of this approach can be assessed for the plane-stress case (imposed by zeroing the T33
stress by modifying F33). Iso-error maps for tol=1×10−2 and plane stress are shown in Figure 4.9
Note that these are finite strain error maps and, in addition to the constitutive integration error,
kinematical approximations (such as the velocity gradient L) also contribute for the error.11

2.4. Specific constitutive equations

Prototype models are used for the testing purposes. Both von-Mises and Hill yield criteria are13
used, and both isotropic and combined isotropic/kinematic hardening laws are inspected. The yield
function �(T,B,��) is decomposed as (Table I) Q315

�(T,B,��)= y(T−B)−�y(��) (58)

where y is called the equivalent stress and �y is the hardening function. More complex models17
(see [37]) do not require large modifications.

2.5. Weak form—equilibrium and first variation19

The Galerkin method is used to obtain a weak form of equilibrium. This was performed before
for the equilibrium pressure in (17). The test functions for the equilibrium equation are now21
vector fields, which we denote by x� ∈[H1(�0)

3]. After writing the weak form, a symmetric
discretization is employed to obtain an algebraic system.23

To simplify the notation, we introduce the notation T=Tt −g(J )I, resulting in:

W� =
∫

�0

{T :∇x�+c0∇0�·∇0�
�−g(J )��+�I :∇x�+���+B0 ·x�}=0 (59)
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Figure 4. Finite strain iso-error maps (tol=1×10−2) for plane stress.

Table I. Back-stress laws in Voigt form.

Back-stress law g(T,B, �̇)

Isotropic 0
Tsakmakis and Willuweit [34] version of Armstrong–Frederick [35] (cN−bB)

Burlet–Cailletaud [36] [cN−b 1
N:N (N⊗N) :B]

A Newton–Raphson-based solver is used, and therefore exact derivatives of all quantities in (59)1
are required. The time derivative of T is given by

Ṫ=∇ẋT+T∇ẋT+D :∇ẋ (60)3
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where D can be calculated from E as1

D(qn)(kp) =E(qn)k j Fpj︸ ︷︷ ︸
Fqnkp

−T(qp)
(nk) −T(pn)
(kq) (61)

where the parenthesis in the index notation point out the Voigt grouping.3
This useful relation (61) between moduli is obtained by re-deriving the work of Truesdell and

Noll ([38, pp. 131–133]). Despite being more direct than the often used push-back/linearize/push-5
forward procedure, the authors could not find this relation in the bibliography. The reader can note
that no deviatoric projection is required (as in, e.g. [2]).7

Time derivative of T :∇x� is given by the well-known (cf. [39]) relation:
(T : ∇̇x�)=∇x� :D :∇ẋ+(∇ẋT∇x�+∇ẋ�) :T (62)9

The linearized form of the equations is easily obtained with this relation, and the final partitioned
result is shown

Ẇ� =
∫

�0

{∇x� :D :∇ẋ+T : (∇ẋT∇x�)−�(∇ẋT :∇x�) (63)

−�� Jg′(J )I :∇ẋ+ �̇I :∇x�+c0∇0�
� ·∇0�̇+���̇}d�0 (64)

where, for the formulation in use, ∇ẋ� =0.

2.6. Discretization11

The discretization is performed for the nodal unknowns {xK ,�K } as

xh =
4∑

K=1
NK xK (65)

�h =
4∑

K=1
NK �K (66)

where K represents a local node number.
A symmetric discretization is employed for the test functions:

x�
h =

4∑
K=1

NK x�
K (67)

��
h =

4∑
K=1

NK ��
K (68)

13
The gradients are calculated using the shape function derivative tables Nn and Nn0 from

∇xTh =Nnxn (69)

∇0�h =Nn0pn (70)

∇vTh =Nnvn (71)

∇0�h =Nn0nn (72)
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where1

Nn =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

dN1

dx1

dN2

dx1

dN3

dx1

dN4

dx1
dN1

dx2

dN2

dx2

dN3

dx2

dN4

dx2
dN1

dx3

dN2

dx3

dN3

dx3

dN4

dx3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(73)

and3

Nn0=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

dN1

dX1

dN2

dX1

dN3

dX1

dN4

dX1

dN1

dX2

dN2

dX2

dN3

dX2

dN4

dX2

dN1

dX3

dN2

dX3

dN3

dX3

dN4

dX3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(74)

Unknowns and nodal test parameters are grouped as:

xn =

⎡⎢⎢⎢⎢⎢⎣
xT1

xT2

xT3

xT4

⎤⎥⎥⎥⎥⎥⎦ (75)

pn =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�1

�2

�3

�4

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(76)

x�
n =

⎡⎢⎢⎢⎢⎢⎣
x�T
1

x�T
2

x�T
3

x�T
4

⎤⎥⎥⎥⎥⎥⎦ (77)

p�n =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

��
1

��
2

��
3

��
4

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(78)

5
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Figure 5. Problem description of a 1D test under strain and stress control (normal and shear stress). A
comparison is made with results from Dettmer and Reese [19]. The von-Mises criterion is used with fixed
y=0.35, c=100 and b∈{0,1.35,2.7}. Elastic properties for the neo–Hookean material are 	=80 and

�=320. The non-local parameter is c0=0.2. Consistent units are used.

The deformation gradient is calculated as1

Fh =xTnN
T
n0 (79)

from which the table of the updated shape function derivatives is obtained:3

Nn =F−T
h Nn0 (80)

A specific quadrature scheme is used. Terms involving the deviatoric Kirchhoff stress T use5
one Gauss point and the remaining terms use four Gauss points to correctly sample the pressure
terms.7

The element forces and stiffness matrices (note that Nn
jK are uniform for 4-node tetrahedra) are

given by

f xK i = V0
4

{
4Ti j N

n
j K +

4∑
I=1

[NK (nI)B0i +Nn
iK NL (nI)�L ]

}
(81)

f �
K = c0V0N

0
i K N0

i L�L + V0
4

4∑
I=1

(NK (nI){NL (nI)�L −g[J (nI)]}) (82)
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Figure 6. Effect of the number of steps for a five cycle loading with tol=1×10−4 and
b=1.35 (strain control): (a) Armstrong-Frederick and (b) Burlet-Cailletaud.

K x�x
K i Lm = V0

4

[
4Nn

jK Nn
nLG(i j)mn−Nn

mK Nn
i L

4∑
I=1

NM (nI)�M

]
(83)

K x��
KiL = V0Nn

iK

4

4∑
I=1

NL (nI) (84)

K ���
K L = c0V0N

0
i K N0

i L + V0
4

4∑
I=1

NK (nI)NL (nI) (85)

K ��x
K Li = −V0Nn

iL

4

4∑
I=1

{NK (nI)J (nI)g
′[J (nI)]} (86)

1

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2009)
DOI: 10.1002/nme



NME 2686

SMOOTH FINITE STRAIN PLASTICITY 17

-100

-80

-60

-40

-20

0

20

40

60

80

100

-1

N
or

m
al

 K
irc

hh
of

f s
tr

es
s

Vertical displacement

b=0
b=1.35
b=2.7

Dettmer and Reese

-0.5 0 0.5 1 1.5

C
ol
or

O
nl
in
e,

B
&
W

in
Pr
in
t

Figure 7. Strain control: Kirchhoff stress (Armstrong–Frederick and Burlet–Cailletaud are very close).
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Figure 8. Strain control: ellipticity indicator (Armstrong–Frederick and Burlet–Cailletaud are very close).

where V0 is the tetrahedron volume1

V0= 1

6
det

⎡⎢⎣
X11−X31 X21−X31 X41−X31

X12−X32 X22−X32 X42−X32

X13−X33 X23−X33 X43−X33

⎤⎥⎦ (87)

with the notation XKi ; K =1, . . .,4, i=1, . . .,3. The often costly constitutive update is performed3
at one Gauss point only, whereas the less expensive pressure terms are evaluated at four Gauss
points (summation with index I). This decoupling is first proposed here.5
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Figure 9. Stress control: Kirchhoff stress (both Armstrong–Frederick and Burlet–Cailletaud are shown):
(a) Armstrong-Frederick and (b) Burlet-Cailletaud.

The reader can note that, in Equation (83), the modulus G was used, which is the spatial tangent1
modulus used for the strong ellipticity condition (see [38, Equations 45.6 and 45.14] where the
notation B is used):3

G(i j)kl =D(i j)(kl) +
(ik)T( j l) (88)

The ellipticity indicator is obtained as follows:5

e=min
�1,�2

argmin



{
 | det[ni (�1,�2)nk(�1,�2)G(i j)kl −

 j l]=0} (89)
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Figure 10. Stress control: ellipticity indicator (both Armstrong–Frederick and Burlet–Cailletaud are shown):
(a) Armstrong-Frederick and (b) Burlet-Cailletaud.

with n being a unit vector, function of two angles �1,�2:1

n=

⎧⎪⎨⎪⎩
sin�1 cos�2

sin�1 sin�2

cos�1

⎫⎪⎬⎪⎭ (90)

Therefore, all quantities required for a constitutive analysis are readily available from the finite3
element implementation. Equation (89) involves a large number of eigenvalue evaluations and will
be used in the next section.5

2.7. Armstrong–Frederick/Burlet–Cailletaud hardening

With the purpose of also verifying the patch-test satisfaction, we use a cube of irregular elements7
as shown in Figure 5 where the relevant data are presented. The Armstrong–Frederick [35] and
Burlet–Cailletaud [36] kinematic hardening models are tested. The relevant data are shown in9
Figure 5: both strain and stress control are used. For strain control, the effect of the number of
time steps is shown in Figure 6. Large steps can be used, with no signs of convergence problems11
and with only slight result differences.
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Figure 11. Geometry, boundary conditions and constitutive properties for the tension test. One-eighth of
the specimen is meshed, since there are three symmetry planes.

For strain control, the evolution of the Kirchhoff stress is shown in Figure 7 and compared1
with the results of Dettmer and Reese [19] (their model A) . This comparison shows a difference,
explained by the use of a different elastic model and kinematic part of the flow law. The ellipticity3
indicator (e) shows loss of ellipticity for large stretch values, as seen in Figure 8.

For stress control, results are shown in Figures 9 and 10. It is noticeable that, for the Burlet–5
Cailletaud model, strong ellipticity is lost in several occasions, as shown in the latter figure.

These losses are not unforeseen due to the presence of the stress tensor in the tangent modulus7
G, the yield-limited tangent E and the shift in the yield surface origin. This means that a crack
may occur when kinematic hardening is present even if the slope in the hardening law is positive.9

3. TENSION TEST OF A TRUNCATED CONE: COMPARISON OF
VON-MISES AND HILL CRITERIA11

A truncated cone built out of ASTM A-533 steel is subject to an imposed displacement at its larger
base. This geometry is used to induce necking and has been adopted in the past in finite element13
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Table II. Tension test: constitutive properties (consistent units).

E 206.9
� 0.29
c0small 0.1
c0big 2

tolsmall 1×10−6

tolbig 1×10−2

�y 0.45+(0.715−0.45)(1−e−16.93εp )+0.12929εp

simulations [17]. The test data were obtained by Norris et al. [40] who, besides having performed1
the experimental test, successfully used a 2D finite difference code to perform a simulation. For
our test, we use the properties of their specimen 2499R with the hardening law fitted by Simo [17].3
An extension to this validation test is made with an anisotropic variant.

In finite element simulations with the radial-return algorithm, convergence problems are known5
to occur after the limit point is reached (see [41, pp. 358–359], and in the past hybrid solution
techniques (BFGS followed by Newton iterations) were employed to efficiently solve the problem.7
This indicates the inability of Newton method (where the exact derivative is used) to deal with a
non-smooth problem.9

The geometry, boundary conditions and material properties are summarized in Figure 11. Two
yield criteria are used:11

von-Mises:

yVM= 1√
2

√
(T11−T22)2+(T22−T33)2+(T11−T33)2+3(T 2

12+T 2
13+T 2

23) (91)
13

and Hill (with specific parameters):

yH= 1
2

√
4T 2

11−T11T33+T 2
33−7T11T22−T22T33+4T 2

22+6T 2
12+6T 2

13+6T 2
23 (92)15

The effects of both the tolerance tol and the parameter c0 are inspected, as well as the mesh.(Table II)
Two meshes are employed: a uniform mesh containing 7817 elements and a finer mesh with a17
localized refinement in the region indicated in Figure 11 containing 40271 elements of which 20867
are placed in the zone of mesh refinement (see Figure 11). For the purpose of stress convergence,19
a third mesh with 24436 elements is also inspected. Only 1

8 th of the specimen geometry is
meshed, since three planes of symmetry exist. The reason for this refinement is the same that led21
Norris et al. [40] to introduce points in that region during their finite difference simulation: large
elements in the necking region tend to deform into high aspect ratio tetrahedra and resolution23
worsens.

It was also found in [40] that a teardrop region adjacent to the necking region is in the state25
of compression, forcing the outer annulus to withstand the tension (this is particularly acute at a
certain distance from the specimen’s center). We plot the longitudinal stress along the axisymmetric27
axis in Figure 13 for uy =7. The shift to the left of the curve is apparent when the fine mesh
is used. The reason for this is that the finer mesh captures more of the necking in terms of
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Figure 12. Load versus longitudinal displacement results for the present model compared with the
return-mapping algorithm. 14,28 and 70 uniform displacement steps are used with tol=1×10−6 and
c0=10 consistent units (von-Mises law). Return mapping makes use of finite strain Simo’s algorithm

[17]. The energy residual and the effect of tol are also shown.
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Figure 13. Longitudinal stress along the axisymmetric axis for three mesh densities.
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Figure 14. Load versus imposed displacement results for two meshes and several formulations. The curves
are within the experimental envelope (the upper and lower experimental results from [40] were reproduced).

stress distribution, and hence elements further away from the high stress gradient region are not1
so stretched.

To inspect the robustness of our method, we fix each longitudinal displacement increment,3
�uy ={0.5,0.25,0.1} corresponding, respectively, to 14,28 and 70 uniform displacement steps
and observe the effect in the load/displacement results for the coarse mesh. With only 14 steps,5
the results used are sufficiently accurate. We tested Simo’s [17] radial-return mapping in principal
directions and show the results in Figure 12. It is clear that the proposed method allows very large7
steps in comparison with the return-mapping technique that makes 112 non-uniform steps. This
results from step halving that occurs when, for a certain step, convergence fails. A large number of9
steps were also pointed out in [41] and Crisfield and Norris [9] for the 2D case. Very dense clouds
of points due to step-cutting were also shown in the latter paper. Note that we use a trust region11
solution method which is typically more robust than the standard Newton method (the residual
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Figure 15. Tension test: necking displacement comparison.

norm is shown in Figure 12). We are not aware of other authors solving this problem with 141
uniform steps.

The value of tol has some effect on the convergence response, as the study in the same figure3
shows. This is despite the fact that the load-deflection results are nearly unchanged for reasonable
values, as illustrated in Figure 12.5

An acceptable load–displacement result is obtained with the coarse mesh. However, stress values
and necking shape are better reproduced with finer meshes (Figure 13 shows the longitudinal stress7
for three mesh densities). In Figure 14, results are compared with the mixed Q1–P0 hexahedron,
the numerical results by Simo [17] (with their finer mesh) and Norris et al. [40]. The experimental9
results from the same reference [40] are also shown.

Our results are within the experimental envelope obtained by Norris et al. [40] and more11
pronounced softening is obtained by the proposed method than with other methods. The hexa-
hedron Q1–P0 used the radial-return algorithm (with the finer mesh) and produced results13
close to the ones by Simo [17]. Overall, there is some spreading in these results, since the
methods are also different. The response of the Hill criterion is slightly stiffer, and this is15
expected.

The necking behavior is also important, since it explains the softening response (with strain17
hardening) and shows how good the element performance is. Numerical results are shown in
Figure 15 and compared with the upper and lower experiments by Norris et al. [40]. With the19
exception of the radial-return results, both meshes are within the experimental envelope.

For the von-Mises criterion, the deformed mesh, the effective plastic strain and longitudinal21
stress contour plots are presented in Figure 16. We note that near the necking region, the outer
ring is supporting the specimen while the specimen core is in compression, as observed by Norris23
et al. Results are smooth and relatively unaffected by the mesh aspect ratio in the necking region.
A run was made with a more refined mesh but the results are indistinguishable.25

Although the load-deflection results obtained using Hill criterion are close to the ones obtained
with von-Mises criterion, the deformed mesh is obviously not (see Figure 17).27
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Figure 16. Deformed mesh (uy =2×7 consistent units), effective plastic strain contour plot and longitudinal
stress for the fine mesh with tol=1×10−6 and c0=2 (von-Mises with neo–Hookean material).

The imposed displacement can reach very high values without any mesh distortion problems,1
see Figure 18 where the cross section for the Hill criterion is shown.

4. CONCLUSIONS3

A general framework for finite strain plasticity with anisotropy and kinematic hardening was
presented. Despite being restricted to elastic isotropy, the resulting model is much more general5
than the previous proposals. At the continuum level, Nemat-Nasser presented a closely related
approach (see [3]). Smoothing by use of the Mangasarian functions replaced the exact complemen-7
tarity condition, so that the return-mapping algorithm was avoided. Examples included kinematic
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Figure 17. Deformed mesh (uy =2×7 consistent units), effective plastic strain contour plot and longitudinal
stress for the fine mesh with tol=1×10−6 and c0=2 (Hill criterion with neo–Hookean material).

hardening and plastic anisotropy; the ellipticity indicator was obtained for kinematic hardening,1
showing loss of strong ellipticity under strain control and, for the Burlet–Cailletaud model, under
stress control.3

The overall scheme is also computationally simpler than previous integration schemes. It was
found that computational costs are higher than classical J2 neo–Hookean-based or Hencky-based5
approaches, but arbitrary isotropic elastic laws, anisotropic flow laws, yield functions and hard-
ening functions can be adopted. For example, to model feature–full viscoelasto-plastic elastomers7
(see [10]) and solid propellants this can be very important [42]. In addition, since no return mapping
is required, nor a particular solution method for plasticity, we can include more complex behavior
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Figure 18. Cross-section evolution, Hill criterion.

without the effort usually required to derive closed-form quantities for specific return mappings in1
finite strain plasticity.

Mixed pressure–displacement elements with non-local pressure were employed. These were3
found to be very robust in previous works [10] and, besides being stable in the IS condition, the
accuracy was found to be very good in numerical tests.5
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