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We present the first calculations of the electromagnetic form factors of 3He and 3H within the framework of the
Covariant Spectator Theory (CST). This first exploratory study concentrates on the sensitivity of the form factors
to the strength of the scalar meson-nucleon off-shell coupling, known from previous studies to have a strong
influence on the three-body binding energy. Results presented here were obtained using the complete impulse
approximation (CIA), which includes contributions of relativistic origin that appear as two-body corrections in
a nonrelativistic framework, such as “Z-graphs,” but omits other two and three-body currents. We compare our
results to nonrelativistic calculations augmented by relativistic corrections of O(v/c)2.
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I. INTRODUCTION

The Covariant Spectator Theory (CST) [1–3] is a manifestly
covariant formalism developed in particular for the description
of few-nucleon systems. One of its most characteristic features
is that four-momenta are conserved in intermediate states
and all particles but one are confined to their mass shells.
The remaining particle is off mass shell with its propagation
described by the corresponding full Feynman propagator.
One can derive a closed set of integral equations for the
scattering amplitude, which effectively sum an infinite set
of Feynman diagrams that consist of iterations of a kernel
with an off-shell propagator after the on-shell constraints
have been incorporated. The kernel can be symmetrized (or
antisymmetrized) as required for the treatment of identical
particles.

For the nucleon-nucleon (NN ) scattering amplitude, a num-
ber of CST potential models of one-boson-exchange (OBE)
form have been developed that give a good description of
the deuteron and the elastic NN scattering observables below
350 MeV [4–6]. The presence of off-mass-shell nucleons
allows for a richer structure of the OBE kernels than what is
possible in nonrelativistic frameworks. The general structure
of the CST kernels contains terms for the coupling of bosons
to nucleons that are exactly zero when the nucleon is on
mass shell but contribute for off-mass-shell nucleons. For the
scalar-isoscalar (σ or σ0) and scalar-isovector (δ or σ1) mesons
these couplings were investigated for the first time in [7], and
it was found that they increase the quality of the fit to the
observables significantly.

When the CST equation for the three-nucleon (3N ) bound
state [3] was solved for the first time, it was realized that the
scalar off-shell coupling strongly influences the 3N binding
energy [7]. When the scalar off-shell coupling strength was
varied systematically, it turned out that the value that gave the
best fit to the NN observables simultaneously also produced

the best agreement with the experimental triton bound state
energy of Et = −8.48 MeV. What is also remarkable about
this result is that nonrelativistic calculations with so-called
“realistic” potentials, i.e., potentials that fit the NN scattering
data with a χ2/Ndata ≈ 1, do not reproduce Et without the
addition of irreducible 3N forces specially adjusted for that
purpose.

This somewhat unexpected success of the CST NN
potential models in explaining Et appeared at first to be
to some extent accidental. However, recently we found two
new high-precision OBE models that fit the world data on
np scattering below 350 MeV with an essentially perfect
χ2/Ndata ≈ 1 [5,6], and in both cases we again found the triton
binding energy to be very close to the measured value. Thus we
are lead to conjecture that our relativistic OBE kernels capture
the essential part of the physics responsible for the binding of
the 3N system.

Of course one expects more from a realistic description of
a bound state than merely to reproduce the correct binding
energy. It should also reproduce its internal structure, which
can be accessed through the corresponding electromagnetic
form factors. While the interaction of nuclei with electro-
magnetic probes introduces some new problems in the form
of ambiguities in the definition of the nuclear currents, the
calculation of the electromagnetic 3N form factors certainly
presents an interesting and necessary test of the three-body
CST.

The exact form of the electromagnetic currents of a 3N

system in CST was derived in a previous paper [8]. In the
present work we use this current in order to calculate the
electromagnetic form factors of 3H and 3He, as well as their
isoscalar and isovector combinations, in the so-called complete
impulse approximation (CIA), i.e., in an approximation that
includes all one-body currents but leaves out two- and three-
body currents. As will be discussed, our CIA includes, in
principle, contributions that in nonrelativistic frameworks
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appear as interaction currents, so care has to be taken when
results of different formalisms are compared.

It is well known that interaction currents can have a
significant influence on the electromagnetic 3N form factors.
Therefore, a calculation in CIA cannot be expected to provide
a quantitative description of the data over the entire range of
the transferred momentum. Nevertheless, there is a number of
important aspects that can be learned from a CST calculation
in CIA:

(i) The first aspect is technical in nature. The calculation
of the form factors requires the numerical computation
of rather involved expressions, some of which have a
complicated singularity structure. Since this is the first
time these form factors are calculated in CST, it is
important to learn how this can be done in an efficient
and numerically stable way. In the same category
belongs the study of the convergence of the employed
expansion into helicity partial waves.

(ii) For a given 3N vertex function obtained by solving
the CST 3N bound state equation with a chosen NN

interaction model, we study the relative importance of
the various different contributions to the total result. For
instance, there are six Feynman diagrams that define the
CIA, and it is useful to determine whether they are of
comparable magnitude or if one may neglect some of
them. Another interesting question is the importance
of negative-energy states. The Feynman propagator of
an off-shell nucleon can be decomposed into positive-
and negative-energy parts, or equivalently into parts
with positive or negative ρ-spin. The latter are related
to the “pair terms” or “Z-graphs” in the language of
time-ordered perturbation theory. It is known that, in
nonrelativistic calculations with relativistic corrections
the Z-graphs connected to one-pion exchange have a
sizable effect. While a direct quantitative comparison
of our negative-energy-state contributions to these pion
Z-graphs is not easy because the decomposition into
positive- and negative-energy states is frame depen-
dent, one may still get a general idea about their
size.

(iii) Still operating with one particular 3N vertex func-
tion, we perform sensitivity studies with respect to
the parametrization of the single-nucleon current. In
addition to changes in the Dirac and Pauli nucleon form
factors, off-shell nucleon currents also have off-shell
terms and their associated form factors. We investigate
the sensitivity of the results on changes in these off-shell
currents.

(iv) We investigate the model dependence of the form
factors by varying the NN interaction model from
which the 3N vertex function was computed. This
is done by using various members of a family of
potentials that were fitted with different, fixed values
of the scalar off-shell coupling. These models produce
rather different 3N binding energies while the χ2 to
the data varies only moderately, which allows one to
assess also binding energy effects on the form factors
in a systematic way.

(v) Since the calculations in the present work use NN in-
teraction models in which the pion-nucleon coupling is
purely of pseudovector form, the coupling to negative-
energy nucleon states (or Z-graphs) is expected to be
suppressed. Therefore it makes sense to compare our
results to the ones in impulse approximation obtained
in a nonrelativistic framework [9], where relativistic
effects are calculated to order (v/c)2, while in CST
they are included in all orders. The comparison may
thus help to decide whether the (v/c) expansions of
relativistic corrections are justified.

(vi) Last, but certainly not least, the calculations in this
work give an indication of whether or not the CST
calculations of three-body form factors will require any
new physics. For example, when we first calculated the
three-nucleon binding energies in the CST we obtained
about −6 MeV, much too underbound. In trying to
understand this result we discovered that the binding
energy was very sensitive to the off-shell couplings of
the scalar mesons, and that the introduction of such
couplings not only “corrected” the binding energy but
also improved the fits to the two-body data. We might
not have realized that such previously not considered
couplings were needed to give a good fit to the two-body
data if we had not been initially confronted with such
a large discrepancy in the binding energy. In short,
solving the binding energy “problem” lead to the
discovery of a new interaction that, in CST, is also
necessary for an efficient description of two-body data.
In this context, study of the form factors not only serves
as a stringent test of these off-shell scalar couplings,
but also exposes us to the possibility that another new
mechanism will be required for the understanding of
the form factors. We return to this issue at the end of
the paper.

This paper is organized in the following way. After the
introduction in Sec. I, Sec. II provides a brief overview of the
formalism in which the electromagnetic 3N form factors were
calculated. The numerical results are presented and discussed
in Sec. III, and Sec. IV contains our conclusions. Appendices
A and B show some details about how the calculations were
carried out.

II. FORMALISM

A. Charge and magnetic form factors of composite
spin-1/2 particles

We start by reminding the reader that the most general form
of the spin 1/2 current of the 3N bound states (with mass Mt )
depends on two form factors

〈M ′|Jµ

3N |M〉 = ū(P ′
t ,M

′)
[
F 3N

1 (Q2) γ µ + F 3N
2 (Q2)

iσµνqν

2Mt

]
× u(Pt ,M), (1)

where q = P ′
t − Pt is the photon momentum, Pt and P ′

t are the
initial and final trinucleon momenta, M and M ′ the respective
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spin projections along the z-axis, and we use the convention
Q2 = −q2. (Note the use of the roman q to represent the photon
four-momentum, instead of the more customary q.)

It is convenient to rewrite this current using the Gordon
decomposition (valid between on-shell spinors),

iσµνqν

2Mt

= γ µ − (P ′
t + Pt )µ

2Mt

, (2)

and to evaluate it in the Breit frame, where q0 = 0 and P′
t =

q/2 = −Pt . We obtain

〈M ′|J 0
3N |M〉 = ū(P ′

t ,M
′)
[
F 3N

M (Q2) γ 0 − F 3N
2 (Q2)

E

Mt

]
× u(Pt ,M), (3)

〈M ′|J i
3N |M〉 = F 3N

M (Q2) ū(P ′
t ,M

′)
iσ i νqν

2Mt

u(Pt ,M), (4)

where E = P ′0
t = P 0

t and FM = F1 + F2 is the familiar
magnetic form factor. Equation (4) shows immediately that, if
we choose q to lie in the +ẑ direction, J 3

3N = 0 and the spatial
components of the current depend only on the magnetic form
factor.

To evaluate these matrix elements we first start with the
spinors for the three-body states when they are at rest:

u(0,M) =
(

1
0

)
⊗ χ

M
, (5)

where M = ± 1
2 with

χ 1
2

=
(

1
0

)
χ− 1

2
=
(

0
1

)
. (6)

Then, the initial and final three-body states will be obtained
by boosting the rest spinors to the correct frame. The Dirac
operator for an active boost to a frame with velocity sinh ξ =
Q/2Mt in the +ẑ direction (we use Q ≡ |q|) is denoted
S(B(ξ ê3)) and defined in Eq. (26).

With this notation for the Breit frame matrix elements,
where the initial state is boosted in the −ẑ direction, the matrix
element (3) becomes

〈M ′|J 0
3N |M〉 = ū(0,M ′)S−1(B(ξ ê3))

×
[
FM (Q2) γ 0 − F2(Q2)

EQ

Mt

]
× S(B(−ξ ê3))u(0,M)

= ū(0,M ′)

[
FM (Q2) − F2(Q2)

E2
Q

M2
t

]
u(0,M)

= δM,M ′

[
F1(Q2) − Q2

4M2
t

F2(Q2)

]
, (7)

where EQ = Mt (cosh2 ξ/2 + sinh2 ξ/2) = Mt cosh ξ =√
M2

t + Q2/4. The zeroth component of the current in the
Breit frame conserves spin (or flips helicity) and equals the
charge form factor FC = F1 − τF2 with τ = Q2/4M2

t .

Similarly, the x component of the current is

〈M ′|J 1
3N |M〉 = QF 3N

M (Q2)

2Mt

ū(0,M ′) S−1(B(ξ ê3))

× i	2 S(B(−ξ ê3))u(0,M)

= QF 3N
M (Q2)

2Mt

ū(0,M ′)i	2u(0,M)

= 2M ′ δM ′,−M

QF 3N
M (Q2)

2Mt

, (8)

where we replaced −iσ 13 = i	2 [with the 	i matrices in Dirac
space defined in Eq. (27)] and the phase 2M ′ arises from the
matrix element of i	2.

The y component of the current is obtained in the same
way, yielding

〈M ′|J 2
3N |M〉 = i2M ′ δM ′,−M

QF 3N
M (Q2)

2Mt

. (9)

In this work, we actually calculate the 3N current matrix
elements in the lab frame. Since the current matrix elements
transform like a four-vector, we can apply a boost from the
Breit to the lab frame,

〈M ′|Jµ

lab|M〉 = [B(ξ ê3)]µν 〈M ′|J ν
Breit|M〉, (10)

in order to determine the relation between the charge and
magnetic form factors and the lab frame current matrix
elements:

F 3N
C (Q2) = 〈M|J 0

3N,lab|M〉√
1 + Q2

4M2
t

, (11)

F 3N
M (Q2) = −(2M)

2Mt

Q
〈−M|J 1

3N,lab|M〉 (12)

= i(2M)
2Mt

Q
〈−M|J 2

3N,lab|M〉. (13)

We conclude that the charge and magnetic 3N form factors
can be obtained from the matrix elements of the time and
space components of the 3N electromagnetic current in any
convenient frame.

B. The three-nucleon vertex functions and the relativistic
wave function

The three-body form factors in the spectator theory are
expressed in terms of the bound-state Faddeev vertex function

λ1λ2α(k1, k2, k3) with (by convention) particles 1 and 2
on mass shell with helicities λ1 and λ2, and particle 3
off mass shell with the associated Dirac index α (ki is
the four-momentum of nucleon i with mass m). The total
four-momentum (which is conserved) is P = k1 + k2 + k3

and k2
1 = k2

2 = m2. The on-shell energy of a nucleon with
momentum ki is denoted E(ki) ≡

√
m2 + k2

i . In this paper we
adopt the alternative notation for 
 = 
(k1, k2; P ), convenient
because k3 = P − k1 − k2 is a dependent variable. This vertex
function is related to the relativistic wave function 
, defined
by the relation


λ1λ2α(k1, k2; P ) = Gαα′ (k3)
λ1λ2α′ (k1, k2; P ), (14)
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= −2ζ
x xx

x x

FIG. 1. (Color online) Diagrammatic representation of the
Faddeev equation (17).

where we continue to use k3 as the argument of G to make the
notation more compact. The propagator G is

Gαα′ (k3) =
[

1

(m − � k3)

]
α′α

= m

E(k3)

∑
λ

[
uα′ (k3, λ)ūα(k3, λ)

k0
3 − E(k3) − iε

− vα′ (−k3, λ)v̄α(−k3, λ)

k0
3 + E(k3) − iε

]

= m

E(k3)

∑
λρ

[
ρ u

ρ

α′ (k3, λ)ūρ
α(k3, λ)

k0
3 − ρE(k3) − iε

]
, (15)

where E(k3) is the on-shell energy of particle 3, k0
3 its off-shell

energy, and the ρ-spin is either + or − with the convention

u+
α (k3, λ) = uα(k3, λ),

(16)
u−

α (k3, λ) = vα(−k3, λ).

The vertex function satisfies the following Faddeev equa-
tion (shown diagrammatically in Fig. 1, with ζ = +1 for
bosons and ζ = −1 for fermions):


λ1λ2α(k1, k2; P ) = −
∫

m d3k′
2

E(k′
2) (2π )3

∑
λ′

2

Mλ2α,λ′
2α

′ (k2, k
′
2; P23)

× 2 ζ P12 
λ1λ
′
2α

′ (k1, k
′
2; P ), (17)

where P23 = P − k1 is the total four-momentum of the pair,
M is the two-body scattering amplitude satisfying

Mλ2α,λ′
2α

′ (k2, k
′
2; P23)

= Vλ2α,λ′
2α

′(k2, k
′
2; P23)

−
∫

m d3k′′
2

E(k′′
2 ) (2π )3

∑
λ′′

2

Vλ2α,λ′′
2β

(k2, k
′′
2 ; P23)

×Gββ ′ (P23 − k′′
2 )Mλ′′

2β
′,λ′

2α
′ (k′′

2 , k′
2; P23), (18)

P12 is the permutation operator that interchanges particles 1
and 2, and V is the two-body interaction kernel (which we will
frequently call the “potential” because of its close connection
with the nonrelativistic potential). For convenience we have
adopted the notation

Vλ2α,λ′
2α

′ (k2, k
′
2; P23)

≡ ūβ(k2, λ2)Vβα,β ′α′(k2, k
′
2; P23) uβ ′(k′

2, λ
′
2) (19)

so care must be taken to distinguish Dirac indices from helicity
indices. Whenever a Dirac index is replaced by a helicity index,
a contraction with an on-shell, positive energy spinor, such is
shown in Eq. (19), is implied, and unless otherwise stated,
it is assumed that the particle is on-shell. The on-shell Dirac
spinors are normalized to ūu = 1.

x x x x= +

FIG. 2. (Color online) Diagrammatic representation of Eq. (21)
for the symmetrized two-body scattering subamplitude Mβα,λ′

2α′ with
both final particles off shell.

Calculations of the form factors requires knowledge of the
vertex function with the two interacting nucleons off-shell.
This vertex function was defined in Ref. [8] and can be obtained
using the Faddeev Eq. (17), generalized to the case when both
of the final state interacting nucleons are off-shell


λ1βα(k1, k2; P ) = −
∫

m d3k′
2

E(k′
2) (2π )3

∑
λ′

2

Mβα,λ′
2α

′(k2, k
′
2; P23)

× 2 ζ P12 
λ1λ
′
2α

′ (k1, k
′
2; P ), (20)

where now k2
2 �= m2. The off-shell scattering amplitude is

obtained by quadratures from the off-shell kernel Vβα,λ′
2α

′

and the on-shell scattering amplitude Mλ′′
2β

′,λ′
2α

′ using a
generalization of the two-body equation (18)

Mβα,λ′
2α

′(k2, k
′
2; P23) = Vβα,λ′

2α
′ (k2, k

′
2; P23)

−
∫

m d3k′′
2

E(k′′
2 ) (2π )3

∑
λ′′

2

Vβα,λ′′
2β

(k2, k
′′
2 ; P23)

×Gββ ′ (P23 − k′′
2 )Mλ′′

2β
′,λ′

2α
′(k′′

2 , k′
2; P23). (21)

This equation is illustrated in Fig. 2. The off-shell kernel
Vβα,λ′

2α
′ is known (in principal), and is discussed in more detail

in Appendix A.

C. The three-nucleon form factors

The diagrams needed to calculate these form factors are
displayed in Fig. 3. The diagrams A–F are referred to as the
complete impulse approximation (CIA). Diagrams G–J are the
interaction currents. The algebraic result for the six diagrams
that make up the CIA can be written

J
µ

CIA

= 3e

∫ ∫
m2 d3k1d

3k2

E(k1)E(k2) (2π )6

×
∑
λ1λ2

{

̄λ1λ2α′(k1, k2; P ′

t ) [1 + 2 ζP12] j
µ

α′α(k+
3 , k3)

×
λ1λ2α(k1, k2; Pt ) + 
̄λ1β ′α(k1, k
+
2 ; P ′

t ) Gβ ′β(k+
2 )

× j
µ
βγ (k+

2 , k2) uγ (k2, λ2) [1 + 2 ζP12]
λ1λ2α(k1, k2; Pt )

+ 
̄λ1λ2α(k1, k2; P ′
t )[1 + 2ζP12]ūγ (k2, λ2)jµ

γβ ′(k2, k
−
2 )

×Gβ ′β(k−
2 ) 
λ1βα(k1, k

−
2 ; Pt )

}
, (22)

where the doubly off-shell vertex functions are evaluated using
Eq. (20), jα′α(k′, k) is the single nucleon current for off-shell
nucleons with incoming (outgoing) four-momenta kµ(k′µ), Pt

is the four-momentum of the incoming, and P ′
t = Pt + q of the

outgoing three-body nucleus, k±
i ≡ ki ± q, and in every term
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(H)
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+ 3

(B)
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FIG. 3. (Color online) The electromagnetic
3N current in CST for elastic electron scattering
from the 3N bound state. Diagrams (A) to
(F) define the complete impulse approximation
(CIA), in which the photon couples to single
nucleons, which can be off-shell (A and D)
or on-shell before or after the photon-nucleon
vertex (B, C, E, and F). The interaction diagrams
(G) to (J) describe processes in which the photon
couples to two-body currents associated with the
two-nucleon kernel.

k2
1 = k2

2 = m2. Each diagram has two off-shell propagators and
three interactions, for a phase of i(−i)5 = 1. Mathematical
expressions for the diagrams with interaction currents are
given in [8] (similar expressions are also derived in [10]
and [11]), and will not be needed here. Equation (22) with
the two-particle off-shell vertex function defined by Eq. (20)
is evaluated numerically in this paper.

D. Three-nucleon partial wave helicity states

In the 3N bound states, the three nucleons are treated as
identical particles with an isospin degree of freedom. The
expression for the 3N current should therefore be symmetric
with respect to which nucleon the photon couples to, and
which nucleons are on or off mass shell. However, permutation
symmetry allows us to relate all possible diagrams that
contribute to the current to ones in which nucleon 1 is a
spectator and on mass-shell, while nucleons 2 and 3 form
a pair that undergoes a two-body interaction before or after
the photon couples to one of them (in CIA). The photon can
also couple to the interacting pair directly, which produces a
two-body current. The resulting total 3N current is displayed
in Fig. 3.

A closer inspection of this 3N current shows that
particle 1 is always on mass-shell, particle 3 always off
mass-shell, and particle 2 in some cases on and in others off
mass-shell. It is therefore sufficient to introduce 3N basis states
with these characteristics when we want to express amplitudes
as matrix elements of operators between 3N states.

The propagator of an off-shell particle can be decomposed
into positive- and negative-energy contributions, as described
by Eq. (15), where also the ρ-spin notation was introduced. In
terms of the basis states, the presence of an off-shell particle
reflects itself in the appearance of two ρ-spin states ρ = ±,
whereas an on-shell particle is described by a positive ρ-spin
only.

The 3N basis states with one nucleon off mass shell were
defined in [3]. The case of the two-nucleon system with both
nucleons off mass shell was discussed in [6]. Here we only
need to combine the results of [3] and [6] in order to specify
the more general case of 3N states with two nucleons off mass
shell as required for the calculations of the 3N form factors.

We use a basis of 3N states that are tensor products of three
one-nucleon states. The states are constructed in a sequence
of steps. We start in the rest frame of the two-nucleon system
composed of nucleons 2 and 3, and use a notation in which
any variable with a “∼” explicitly refers to this frame. Note
that we use this notation only when the symbol without “∼” is
used to describe the same variable in a different frame.

Nucleons 2 and 3 have four-momenta k̃2 = (k̃20, k̃2) and
k̃3 = (k̃30, k̃3). Their relative momentum is

p̃ = 1
2 (k̃2 − k̃3), (23)

and, since k̃2 + k̃3 = 0, we have k̃2 = −k̃3 = p̃. The energy
components are subject to the constraint k̃20 + k̃30 = W , where
W is the total energy in the two-nucleon rest frame.

A particular state of nucleon 2, which will serve as our
reference state, has its three-momentum p̃ aligned along the
positive z-axis, and its helicity and ρ-spin are λ2 and ρ2. It is
written as

|(p̃, 0, 0)λ2ρ2〉, (24)

where p̃ is specified through its magnitude and polar angles
θ̃ and φ in the form (p̃, θ̃ , φ). We use the same symbol for
the four-vector and the magnitude of the three-vector in order
to avoid an awkward notation. Which one is meant is always
clear from the context.

We denote a spatial rotation by an angle ζ about an axis n̂

as R(ζ n̂), and a boost along the direction n̂ with rapidity η as
B(ηn̂). The corresponding representations in Dirac space are

S(R(ζ n̂)) = exp

(
−i	 · n̂

ζ

2

)

= 11 cos

(
ζ

2

)
− i sin

(
ζ

2

) 3∑
i=1

(n̂ · êi)	i, (25)

S(B(ηn̂)) = exp
(
α · n̂

η

2

)

= 11 cosh
(η

2

)
+ sinh

(η

2

) 3∑
i=1

(n̂ · êi)αi, (26)
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where σ 1, σ 2, σ 3 are the Pauli matrices, and we introduce the
Dirac matrices

	i ≡
(

σ i 0
0 σ i

)
, αi =

(
0 σ i

σ i 0

)
. (27)

The unit vectors ê1, ê2, and ê3 point in the x, y, and z

direction, respectively. The special combination of rotations
R(αê3)R(βê2)R(γ ê3) is abbreviated as Rα,β,γ .

With these conventions, a general state in which the three-
momentum points in the direction of the polar angles θ̃ and φ

is

|(p̃, θ̃ , φ)λ2ρ2〉 = S(Rφ,θ̃,0)|(p̃, 0, 0)λ2ρ2〉. (28)

The three-momentum of nucleon 3 points into the opposite
direction of the one of nucleon 2. In the phase convention by
Wick [12], its state is defined by starting from the reference
state (24) with helicity λ3 and ρ-spin ρ3, applying a rotation
Rπ,π,0, which aligns its momentum along the negative z-axis,
followed by a rotation in a general direction,

|(p̃, θ̃ , φ)λ3ρ3〉 = e−iπs3S(Rφ,θ̃,0)|(p̃, π, π )λ3ρ3〉, (29)

where s3 = 1/2 is the spin of particle 3. The reason for
introducing the extra phase factor e−iπs3 is discussed in [12]
and [3].

The two-nucleon state can now be written as

|(p̃, θ̃ , φ)λ2λ3; ρ2ρ3〉 = e−iπs3S(Rφ,θ̃,0) {|(p̃, 0, 0), λ2ρ2〉
⊗ |(p̃, π, π ), λ3ρ3〉} , (30)

where the common rotation Rφ,θ̃,0 acts on the spaces of both
particles simultaneously.

Two-nucleon states with definite total angular momentum
j and total helicity m are obtained through

|p̃jm, λ2λ3; ρ2ρ3〉

= ηj

∫ 2π

0
dφ

∫ π

0
dθ̃ sin θ̃

×D(j )∗
m,λ2−λ3

(φ, θ̃, 0) |(p̃, θ̃ , φ)λ2λ3; ρ2ρ3〉, (31)

where we use the familiar Wigner D-functions and the
abbreviation

ηj ≡
(

2j + 1

4π

)1/2

. (32)

We can treat these composite two-body states as if they
belonged to a single particle with spin j and helicity m. Its total
momentum is zero, because we are still in the two-body rest
frame. Applying the boost Z(q) ≡ B(ηq ê

3) takes it to a state
with three-momentum q in z-direction.1 The rapidity of the
boost is determined by sinh ηq = q/W (q), where the invariant
mass of the nucleon pair is W (q) =

√
[Mt − E(q)]2 − q2.

We proceed then by introducing the state of particle 1,
which in the three-body rest frame has its three-momentum

1Note that this “q” is totally unrelated to the photon momentum “q.”
It is unfortunate that both variables are traditionally given the same
symbol, and we try to facilitate their distinction by using different
font styles.

in the opposite direction of the (23) pair, in exactly the same
manner as the state of particle 3 was defined in the two-body
rest frame,

|(q, π, π )λ1; ρ1〉 = e−iπs1S(Rπ,π,0)|(q, 0, 0)λ1; ρ1〉, (33)

where the spin of particle 1 is s1 = 1/2. In this paper, nucleon 1
is always on mass shell. Its ρ-spin is therefore always ρ1 = +
and will be suppressed from here on.

A tensor product of this state with the two-body state
defined in Eq. (31) yields a three-body state with zero total
three-momentum and the momentum of the (23) pair, which
has spin j and helicity m, in the positive z-direction, while
nucleon 1 has helicity λ1 and its three-momentum in opposite
direction to the pair. A general 3N state is obtained by rotating
the state aligned along the z-axis into a general direction by
performing a rotation R�,�,0.

Repeating the procedure of Eq. (31), and exploiting the fact
that a rotation about the z-axis commutes with a boost along
the same axis, we can write the 3N partial wave helicity states
with total angular momentum J and total helicity M in the
form

|qJM, p̃jm, λ1(λ2λ3); ρ2ρ3〉
= ηJ ηj

∫
dS D(J )∗

M,m−λ1
(S)
∫ π

0
dθ̃ sin θ̃ d

(j )
m,λ2−λ3

(θ̃)

× S(RS){|(q, π, π ), λ1〉 ⊗ S(Z(q))S(R0,θ̃ ,0)

× |(p̃, 0, 0), λ2λ3; ρ2ρ3〉}, (34)

where we have used the abbreviations

RS = R�,�,φ

D(J )∗
M,m−λ1

(S) = D(J )∗
M,m−λ1

(�,�, φ)∫
dS =

∫ 2π

0
d�

∫ π

0
d� sin �

∫ 2π

0
dφ. (35)

Note that so far we have suppressed the energy components
q0 and p̃0 of the four-vectors, which do not play any role in
the definition of the partial wave basis. While nucleon 1 is on
mass shell and q0 given by q0 = E(q), p̃0 is not determined
through p when both pair nucleons are off mass shell, and p̃0

has to be included in the specification of the state.
Our isospin states are constructed as in [3],

| [(t2t3)T t1] T Tz〉, (36)

where the isospins of nucleons 2 and 3 are first coupled to the
pair isospin T , which is then in turn coupled with the isospin
of nucleon 1 to yield the total 3N isospin T and its projection
Tz. Since for the 3N bound states t1 = t2 = t3 = T = 1/2, we
will write the isospin states simply as |T Tz〉.

The complete specification of the helicity basis states is
then

|qJM, p̃0p̃jm, λ1(λ2λ3); ρ2ρ3; T Tz〉
= ηJ ηj

∫
dS D(J )∗

M,m−λ1
(S)
∫ π

0
dθ̃ sin θ̃ d

(j )
m,λ2−λ3

(θ̃ )

× S(RS) {|(q, π, π ), λ1〉 ⊗ S(Z(q))S(R0,θ̃ ,0)

× |(p̃0p̃, 0, 0), λ2λ3; ρ2ρ3〉} ⊗ | [(t2t3)T t1] T Tz〉. (37)
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For the numerical solution of the Faddeev equation (17)
for the 3N vertex function, we use a basis of states with good
parity and particle exchange symmetry, which is obtained [3]
through linear combinations of the states (37).

III. RESULTS AND DISCUSSION

In this section, we present the results of our calculations
of the elastic electromagnetic form factors of 3He and 3H in
the complete impulse approximation (CIA). The underlying
3N vertex functions in Eq. (22) were obtained by solving
the corresponding Faddeev-type 3N bound state equation (17)
which depends on NN scattering amplitudes as dynamical
input. The NN amplitudes are solutions of the CST two-body
equation (18) for given NN interaction models. We begin by
a brief description of the interaction models used in our form
factor calculations.

A. N N interaction models

In order to study the model dependence of the form factors,
we used several members of a family of one-boson exchange
(OBE) potentials that were first used in Ref. [7], in the first
CST calculation of the triton binding energy. These models are
based on the exchange of six bosons, namely the π, η, σ, δ, ω,
and ρ. The free potential parameters were determined by
fitting to the NN phase shifts below 350 MeV and to deuteron
properties.

A distinctive feature of these models is that they include
off-shell couplings of the scalar mesons σ (isoscalar) and δ

(isovector) to nucleons, of the form

gs�s(p
′, p) = gs

[
1 − νs

2m
(m − /p′ + m − /p)

]
, (38)

where �s(p′, p) is the meson-nucleon vertex, and p and p′ are
the four-momenta of the incoming and outgoing nucleons. The
couplings proportional to νs do not contribute if the nucleons
are on-shell, hence the name “off-shell couplings.” (Note that
the definition of νs used in Eq. (38) differs from that used in
the recent work of Ref. [6].)

It turned out that the triton binding energy is very sensitive
to the strength of the scalar off-shell coupling. In the first
exploratory calculations, it was convenient to vary νσ and νδ

not independently, but keeping their ratio fixed. This was done
by expressing each coupling constant through a common scale
factor ν, according to

νσ = −0.75 ν, νδ = 2.60 ν. (39)

The family of models discussed here has values of ν varying
from 0 to 2.6.

Table I lists the parameters that determine the scalar off-
shell couplings. The table also shows that, as ν is increased
from 0 to 2.6, the triton binding energy varies over a large
range. At the value ν = 1.6 (model W16), the experimental
binding energy is crossed, and simultaneously the best fit to the
NN data (lowest χ2/Ndata) is achieved. Clearly, this singles out
W16 as the most realistic model. While χ2/Ndata deteriorates
when ν moves away from 1.6, it does increase only moderately
over the considerable range. We have therefore a convenient
method at our disposal to generate a family of potentials that

TABLE I. Scalar meson parameters of the NN potential models
used in the calculations of the 3N vertex functions. Also given are
the χ 2/Ndata of the models obtained in fits to a NN data base of
1994, and the corresponding triton binding energies Et . All masses
and binding energies are in MeV.

W00 W10 W16 W19 W26

ν 0.0 1.0 1.6 1.9 2.6
g2

σ /4π 5.84067 5.50753 4.99887 4.67948 4.05718
νσ 0.0 −0.75 −1.2 −1.425 −1.95
mσ 525 515 506 501 491
g2

δ /4π 0.14812 0.69046 0.62818 0.47598 0.25045
νδ 0.0 2.6 4.16 4.94 6.76
mδ 390 540 512 474 399
χ 2/Ndata 3.00 2.45 2.25 2.27 2.56
Et 6.217 7.411 8.489 9.072 10.533

differ considerably in the 3N binding energy, but yield roughly
equivalent fits to the NN data. This is an almost ideal situation
to study the model dependence in our 3N electromagnetic form
factor calculations.

A more detailed description of these potentials and the
complete list of parameters can be found in [13]. In all of these
models, the pion-nucleon coupling is of pure pseudovector
form. (Recent fits to the data described in Ref. [6] give χ2/N �
1 and still show the same correlation between Et and χ2.
Results from these new models will be discussed elsewhere.)

B. Partial wave convergence

The electromagnetic form factors of the 3N bound states
have been calculated in the basis of partial wave helicity
states described in Sec. II D. With an increasing number
of partial waves, the calculations become more and more
time consuming. It is important to have an idea about the
accuracy of the results that can be achieved with a limited
number of partial waves. It is customary to define a truncated
basis of three-body states through the maximum value of the
two-body total angular momentum, jmax, of the included basis
states. Table II shows the charge form factor of 3He, for a
particular model calculation which will be described later, at
five different values of the momentum transfer Q, depending
on jmax. Table III shows the same for the magnetic form factor
of 3He.

What both tables indicate is that at lower Q a good
stability of the results is reached already with jmax = 2. Not
surprisingly, the results are less stable for higher Q, although
uncertainties of the order of a few percent are perfectly
satisfactory.

Diagrams A and the sum of B and C require numerical inte-
grations over two momenta and two angles, while in diagrams
D and the sum of E and F two momenta and three angles
are integrated. In principle, the precision of the numerical
integrations can be improved upon by increasing the number of
integration points. However, we feel that the current precision,
which we estimate to be about three significant figures, is suf-
ficient for the purpose of this work. Small changes of the order
of one percent would not be visible in the figures presented.
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TABLE II. Partial wave convergence of the charge form factor
of 3He at selected values of the momentum transfer Q. The first
column shows the maximum total pair angular momentum included
in the 3N partial waves. Columns two to six are the form factor
calculated in the corresponding truncated partial wave basis at Q =
1.0, 3.0, 5.0, 7.0, and 9.0 fm−1. Except for those in column two, the
values of the form factor are multiplied by a power of ten indicated
in the last line. All results are for model W16 with the MMD nucleon
form factor [14].

jmax Q (fm−1)

1.0 3.0 5.0 7.0 9.0

1 0.5585 1.7603 −1.5546 −0.9903 1.039
2 0.5716 1.8772 −1.5314 −0.9815 1.201
3 0.5733 1.8866 −1.5519 −1.0471 1.174
4 0.5744 1.8903 −1.5511 −1.0618 1.119
5 0.5743 1.8904 −1.5515 −1.0623 1.128
6 0.5744 1.8896

×10−2
−1.5518
×10−3

−1.0644
×10−4

1.119
×10−5

TABLE III. Same as Table II, but for the magnetic form factor
of 3He.

jmax Q (fm−1)

1.0 3.0 5.0 7.0 9.0

1 0.5063 −0.6586 −3.4357 −0.6531 4.3456
2 0.5202 −0.6207 −3.6999 −1.0678 4.4701
3 0.5217 −0.6181 −3.6482 −0.8808 4.7954
4 0.5227 −0.6200 −3.6497 −0.9454 4.5796
5 0.5226 −0.6190 −3.6489 −0.9376 4.6228
6 0.5226 −0.6206 −3.6479 −0.9413 4.5910

×10−2 ×10−3 ×10−4 ×10−5

C. Model dependence of the CIA

Figures 4–7 compare our CIA results for the selected
models listed in Table I to IARC (impulse approximation
with relativistic corrections) calculations within the framework
described in Refs. [9,17]. The IARC calculations use a
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FIG. 4. (Color online) Charge form factors of 3He and 3H for different NN interaction models in CIA. The left panel shows the form
factors divided by a scale function (solid straight line in the right panel). Shown are the results for models W00 (short dash-dotted), W10 (long
dash-dotted), W16 (dash-double dotted), W19 (long dashed), and W26 (short dashed), all with the MMD nucleon form factor [14]. In addition,
W16 (solid line) is compared to IARC by Marcucci (double dash-dotted), where both calculations used the Galster nucleon form factor [15].
The theoretical error bars of the Greens function Monte Carlo IARC calculations are also given. The right panel shows the W16/Galster and
IARC/Galster results together with the scale function (solid straight line) in the traditional semi-log plot. Both panels also show the experimental
data (full circles) [16].
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FIG. 5. (Color online) Magnetic form factors of 3He and 3H for different NN interaction models in CIA. The various curves are defined in
the caption of Fig. 4.

one-nucleon-current with wave functions obtained from the
Argonne AV18 NN and Urbana IX 3N potentials, and include
first-order relativistic corrections. Our models do not include
the strong Coulomb corrections for the pp interaction, and
hence give the same binding energies for both 3H and 3He.
To help in the comparison of our results with the IARC,
Marcucci provided us with IARC calculations in which the
pp Coulomb interaction was excluded [18], such that the
used 3H and 3He wave functions also had the same binding
energies.

Figures 4 and 5 show the charge and magnetic form factors
of 3H and 3He, while Figs. 6 and 7 show the isoscalar
and isovector combinations of the charge and magnetic form
factors. Each figure has four panels. The right hand panels give
a log plot of the absolute value of the form factors vs. Q. Note
that they all fall off by about 6 orders of magnitude over the
range in Q shown in the plot. In each of these right hand panels
an exponential scale function is shown (the straight line). To
get a better idea of the relative differences in the models,
the left hand panels show the form factors divided by the scale
function. This removes the strong exponential dependence and
permits us to show both the sign and the relative value of each
curve on a linear scale.

The first conclusion that can be drawn from these graphs is
that, in every case, model W16 is remarkably close to the IARC
calculation at low Q, confirming that these two calculations are

in essential agreement with one another. This is a very pleasing
result: it confirms for the first time that the CST not only
yields the correct 3N binding energy, but that it is also capable
of a good description of the electromagnetic structure of the
3N bound states. The differences in the underlying dynamics
between IARC (the nonrelativistic AV18 NN potential and
an irreducible 3N force) and the CST (relativistic NN kernel
with off-shell couplings, no irreducible 3N force) seem to be
less important at small Q than the fact that they yield the
same nuclear binding energy. As will be discussed in more
detail in Sec. III F, in the case of the family of CST interaction
models used here, the CST single-nucleon current contains
approximately the same physics as the one of IARC. The close
agreement of the results is therefore perfectly understandable.

Next, note that model W16 departs from the IARC at a
Q of about 4 to 6 fm−1. The Monte Carlo calculations of
the IARC begin to show large errors for Q � 6 fm−1, so it is
difficult to make a precise comparison above this point, but
the trends are still clear. The charge form factors agree to
Q � 6 fm−1 beyond which the IARC models oscillate with a
shorter wavelength than does W16. A similar thing happens
with the magnetic form factors, but the IARC and W16 break
away at a lower Q � 4 fm−1. The isoscalar and isovector
combinations show the same behavior.

The variation in the CIA models is remarkably smooth,
and seems to be explained almost entirely by the different
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FIG. 6. (Color online) Isoscalar and isovector charge form factors of the 3N bound states for different NN interaction models in CIA. The
various curves are defined in the caption of Fig. 4.

three-body binding energies predicted by each of these models.
Recall that the low momentum behavior of the charge form
factors can be written

FC(Q2) � 1 − 1
6Q2〈r2〉 + · · · . (40)

Using the values of the root mean square charge radii in
Table IV, which also shows the magnetic radii for complete-
ness, it can be verified directly in Fig. 8 that the well-known
relation 〈r2〉 ∝ 1/Et between the mean square radius of the

TABLE IV. Charge and magnetic root mean square radii of 3He
and 3H for the five models of Table I, calculated in CIA with the
MMD parametrization of the nucleon electromagnetic form factors.
The corresponding 3N binding energies are also listed.

Model Et (MeV) rms radius (fm)

charge magnetic

3He 3H 3He 3H

W00 6.217 2.204 1.986 2.361 2.172
W10 7.411 2.030 1.842 2.195 2.027
W16 8.489 1.917 1.742 2.061 1.946
W19 9.072 1.869 1.698 1.991 1.914
W26 10.533 1.783 1.613 1.819 1.862

bound state and the binding energy Et holds very well for the
CST models.

This behavior predicts model W00 with the smallest
binding energy will have the greatest curvature at Q = 0, and
that W26 with the largest binding energy will have the smallest
curvature, a behavior confirmed by the plots. The surprising
fact is that this behavior seems to persist on to higher Q, with
W00 oscillating with the shortest wave length and W26 the
longest.

Finally, note that the comparison with the data shows
significant discrepancies beyond Q � 1 fm−1, particularly
for the isovector magnetic combination. In the case of the
IARC calculations, it has been shown [9] that the inclusion
of large exchange-current contributions brings the theoretical
calculations into good agreement with the data. While we
are not yet ready to calculate the interaction currents for our
CST models, we believe that they will be large also. We
reemphasize that the observed discrepancy between the data
and the theoretical results is due to known physics not included
in the impulse approximations in both cases. This aspect is
discussed further below in Sec. III F.

Finally, in Table V we compare calculations of the magnetic
moments of the three-body nuclei. Note the reasonably close
agreement between the calculations, and the well known
discrepancy with the data (due to missing exchange current
contributions).
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FIG. 7. (Color online) Isoscalar and isovector magnetic form factors of the 3N bound states for different NN interaction models in CIA.
The various curves are defined in the caption of Fig. 4.

D. Contributions of the six diagrams

The contributions of each of the six diagrams that make up
the CIA are shown in Fig. 9. Note that all give comparable
results; none can be neglected.

It is particularly interesting to see that the sum of diagrams
B and C (each contains an integrable singularity, but their sum
has no singularity) is almost precisely equal to diagram A
(in all cases). This was expected, but a similar result does not
hold for the sum of diagrams E and F. Each of these is singular,
their sum is finite, but it is not equal to diagram D, as originally
expected. Note also that the contributions of diagrams A and
D to the charge form factors are very similar, at least at low

TABLE V. Magnetic moments of 3He, 3H, as well as their
isoscalar and isovector combinations µS and µV in nuclear mag-
netons. The first two lines are calculated with model W16 in CIA,
in combination with the MMD and the Galster parametrization
of the nucleon electromagnetic form factors. The third line is a
IARC/Galster calculation by Marcucci. The last line shows the
experimental values.

µ(3He) µ(3H) µS µV

W16/MMD −1.747 2.550 0.402 −2.149
W16/Galster −1.749 2.546 0.398 −2.147
IARC/Galster −1.763 2.572 0.404 −2.168
Experiment −2.127 2.979 0.426 −2.553

Q2, but that they give substantially different results for the
magnetic form factors. These relationships will be studied in
a future paper.

E. Dependence on the nucleon form factors

In Ref. [2] it was shown how to construct gauge invariant
interactions using composite particles. Subsequently [19,20]

FIG. 8. (Color online) Mean square charge radii of 3He and 3H
versus inverse binding energy for models W00, W10, W16, W19,
and W26, in order from right to left. The straight lines are linear fits
through the points and show that the expected linear relation between
〈r2〉 and 1/Et is indeed well satisfied for these models.
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FIG. 9. (Color online) Contributions of the various diagrams to the charge (upper panel) and magnetic (lower panel) form factors of 3He and
3H. The solid line is the total result in CIA (sum of diagrams A–F) for the NN interaction model W16 and the MMD nucleon electromagnetic
form factors. The other lines are the partial results for diagrams A (dashed), B+C (dash-dotted), D (double dot-dashed), and E+F (double
dash-dotted).

the general form of the one nucleon current operator for use in
such a program was derived. The one used most frequently is

j
µ

N (p′, p)

= f0(p′2, p2){(F1(Q2) − 1)γ̃ µ + γ µ}
+ g0(p′2, p2)�−(p′){(F3(Q2) − 1) γ̃ µ + γ µ}�−(p)

+ f ′
0(p′2, p2) F2(Q2)

i σµνqν

2m
, (41)

where F1,2(Q2) are the on-shell nucleon form factors, F3(Q2)
is a completely unknown form factor describing the off-
shell structure of the nucleon (subject to the constraint that
F3(0) = 1),�−(p) = (m − /p)/2m, γ̃ µ = γ µ − qµ/q/q2, f ′

0 is
a completely undetermined function of p′2 and p2 (subject to
the constraint f ′

0(m2,m2) = 1), and f0 and g0 are functions
of p2 and p′2 completely determined by the Ward-Takahashi
identity for a dressed nucleon

qµj
µ

N (p′, p) = S−1
N (p) − S−1

N (p′), (42)

where SN (p) is the dressed propagator for the nucleon

SN (p) = [h(p2)]2

m − /p
. (43)

In the applications discussed in this paper, the nucleon form
factor is

h(p2) =
[ (

�2
N − m2

)2(
�2

N − m2
)2 + (m2 − p2)2

]2

(44)

and f0 and g0 are given in terms of h

f0(p′2, p2) = h

h′
m2 − p′2

p2 − p′2 + h′

h

m2 − p2

p′2 − p2
,

(45)

g0(p′2, p2) =
(

h

h′ − h′

h

)
4m2

p′2 − p2

with h ≡ h(p2) and h′ ≡ h(p′2).
In order to include the isospin dependence of the current

correctly, care has to be taken to maintain the Ward-Takahashi
identity satisfied. The following expression meets this
requirement:

j
µ

N (p′, p) = 1 + τ 3

2
f0(p′2, p2)γ µ

+
[

(F1p(Q2) − 1)
1 + τ 3

2
+ F1n(Q2)

1 − τ 3

2

]
× f0(p′2, p2)γ̃ µ
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FIG. 10. (Color online) Charge (upper panels) and magnetic (lower panels) form factors of 3He and 3H in CIA, divided by the respective
scale functions of Fig. 4, with model W16 and different nucleon electromagnetic form factors. The MMD parametrization is used for the
on-shell part of the nucleon current in all cases. The solid line is obtained using only the on-shell nucleon current NCI (i.e., f0 = f ′

0 = 1 and
g0 = 0). The dashed line uses the full current (41) in the version NCII (with f ′

0 = f0 and F3N = GEN ). Finally, the dash-dotted line shows the
full current NCIV (with f ′

0 = 1). We also tried replacing F3N = GEN by F3N = F1N for each case (currents NCIII and NCV); the effect is too
small to be seen on the plot.

+
[
F2p(Q2)

1 + τ 3

2
+ F2n(Q2)

1 − τ 3

2

]

× f0(p′2, p2)
iσµνqν

2m

+ 1 + τ 3

2
g0(p′2, p2)�−(p′)γ µ�−(p)

+
[

(F3p(Q2) − 1)
1 + τ 3

2
+ F3n(Q2)

1 − τ 3

2

]
× g0(p′2, p2)�−(p′)γ̃ µ�−(p). (46)

Note that the nucleon current is always used in conjunction
with a conserved electron current, and hence the terms in qµ

vanish. Making this simplification in Eq. (46), and combining
the proton and neutron current into a single, isospin dependent
expression, gives

j
µ

N (p′, p) = f0(p′2, p2) F1N (Q2)γ µ

+ f ′
0(p′2, p2) F2N (Q2)

i σµνqν

2m

+ g0(p′2, p2)F3N (Q2)�−(p′)γ µ�−(p), (47)

where, for i = {1, 2, 3} and the nucleon isospin projection τ 3,

FiN (Q2) = Fip(Q2)
1 + τ 3

2
+ Fin(Q2)

1 − τ 3

2
. (48)

In previous applications, f ′
0 has been taken to be equal to

f0, and usually F3N = GEN (where N stands for p or n), but
no systematic study of the dependence of these factors has
been completed.

In this work, we performed 3N form factor calculations
with five different single-nucleon currents, which can be
characterized by the different choices of the off-shell form
factors f0, f

′
0, g0, as well as of F3N .

The first nucleon current, labeled NCI, is the usual on-shell
current, with f0 = f ′

0 = 1 and g0 = 0. Next we consider a
genuine full off-shell current, NCII, with f0 and g0 given by
Eq. (45), f ′

0 = f0, and F3N = GEN . Current NCIII differs from
NCII only by the choice F3N = F1N . To study the sensitivity
of the results on f ′

0 we constructed current NCIV, which is
equal to NCII except for f ′

0 = 1. Finally, current NCV equals
NCIV apart from F3N = F1N .

Figure 10 shows the effect of some variations in the
choice of the single-nucleon form factors. In general, the
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changes are very small for Q <∼ 5 fm−1. Only at larger values
of Q the various cases begin to diverge from each other,
particularly in the charge form factors. The three displayed
lines correspond to NCI, NCII, and NCIV. The results for
NCIII are indistinguishable from NCII in the figure, as are
those for NCV from NCIV. We conclude that the inclusion of
off-shell form factors, as well as the choice of f ′

0(p′2, p2), has
only marginal effects at low Q, but becomes relevant for larger
values of Q. On the other hand, the particular parametrization
of F3N (Q) is much less important.

F. Negative energy states as relativistic corrections
vs. interaction currents

We have seen that the CIA models and the nonrelativistic
IARC agree quite well at low Q, so that (i) differences in
the physics they describe shows up only at higher Q, and
(ii) their failure to explain the low Q data is probably due to
the omission of the same physics. Here we will look at both of
these questions.

One must be cautious in comparing these two approaches—
the language used to describe the physics differs and the same
processes can be called by two different names. Negative en-
ergy states are automatically included in the CST calculations,
and are considered relativistic corrections, but in the IARC
formalism they are considered to be interaction currents.

The negative energy (or interaction current) terms we
are discussing are illustrated in Fig. 11. The figure shows
a selected set of Z-diagrams involving one, two and three
pion exchanges. These are “time-ordered” diagrams with time
flowing from left to right, so the diagonal lines (flowing
backward in time) represent negative energy contributions,
which can be reinterpreted as contributions from the pro-
duction of virtual nucleon-antinucleon pairs. In the Feynman
diagram formalism, more natural to the CST, these Z-diagrams
are automatically included as part of the off-shell nucleon
propagator. The CIA automatically includes contributions
from the infinite sum of all of these diagrams. In the IARC
formalism, only the diagram of Fig. 11(a) is included. The
other processes, thought to be small, are never included in
IARC. Furthermore, in the nonrelativistic language of IARC,
some of these higher order diagrams generate three-body
currents, so, in the language of IARC, our calculation also
includes some three-body currents. However, in the language
of the CST, none of these contributions are three-body currents.

+ + + + . . .

(a) (b) (c1) (c2)

FIG. 11. (Color online) Examples of Z-graphs in time-ordered
perturbation theory, which are automatically included through the
coupling of the photon to negative-energy nucleon states in the full
CIA calculations. In the 3N system, the meson lines (dashed) can
couple to any of the remaining two nucleons (not shown).

)b()a(

FIG. 12. (Color online) The pion interaction current. With ps
coupling the contact current (b) is zero and the Z-diagram (a) is
large. With pv coupling, the Z-diagram (a) is small, and the contact
term (b) is large. There is an approximate equivalence between
(a) calculated using ps coupling and (b) calculated with pv coupling.

There is another ambiguity that adds to the confusion. If
pseudoscalar (ps) pion coupling is used to calculate the pion
exchange currents (the choice made by IARC), then there is
no four-point γπNN current, but when pseudovector (pv)
coupling is used, there is a (large) four-point γπNN current.
This is illustrated in Fig. 12. It has been known for a long time
that the leading order contribution from the Z-diagram (a) in ps
coupling is equivalent to the contact current (b) in pv coupling.
In the CST models used here, a pure pv pion coupling was used,
so the Z-diagrams are small and the interaction current of
Fig. 12(b) must be added (it would be part of the contributions
coming from Figs. 3G–J). Hence, our results are similar to
the IARC calculation because, even though we include the
Z-diagram 12(a) and IARC do not, ours is small. The large
part of the pion interaction current, Fig. 12(a) for IARC and
Fig. 12(b) for CST, is omitted by both calculations.

How big are the negative energy contributions shown in
Fig. 11? We have said that they are small, because we use pv
coupling for the pion. A more precise picture is given Fig. 13,
which shows the influence of negative-energy states in three-
body channels on the charge and magnetic form factors of 3He
and 3H. It compares the full calculation with W16/MMD with
another calculation in which only positive-energy three-body
channels are taken into account. Note that this does not mean
that negative-energy states are completely eliminated from
these calculations, because the three-nucleon vertex functions
were calculated from all channels. But this comparison does
show the effect of removing all of the diagrams in Fig. 11.
The figure shows that the charge form factors of 3He and 3H
are slightly changed, mainly for momentum transfer larger
than about 6 fm−1, while the magnetic form factors remain
essentially unchanged.

G. Critique of the physics missing from the CIA

We conclude with a brief discussion of the physics missing
from the CIA. It is useful to look at the isoscalar and isovector
magnetic and charge combinations separately.

Careful examination of the isoscalar magnetic form factor
given in Fig. 7 shows that the CIA is very close to the data,
except possibly in the region near Q from about 2 to 3 fm−1

(where the discrepancy is about ∼20%). This is confirmed
by the IARC studies [9], which show that interaction currents
in this channel are quite small (the largest “corrections” to
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FIG. 13. (Color online) Charge (upper panels) and magnetic (lower panels) form factors of 3He and 3H divided by the respective scale
functions of Fig. 4. The solid line is the full result, the dashed line excludes all three-body negative-energy states in the 3N vertex function.
The results are obtained with the NN model W16 and the MMD nucleon form factor in CIA.

the one-body current are the spin-orbit relativistic corrections,
included in both the IARC and in the CST models). The model
dependence shown in the figure suggests that the discrepancy
in the region Q from 2 to 3 fm−1 (not visible on the logarithmic
scale shown in the right hand panel and in Ref. [9]) might very
well be corrected by use of more accurate wave functions.
Accurate 3H wave functions were produced after this work
was finished, and a better 3He wave function (with the correct
binding energy) can be produced once we develop an accurate
pp interaction model.

The isovector magnetic form factor (Fig. 7) and both
the isoscalar and isovector charge form factors (Fig. 6)
show large discrepancies that are explained in Ref. [9] by
large pion and rho interaction currents missing from both
the IARC and the CIA results presented here. It remains
to be seen whether these corrections, when added to the
CIA, will bring the CST predictions into agreement with the
data.

Finally, as observed in all of the figures above, relativistic
effects grow significantly with increasing Q2, and the new
Jefferson Laboratory high Q2 measurements of the 3He form
factors, to be released soon, will provide a strong test of the
relativistic theory. The existence or non-existence of a second
minimum will be a particularly interesting signal. Our CIA
calculations show a second minimum, but until we have added

the missing interaction currents we are unable to predict its
location.

IV. CONCLUSIONS

We have performed the first numerical calculations of the
electromagnetic three-nucleon form factors in the Covariant
Spectator Theory. This framework is manifestly covariant
and includes relativistic effects such as boosts, Wigner spin
rotations, and negative-energy states exactly, without resorting
to expansions in orders of v/c. These calculations were
done in complete impulse approximation for a number of
relativistic three-nucleon bound-state vertex functions, derived
from a family of two-nucleon interaction models that produce
different three-nucleon binding energies while maintaining a
roughly equivalent good fit to the nucleon-nucleon data. From
the findings of these calculations, we want to highlight the
following:

The first observation is that the CST description of
the three-nucleon electromagnetic form factors yields very
reasonable results, confirming the validity of this formalism.
The calculations are demanding, but numerically stable.

Our study of the model dependence of the results indi-
cates that the three-nucleon binding energy determines their
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behavior to larger momentum transfer than previously ex-
pected. This is also evident when we compare to nonrelativistic
impulse approximation calculations with relativistic correc-
tions (IARC), which are based on the Argonne AV18/UIX
two- and three-nucleon potentials. The three-nucleon form
factors obtained with model W16, which reproduces the
experimental triton binding energy and comes also closest to
the one predicted by the nonrelativistic AV18/UIX potentials,
are remarkably similar to the IARC form factors up to moderate
values of the momentum transfer (around 4 to 6 fm−1).

We find that each of the six diagrams of CIA is significant,
so none can be omitted.

Variations in the parametrization of the single-nucleon
electromagnetic form factors, as well as the inclusion of
off-shell form factors, have little effect on the results.

A similar observation can be made about the influence of
negative-energy states in the three-nucleon channels, that give
rise to Z-graph-type contributions to the form factors. We
explain their smallness by the use of pure pseudovector πNN

coupling in our two-nucleon potentials, which suppresses
Z-graphs. The same reason makes it perfectly understandable
why our results are so similar to the ones in IARC, that do not
include any Z-graphs.

Since the CIA calculations do not contain interaction
currents, which we believe to be large, a good agreement with
the data over the whole range of the considered momentum
transfer cannot yet be expected. An exception is the isoscalar
magnetic form factor, where interaction currents are small, and
indeed we find a good agreement of our results with the data. In
all other cases, interaction currents will have to be calculated
when a very close description of the data for all values of Q is
the objective.
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APPENDIX A: CALCULATION OF THE 3N VERTEX
FUNCTION WITH TWO OFF-SHELL NUCLEONS

As discussed above, the contributions when two nucleons
are off-shell require knowledge of the two-body off-shell
vertex function defined in Eq. (20). This is determined by
quadratures from the two-particle off-shell scattering ampli-
tude, which is in turn determined by quadratures from the
two-body off-shell kernel Vβα,λ′

2α
′ (k2, k

′
2; P23), as illustrated in

Fig. 2.
The off-shell kernel enlarges the number of degrees of

freedom in two different ways.

First, since the kernel connects to the off-shell propagator
for particle 2, its expansion [similar to the expansion (15) for
particle 3] requires knowledge of both the positive and negative
energy projections of the kernel:

V
ρ2,+
λ2α,λ′

2α
′ (k2, k

′
2; P23)

= u
ρ2
β (k2, λ2)Vβα,λ′

2α
′ (k2, k

′
2; P23). (A1)

The ρ2 = −projections, not needed before, are defined in
Ref. [6], and can be computed straightforwardly from knowl-
edge of the Dirac structure of the OBE model.

Second, the relative energy of the final state is now no
longer fixed. In general, this relative energy is

k0
23 ≡ 1

2

(
k0

2 − k0
3

) = k0
2 − 1

2W23. (A2)

When particle 2 is on shell, k0
2 = Ek2 and the relative energy

depends on |k2| and is not an independent variable. When both
particles are off-shell, k0

23 is an independent variable. In this
work we found it convenient to write k0

23 in terms of the new
variable x0, where

k0
23 = x0

(
Ek2 − 1

2W23
)
, (A3)

so that x0 = 1 when particle 2 is on shell.
To have the behavior required by the (generalized) Pauli

principal, the potential must exhibit a Pauli exchange sym-
metry (meaning that, depending on the isospin, it must be
either symmetric or antisymmetric) when particles 2 and 3 are
exchanged. However, when particles 2 and 3 are exchanged,
k0

23 → −k0
23, so that x0 → −x0. We conclude that the kernel

must have the Pauli exchange symmetry when x0 → −x0. For
the on-shell case (x0 = 1), this symmetry is discussed in detail
in Refs. [4,6].

This symmetry is imposed in practice by explicitly sym-
metrizing the OBE kernels. The symmetrized meson propaga-
tors are

�mv
� 1

2

(
N (q+)

m2
v − t+(x0)

± N (q−)

m2
v − t−(x0)

)
, (A4)

where q± = ±k23 − k′
23 and t± = q2

±. In Refs. [4,6] the first
term in Eq. (A4) is referred to as the direct term; the second as
the exchange or “alternating” term. Since the initial particle 2
is on-shell, the momentum transfers are

t±(x0) = [E′ − 1
2W23 ∓ x0

(
E − 1

2W23
)]2 − (k ∓ k′)2, (A5)

where, for simplicity, we use the notation k ≡ k23 and k′ ≡ k′
23.

Near the physical scattering region, when W23 � 2E � 2E′,
the momentum transfers t±(x0) � −(k ∓ k′)2 are negative.
However, when the momenta are very large, t± can become
positive, and the denominators m2

v − t± can be zero. To see
that the momentum transfers can become positive, consider
the case when k − k′ = 0 and |k| → ∞. Then

lim
k→∞

t±(x0) → k2(1 ± x0)2. (A6)

Hence the momentum transfer always becomes positive, and
the kernel has a singularity, unless x0 = 1 and the same particle
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is on-shell both before and after the interaction (the direct term
with t = t+). In this case it is easy to show the t+(1) < 0 for
all k and k′.

A detailed analysis shows that some of these singularities
arise from physical particle production; others are spurious sin-
gularities that are canceled by higher order kernels neglected
in the OBE approximation. In either case these singularities
should be removed, and prescriptions for removing them are
discussed in detail elsewhere (the interested reader should
study Ref. [6]). The work presented in this paper uses
prescription A for the on-shell amplitudes. This prescription
can be summarized by the replacements t±(x0) → t±(±1)
which insures that the meson propagators for both the direct
(same particle on-shell) and “alternating” (different particles
on-shell) have no singularities. The exact x0 dependence is
retained in the numerators N (q) so that some differences
between direct and alternating terms are preserved. Hence,
under prescription A all symmetries are preserved, but some
terms (those that would arise from antisymmetrizing the
denominators) are zero. In choosing prescription A we lose
some of the off-shell dependence. A more complete picture can
be obtained from prescription C (described in Ref. [6]), and
the consequences of this choice will be described elsewhere.

APPENDIX B: CALCULATION OF THE THREE-NUCLEON
ELECTROMAGNETIC CURRENT IN CIA

In this appendix we show some details of the calculation of
the 3N electromagnetic current in CIA, i.e., of diagrams (A) to
(F) of Fig. 3. The calculations are carried out in the lab frame.
Of course, since we are working in a covariant framework,
the final result does not depend on this particular choice of
reference frame.

First, we write the helicity partial wave basis states (37) in a
way that shows the involved transformations on the individual
particle states in more detail:

|qp̃0p̃Mjmλ1λ2λ3ρ2ρ3T Tz〉

=
√

2j + 1

8π2

∫ 2π

0
d�

∫ π

0
d� sin �

∫ 2π

0
dφ̃

×
∫ π

0
dθ̃ sin θ̃D(1/2)∗

M,m−λ1
(�,�, 0)D(j )∗

m,λ2−λ3
(φ̃, θ̃ , 0){[|p1〉

⊗ S(R�,�,0)S(Rπ,π,0)u+(q, λ1)]

⊗ [|p2〉 ⊗ S(R�,�,0)S(Z(q))S(Rφ̃,θ̃,0)uρ2 (p̃, λ2)]

⊗ [|p3〉 ⊗ S(R�,�,0)S(Z(q))S(Rφ̃,θ̃,0)

× S(Rπ,π,0)uρ3 (p̃, λ3)]} ⊗ |T Tz〉. (B1)

The total angular momentum is always J = 1/2 for the
3N bound states and is from here on suppressed in
the state kets. The possible values of the other dis-
crete quantum numbers are M = ±1/2, j = 0, 1, . . . , m =
−j,−j + 1, . . . , j, λ1, λ2, λ3 = ±1/2, subject to the con-
straints |m − λ1| � 1/2, |λ2 − λ3| � j , and ρ2, ρ3 = ±. The
four-momenta p1, p2, p3 of the three nucleons are obtained
by the space-time transformations

p1 = R�,�,0Rπ,π,0(E(q), 0, 0, q), (B2)

p2 = R�,�,0Z(q)Rφ̃,θ̃,0

(
p̃0, 0, 0, p̃

)
, (B3)

p3 = R�,�,0Z(q)Rφ̃,θ̃,0Rπ,π,0
(
W (q) − p̃0, 0, 0, p̃

)
, (B4)

and for single-particle state vectors we use the normalization
〈p′|p〉 = (2π )4δ4(p′ − p).

The helicity spinors in Eq. (B1) are

u+(p, λ) =
(

cosh ηp

2

2λ sinh ηp

2

)
⊗ χ (λ),

(B5)

u−(p, λ) =
(

−2λ sinh ηp

2

cosh ηp

2

)
⊗ χ (λ),

with the rapidity ηp given by tanh ηp = p/E(p), and the two-
component spinors

χ (1/2) =
(

1
0

)
, χ (−1/2) =

(
0
1

)
. (B6)

The state (B1) has total angular momentum 1/2 and helicity
M . As long as the 3N bound state remains at rest or is boosted
along the positive z-axis, M is also the z-projection of the total
angular momentum.

The total four-momentum of the 3N bound state at rest
is Pt = (Mt, 0, 0, 0). Its vertex state with nucleon 1 on mass
shell, helicity M , and isospin projection Tz, can be written as
a linear combination of the basis states (B1):

|
1(Pt ,M, Tz)〉 =
∑
jmT

λ1λ2λ3

∑
ρ2ρ3
ρ′

2ρ′
3

∫ qs

0

dqq2

(2π )32E(q)

×
∫ +∞

−∞

dp̃0

2π

∫ +∞

0

dp̃p̃2

(2π )3

(
m

E(p̃)

)4

×C(qp̃0p̃Mjmλ1λ2λ3ρ
′
2ρ

′
3T Tz)

×Oρ2ρ
′
2
(p̃, λ2)Oρ3ρ

′
3
(p̃, λ3)

× |qp̃0p̃Mjmλ1λ2λ3ρ2ρ3T Tz〉, (B7)

where the functions C are real because of time reversal
invariance, and the matrix O is defined as

Oρ ′ρ(p, λ) = ūρ ′
(p, λ)uρ(p, λ) =

(
1 −2λ

p

m

−2λ
p

m
−1

)
ρ ′ρ

.

(B8)

The integration over q in Eq. (B7) extends up to the finite value
qs = (M2

t − m2)/2Mt for which the mass of the 2N subsystem
becomes zero and the limit of the region of timelike 2N states
is reached. As was shown in [3], the functions C go to zero
smoothly as q approaches qs , which makes it possible to treat
qs as a natural cut-off momentum without making the 3N

vertex functions discontinuous.
When the Feynman diagrams of the CIA are evaluated,

one encounters frequently the particular sequence of Lorentz
transformations of a boost in z-direction, followed by a rotation
about the y-axis and then by another boost in z-direction. It
turns out to be very useful that this is equivalent to one boost
in z-direction between two rotations about the y-axis, in the
following way:

B(η1ê
3)R(θ1ê

2)B(η2ê
3) = R(θ2ê

2)B(η3ê
3)R(θ3ê

2). (B9)
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For given rapidities η1, η2, and rotation angle θ1, the corre-
sponding rapidity η3 and rotation angles θ2 and θ3 can be
found from

sinh η3 =
√

(cosh η1 cosh η2 + sinh η1 sinh η2 cos θ1)2 − 1.

(B10)

If η3 > 0 then

sin θ2 = sin θ1 sinh η2

sinh η3
, (B11)

cos θ2 = sinh η1 cosh η2 + cosh η1 sinh η2 cos θ1

sinh η3
, (B12)

sin θ3 = sin θ1 sinh η1

sinh η3
, (B13)

cos θ3 = cosh η1 sinh η2 + sinh η1 cosh η2 cos θ1

sinh η3
, (B14)

with 0 � θ2, θ3 < 2π . If η3 = 0 then θ3 = 0 and

sin θ2 = sin θ1, (B15)

cos θ2 = cos θ1, (B16)

where 0 � θ2 < 2π .
Similarly useful, a rotation about the z-axis between two

rotations about the y-axis can be replaced by a rotation about
the y-axis between two rotations about the z-axis:

R(θ1ê
2)R(φ1ê

3)R(θ2ê
2) = R(φ2ê

3)R(θ3ê
2)R(φ3ê

3). (B17)

From the given angles θ1, θ2, and φ1 one obtains first

θ3 = arccos(cos θ1 cos θ2 − sin θ1 sin θ2 cos φ1). (B18)

If θ3 �= 0 and θ3 �= π then

sin φ2 = sin θ2 sin φ1

sin θ3
, (B19)

cos φ2 = sin θ1 cos θ2 + cos θ1 sin θ2 cos φ1

sin θ3
, (B20)

sin φ3 = sin θ1 sin φ1

sin θ3
, (B21)

cos φ3 = cos θ1 sin θ2 + sin θ1 cos θ2 cos φ1

sin θ3
, (B22)

with 0 � φ2, φ3 < 2π . On the other hand, if cos θ3 = ±1 then
φ3 = 0, and

sin φ2 = 1
2 sin φ1(cos θ1 ± cos θ2), (B23)

cos φ2 = 1
2 [cos φ1(1 ± cos θ1 cos θ2) ∓ sin θ1 sin θ2], (B24)

with 0 � φ2 < 2π .
The 3N vertex functions were calculated in a helicity partial

wave basis, which means that we have to calculate the matrix
elements of the electromagnetic 3N current in terms of the
functions

C(qp̃0p̃Mjmλ1λ2λ3ρ2ρ3T Tz)

= 〈qp̃0p̃Mjmλ1λ2λ3ρ2ρ3T Tz|
1(Pt ,M, Tz)〉. (B25)

Formally, we can write each of the diagrams of the CIA in the
general operator form

〈
1(P ′
t ,M

′, Tz)|Aj
µ

NB|
1(Pt ,M, Tz)〉, (B26)

where j
µ

N is the operator of a single-nucleon current, and A and
B are operators composed of off-shell propagators, on-shell
projectors, and, in the cases of diagrams (D), (E), and (F),
permutation operators. We can now insert a complete set of
partial wave states (B1) before A and after B in Eq. (B26)
to obtain the desired current matrix elements in partial wave
form.

Note that in all diagrams, as part of the states (B1), single-
nucleon momentum kets |pi〉 that are inserted on the right of B

are contracted to corresponding bras from the states inserted on
the left of A. These inner products lead to Dirac delta functions
that ensure momentum conservation along the nucleon lines
in each diagram. In the following sections, we show how these
delta functions are evaluated, and we display the final form of
the various diagrams in partial wave form.

1. Calculation of diagram A

The bound state vertex vector represented on right (left)
side of diagram A is an integral over momentum variables
q, p̃(q ′, p̃′) and angular variables �,�, φ̃, θ̃ (�′,�′, φ̃′, θ̃ ′),
and its total momentum is Pt (P ′

t = B(ηê3)Pt ).
The product of momentum conserving Dirac delta functions

in diagram A is

δ3(B(ηê3)R�′,�′,0Rπ,π,0B(ξ (q ′)ê3)v(m, 0)

−R�,�,0Rπ,π,0B(ξ (q)ê3)v(m, 0))

× δ3(B(ηê3)R�′,�′,0Z(q ′)Rφ̃′,θ̃ ′,0B(ξ (p̃′)ê3)v(m, 0)

−R�,�,0Z(q)Rφ̃,θ̃,0B(ξ (p̃)ê3)v(m, 0)), (B27)

where we introduced the auxiliary four-vector v(x, y) ≡
(x, 0, 0, y) and defined sinh ξ (x) = x/m.

From the first Dirac delta function in Eq. (B27) we get
�′ = �,�′ = π − �1, q

′ = r1, where �1, r1 are obtained by
applying Eq. (B9) to B(−ηê3)R0,π−�,0B(ξ (q)ê3):

B(−ηê3)R0,π−�,0B(ξ (q)ê3) = R0,�1,0B(ξ (r1)ê3)R0,�2,0.

(B28)

To evaluate the second delta function, we begin by applying
rule (B9) twice,

Z(−q)R0,−�,0B(ηê3) = R0,ϑ1,0B(ξ (s1)ê3)R0,ϑ2,0,

(B29)

B(ξ (s1)ê3)R0,ϑ2+�′,0Z(q ′) = R0,ϑ3,0B(ξ (s2)ê3)R0,ϑ4,0,

(B30)

which defines s1, s2, ϑ1, ϑ2, ϑ3, and ϑ4.
Next, we change the angular integration over φ̃′ and θ̃ ′ to the

new angles φ̄ and θ̄ (with 0 � φ̄ < 2π and 0 � θ̄ � π ), where
φ̃′ and θ̃ ′ are given in terms of φ̄ and θ̄ through the application
of Eq. (B17),

R0,−ϑ4,0Rφ̄,θ̄,0 = Rφ̃′,θ̃ ′,−ϕ̄ , (B31)

and we have∫ π

0
dθ̃ ′ sin θ̃ ′

∫ 2π

0
dφ̃′ =

∫ π

0
dθ̄ sin θ̄

∫ 2π

0
dφ̄. (B32)
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Using Eq. (B9) in the form

B(ξ (s2)ê3)R0,θ̄ ,0B(ξ (p̃′)ê3) = R0,ϑ5,0B(ξ (s3)ê3)R0,ϑ6,0,

(B33)

determines s3, and finally applying again Eq. (B17),

R0,ϑ1+ϑ3,φ̄R0,ϑ5,0 = Rφ1,ϑ7,φ2 , (B34)

defines the angles φ1 and ϑ7.
What we have achieved is that the first momentum in the

second delta function has been rewritten as

B(ηê3)R�′,�′,0Z(q ′)Rφ̃′,θ̃ ′,0B(ξ (p̃′)ê3)v(m, 0)

= R�,�,0Z(q)Rφ1,ϑ7,0B(ξ (s3)ê3)v(m, 0), (B35)

where we have also used the fact that rotations leave v(m, 0)
unchanged. Comparing Eq. (B35) to the second momentum
in the argument of the same delta function, we can read off
φ̃ = φ1, θ̃ = ϑ7, and p̃ = s3.

Before writing down the final expression for diagram A,
we have to address the issue of what consequences might
arise from the limitation of the spectator momentum in the
vertex function to values below the critical value qs . The
photon momentum absorbed by the 3N system in the lab
frame is directed along the positive z-axis, which imparts on it
a corresponding boost into the same direction. It is clear that
even if the spectator momentum of the 3N system at rest lies

below qs , it can exceed the critical value after being boosted.
Whether this is the case or not depends on the size of the boost,
the initial spectator momentum, and its angle with respect to
the direction of the boost.

We define K to be the z-component of the photon
momentum in the lab frame, which is related to the invariant
square of the photon four-momentum, −Q2, through K =
Q
√

1 + Q2/4M2
t . Then the boost rapidity η is given through

sinh η = K/Mt . An analysis of the effect of this boost on the
spectator momentum shows that, for a given K and a fixed
q < qs , the magnitude of the boosted spectator momentum
q ′ is less than qs if and only if � ∈ I , where I = [0, π ] if
0 � q < a and I =] arccos b, π ] if a � q < qs , with

a =
(
M2

t − m2
)√

M2
t + K2 − (M2

t + m2
)
K

2M2
t

, (B36)

b =
Mt

√
m2 + q2

s −
√

(m2 + q2)
(
M2

t + K2
)

qK
. (B37)

These relations are valid as long as 0 < K < (M2
t − m2)/2m,

which is always the case in the calculations of this work. Note
that q ′ → qs as � → arccos b when a � q < qs . We restrict
the integration over � to the interval I .

Diagram A can now be written as an integral over
q,�, p̃′, θ̄ , φ̄,�:

〈M ′|Jµ

A |M〉 = 3m2

2(2π )8

∫ qs

0
dq

q2

E(q)

∫
I

d� sin �

∫ +∞

0
dp̃′ p̃′2

E(p̃′)

∫ π

0
dθ̄ sin θ̄

∫ 2π

0
dφ̄

∫ 2π

0
d�

×
∑

T ′j ′m′λ′
1λ′

2λ′
3ρ′

3
Tjmλ1λ2λ3ρ3

√
2j ′ + 1

√
2j + 1D(1/2)

M ′,m′−λ′
1
(�′,�′, 0)D(1/2)∗

M,m−λ1
(�,�, 0)D(j ′)

m′,λ′
2−λ′

3
(φ̃′, θ̃ ′, 0)D(j )∗

m,λ2−λ3
(φ̃, θ̃ , 0)

×F
(11)
λ′

1λ1
F

(22)
λ′

2λ2
(R�,0,0))µν

(
F

(1)
T ′T Tz

F
(33)ν
ρ ′

3λ
′
3ρ3λ3

+ F
(2)
T ′T Tz

F
(33)ντ

ρ ′
3λ

′
3ρ3λ3

qτ + F
(3)
T ′T Tz

G
(33)ν
ρ ′

3λ
′
3ρ3λ3

)
×C(q ′E(p̃′)p̃′M ′j ′m′λ′

1λ
′
2λ

′
3 + ρ ′

3T
′Tz)C(qE(p̃)p̃Mjmλ1λ2λ3 + ρ3T Tz), (B38)

where the following spinor matrix elements appear:

F
(11)
λ′

1λ1
= ū+(0, λ′

1)S−1(B(ξ (q ′)ê3))S−1(Rπ,π,0)S−1(R0,�′,0)S−1(B(ηê3))S(R0,�,0)S(Rπ,π,0)S(B(ξ (q)ê3))u+(0, λ1), (B39)

F
(22)
λ′

2λ2
= ū+(0, λ′

2)S−1(B(ξ (p̃′)ê3))S−1(Rφ̃′,θ̃ ′,0)S−1(Z(q ′))S−1(R0,�′,0)S−1(B(ηê3))

× S(R0,�,0)S(Z(q))S(Rφ̃,θ̃,0)S(B(ξ (p̃)ê3))u+(0, λ2), (B40)

F
(33)ν
ρ ′

3λ
′
3ρ3λ3

= m

E(p̃′)
m

E(p̃)

1

[(ρ ′
3 + 1)E(p̃′) − W (q ′)][(ρ3 + 1)E(p̃) − W (q)]

ūρ ′
3 (p̃′, λ′

3)S−1(Rπ,π,0)S−1(Rφ̃′,θ̃ ′,0)S−1(Z(q ′))

× S−1(R0,�′,0)S−1(B(ηê3))γ νS(R0,�,0)S(Z(q))S(Rφ̃,θ̃,0)S(Rπ,π,0)uρ3 (p̃, λ3), (B41)

F
(33)ντ

ρ ′
3λ

′
3ρ3λ3

= m

E(p̃′)
m

E(p̃)

1

[(ρ ′
3 + 1)E(p̃′) − W (q ′)][(ρ3 + 1)E(p̃) − W (q)]

ūρ ′
3 (p̃′, λ′

3)S−1(Rπ,π,0)S−1(Rφ̃′,θ̃ ′,0)S−1(Z(q ′))

× S−1(R0,�′,0)S−1(B(ηê3))iσ ντ S(R0,�,0)S(Z(q))S(Rφ̃,θ̃,0)S(Rπ,π,0)uρ3 (p̃, λ3), (B42)
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G
(33)ν
ρ ′

3λ
′
3ρ3λ3

= 1

(2m)2

(
m

E(p̃′)

)2 (
m

E(p̃)

)2 ∑
σ ′σ=±

Oρ ′
3σ

′(p̃′, λ′
3)Oρ3σ (p̃, λ3)ūσ ′

(p̃′, λ′
3)

× S−1(Rπ,π,0)S−1(Rφ̃′,θ̃ ′,0)S−1(Z(q ′))S−1(R0,�′,0)S−1(B(ηê3))γ νS(R0,�,0)S(Z(q))S(Rφ̃,θ̃,0)S(Rπ,π,0)uσ (p̃, λ3).

(B43)

Expression (B38) also contains the isospin-dependent func-
tions

F
(1)
T ′T Tz

= f̃
(
q ′2

3 , q2
3

) (
F1p(Q2)〈T ′Tz|1 + τ 3

3

2
|T Tz〉

+F1n(Q2)〈T ′Tz|1 − τ 3
3

2
|T Tz〉

)
, (B44)

F
(2)
T ′T Tz

= g̃
(
q ′2

3 , q2
3

) (
F2p(Q2)〈T ′Tz|1 + τ 3

3

2
|T Tz〉

+F2n(Q2)〈T ′Tz|1 − τ 3
3

2
|T Tz〉

)
, (B45)

F
(3)
T ′T Tz

= h̃
(
q ′2

3 , q2
3

) (
F3p(Q2)〈T ′Tz|1 + τ 3

3

2
|T Tz〉

+F3n(Q2)〈T ′Tz|1 − τ 3
3

2
|T Tz〉

)
, (B46)

where τ 3
3 is the isospin projection of nucleon 3, and the four-

momenta q ′
3 and q3 are defined as

q ′
3 = (W (q ′) − E(p̃′), 0, 0, p̃′),

(B47)
q3 = (W (q) − E(p̃), 0, 0, p̃

)
.

We have constructed five different models of the electro-
magnetic nucleon current, which correspond to the differ-
ent choices of the off-shell nucleon form factors given in
Table VI.

The isospin matrix elements needed in Eqs. (B44) to (B46)
are

〈0Tz|1 ± τ 3
3

2
|0Tz〉 = 1

2
, 〈1Tz|1 ± τ 3

3

2
|1Tz〉 = 1

2
± 2

3
Tz,

〈1Tz|1 ± τ 3
3

2
|0Tz〉 = ± 1√

3
Tz,

〈0Tz|1 ± τ 3
3

2
|1Tz〉 = ± 1√

3
Tz. (B48)

F
(33)ν
ρ ′

3λ
′
3ρ3λ3

in Eq. (B41) and F
(33)ντ

ρ ′
3λ

′
3ρ3λ3

in Eq. (B42) contain

factors of the form m
E(p̃)

1
(ρ3+1)E(p̃)−W (q) (and the analogous

expression with primed variables). These factors originate
from the ρ-spin decomposition (15) of off-shell nucleon
propagators. We introduce

m

E(p̃)
gρ(q, p̃) ≡ m

E(p̃)

1

(ρ + 1)E(p̃) − W (q)
(B49)

as the ρ-spin propagator of nucleon 3.
The positive ρ-spin propagators g+(q, p̃) and g+(q ′, p̃′)

are finite since 2E(p̃′) − W (q) � 3m − Mt > 0. On the other
hand, the negative ρ-spin propagator develops a singularity as
q approaches qs . In the vicinity of qs ,

g−(q, p̃) = − 1

W (q)
∼ − 1√

2Mtqs

E(qs ) (qs − q)
. (B50)

Similarly,

g−(q ′, p̃′) = − 1

W (q ′)
∼ − 1√

2Kq(b − cos �)
(B51)

as � → arccos b and a � q < qs . These propagators are only
weakly singular, and they are still multiplied by the vertex
function which goes to zero at the singularity. The total result
is finite.

The integrations over � and φ̄ in Eq. (B38) can be done
analytically. The only �-dependence in the integrand of
(B38) resides in the rotation matrix (R�,0,0)µν and in a factor
e−i(M ′−M)� from D(1/2)

M ′,m′−λ′
1
(�′,�′, 0)D(1/2)∗

M,m−λ1
(�,�, 0). The

product is easily integrated:∫ 2π

0
d�e−i(M ′−M)�R�,0,0 = (2 − |M ′ − M|)π

×

⎛
⎜⎝

1 − |M ′ − M| 0 0 0
0 |M ′ − M| i(M ′ − M) 0
0 −i(M ′ − M) |M ′ − M| 0
0 0 0 1 − |M ′ − M|

⎞
⎟⎠.

(B52)

TABLE VI. The off-shell nucleon form factors f̃ , g̃, h̃, and the electromagnetic
nucleon form factors F3p and F3n in Eqs. (B44) to (B46) for the models of the
nucleon current used in the numerical calculations of this work.

Model f̃ (p′2, p2) g̃(p′2, p2) h̃(p′2, p2) F3p(Q2) F3n(Q2)

NCI 1 1 0
NCII f0(p′2, p2) f0(p′2, p2) g0(p′2, p2) GEp(Q2) GEn(Q2)
NCIII f0(p′2, p2) f0(p′2, p2) g0(p′2, p2) F1p(Q2) F1n(Q2)
NCIV f0(p′2, p2) 1 g0(p′2, p2) GEp(Q2) GEn(Q2)
NCV f0(p′2, p2) 1 g0(p′2, p2) F1p(Q2) F1n(Q2)
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Next, the integrand of Eq. (B38) depends on φ̄

through φ̃′, θ̃ ′, φ̃, θ̃ , which appear in the factors
D(j ′)

m′,λ′
2−λ′

3
(φ̃′, θ̃ ′, 0),D(j )∗

m,λ2−λ3
(φ̃, θ̃ , 0),F (22)

λ′
2λ2

,F
(33)ν
ρ ′

3λ
′
3ρ3λ3

,F
(33)ντ

ρ ′
3λ

′
3ρ3λ3

and G
(33)ν
ρ ′

3λ
′
3ρ3λ3

. We can write those spinor matrix elements as

F
(22)
λ′

2λ2
=

∑
ξ ′

2ξ2=±1/2

∑
τ ′

2τ2=±
D(1/2)∗

ξ ′
2,λ

′
2

(φ̃′, θ̃ ′, 0)D(1/2)
ξ2,λ2

(φ̃, θ̃ , 0)τ ′
2τ2[ūτ ′

2 (0, λ′
2)u+(p̃′, λ′

2)]

× [ūτ2 (0, λ2)u+(p̃, λ2)]ūτ ′
2 (0, ξ ′

2)S−1(Z(q ′))S−1(R0,�′,0)S−1(B(ηê3))S(R0,�,0)S(Z(q))uτ2 (0, ξ2), (B53)

F
(33)ν
ρ ′

3λ
′
3ρ3λ3

= m

E(p̃′)
gρ ′

3 (q ′, p̃′)
m

E(p̃)
gρ3 (q, p̃)

∑
ξ ′

3ξ3=±1/2

∑
τ ′

3τ3=±
D(1/2)∗

ξ ′
3,−λ′

3
(φ̃′, θ̃ ′, 0)D(1/2)

ξ3,−λ3
(φ̃, θ̃ , 0)τ ′

3[ūρ ′
3 (0, λ′

3)uτ ′
3 (p̃′, λ′

3)]

× ūτ ′
3 (0, ξ ′

3)S−1(Z(q ′))S−1(R0,�′,0)S−1(B(ηê3))γ νS(R0,�,0)S(Z(q))uτ3 (0, ξ3)τ3[ūρ3 (0, λ3)uτ3 (p̃, λ3)], (B54)

F
(33)ντ

ρ ′
3λ

′
3ρ3λ3

= m

E(p̃′)
gρ ′

3 (q ′, p̃′)
m

E(p̃)
gρ3 (q, p̃)

∑
ξ ′

3ξ3=±1/2

∑
τ ′

3τ3=±
D(1/2)∗

ξ ′
3,−λ′

3
(φ̃′, θ̃ ′, 0)D(1/2)

ξ3,−λ3
(φ̃, θ̃ , 0)τ ′

3[ūρ ′
3 (0, λ′

3)uτ ′
3 (p̃′, λ′

3)]

× ūτ ′
3 (0, ξ ′

3)S−1(Z(q ′))S−1(R0,�′,0)S−1(B(ηê3))iσ ντ S(R0,�,0)S(Z(q))uτ3 (0, ξ3)τ3[ūρ3 (0, λ3)uτ3 (p̃, λ3)], (B55)

G
(33)ν
ρ ′

3λ
′
3ρ3λ3

= m

2E2(p̃′)
m

2E2(p̃)

∑
ξ ′

3ξ3=±1/2

∑
τ ′

3τ3ω
′
3ω3=±

D(1/2)∗
ξ ′

3,−λ′
3
(φ̃′, θ̃ ′, 0)D(1/2)

ξ3,−λ3
(φ̃, θ̃ , 0)τ ′

3Oρ ′
3ω

′
3
(p̃′, λ′

3)[ūω′
3 (0, λ′

3)uτ ′
3 (p̃′, λ′

3)]

× ūτ ′
3 (0, ξ ′

3)S−1(Z(q ′))S−1(R0,�′,0)S−1(B(ηê3))γ νS(R0,�,0)S(Z(q))uτ3 (0, ξ3)τ3Oρ3ω3 (p̃, λ3)[ūω3 (0, λ3)uτ3 (p̃, λ3)].

(B56)

Hence the integration variable φ̄ appears only in the product

D(j ′)
m′,λ′

2−λ′
3
(φ̃′, θ̃ ′, 0)D(j )∗

m,λ2−λ3
(φ̃, θ̃ , 0)D(1/2)∗

ξ ′
2,λ

′
2

(φ̃′, θ̃ ′, 0)D(1/2)
ξ2,λ2

(φ̃, θ̃ , 0)D(1/2)∗
ξ ′

3,−λ′
3
(φ̃′, θ̃ ′, 0)D(1/2)

ξ3,−λ3
(φ̃, θ̃ , 0) (B57)

which can be written as

(−1)m−λ2+λ3−λ′
2+λ′

3+ξ ′
2+ξ ′

3

j ′∑
s ′=−j ′

j∑
s=−j

∑
β ′

2β
′
3β2β3=±1/2

e−i(s ′+β ′
2+β ′

3+s+β2+β3)φ̄d
(j ′)
m′s ′ (−ϑ4)d (j ′)

s ′,λ′
2−λ′

3
(θ̄ )d (1/2)

−ξ ′
2β

′
2
(−ϑ4)d (1/2)

β ′
2−λ′

2
(θ̄)d (1/2)

−ξ ′
3β

′
3
(−ϑ4)

× d
(1/2)
β ′

3λ
′
3

(θ̄ )d (j )
−ms(ϑ1 + ϑ3)d (j )

s,−λ2+λ3
(ϑ5)d (1/2)

ξ2β2
(ϑ1 + ϑ3)d (1/2)

β2λ2
(ϑ5)d (1/2)

ξ3β3
(ϑ1 + ϑ3)d (1/2)

β3−λ3
(ϑ5). (B58)

The φ̄ dependence is now isolated in the factor
e−i(s ′+β ′

2+β ′
3+s+β2+β3)φ̄ , and the analytical integration over φ̄

has become straightforward.

2. Calculation of the sum of diagrams B and C

Diagrams B and C are closely related by symmetry. We
start with diagram C by evaluating its momentum-conserving
Dirac delta functions,

δ3(B(ηê3)R�′,�′,0Rπ,π,0B(ξ (q ′)ê3)v(m, 0) − R�,�,0Rπ,π,0B(ξ (q)ê3)v(m, 0))

× δ4(B(ηê3)R�′,�′,0Z(q ′)Rφ̃′,θ̃ ′,0Rπ,π,0v(W (q ′) − E(p̃′), p̃′) − R�,�,0Z(q)Rφ̃,θ̃,0Rπ,π,0v(W (q) − p̃0, p̃)). (B59)
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The first delta function in Eq. (B59) is the same as the one in
Eq. (B27) of diagram A. Therefore �′ = �,�′ = π −
�1, q

′ = r1, and the interval I for the �-integration is also
the same as in the case of diagram A.

We use the variables ϑ1, ϑ3, s2 defined in Eqs. (B29), (B30),
and φ̄, θ̄ , φ̃′, θ̃ ′ which are related through Eq. (B31). Now we
introduce s3 and ϑ5 (with 0 � ϑ5 � π ),

s3 =

√√√√√√(p̃′ sin θ̄ )2 +
⎛
⎝[W (q ′) − E(p̃′])

s2

m
− p̃′ cos θ̄

√
m2 + s2

2

m

⎞
⎠

2

, (B60)

s3 cos ϑ5 = − [W (q ′) − E(p̃′)
] s2

m
+ p̃′ cos θ̄

√
m2 + s2

2

m
. (B61)

Next we define φ1, ϑ6, φ2, s4 by

R0,ϑ1+ϑ3,φ̄R0,ϑ5,0 = Rφ1,ϑ6,φ2 , (B62)

s4 = W (q) − [W (q ′) − E(p̃′)]

√
m2 + s2

2

m
+ p̃′ cos θ̄

s2

m
.

(B63)

Evaluating the second Dirac delta function in Eq. (B59) in
the way it was shown for diagram A, we obtain p̃0 = s4, p̃ =
s3, φ̃ = φ1, θ̃ = ϑ6.

Diagram C can now be written as an integral over
q,�, p̃′, θ̄ , φ̄,�:

〈M ′|Jµ

C |M〉 = 3m2

2(2π )8

∫ qs

0
dq

q2

E(q)

∫
I

d� sin �

×
∫ +∞

0
dp̃′ p̃′2

E(p̃′)

∫ π

0
dθ̄ sin θ̄

∫ 2π

0
dφ̄

×
∫ 2π

0
d�

∑
T ′j ′m′λ′

1λ′
2λ′

3ρ′
3

Tjmλ1λ2λ3ρ2ρ3

√
2j ′ + 1

√
2j + 1

×D(1/2)
M ′,m′−λ′

1
(�′,�′, 0)D(1/2)∗

M,m−λ1
(�,�, 0)

×D(j ′)
m′,λ′

2−λ′
3
(φ̃′, θ̃ ′, 0)D(j )∗

m,λ2−λ3
(φ̃, θ̃ , 0)

×C(q ′E(p̃′)p̃′M ′j ′m′λ′
1λ

′
2λ

′
3 + ρ ′

3T
′Tz)

×C(qp̃0p̃Mjmλ1λ2λ3ρ2ρ3T Tz)F
(11)
λ′

1λ1
(R�,0,0)µν

× (F (1)
T ′T Tz

F
(22)ν
λ′

2ρ2λ2
+ F

(2)
T ′T Tz

F
(22)ντ

λ′
2ρ2λ2

qτ

)
F

(33)
ρ ′

3λ
′
3ρ3λ3

,

(B64)

where F
(11)
λ′

1λ1
is defined in Eq. (B39). The remaining spinor

matrix elements are

F
(22)ν
λ′

2ρ2λ2
= p̃0 + ρ2E(p̃)

E2(p̃) − (p̃0)2

m

E(p̃)
ū+(p̃′, λ′

2)

× S−1(Rφ̃′,θ̃ ′,0)S−1(Z(q ′))S−1(R0,�′,0)

× S−1(B(ηê3))γ νS(R0,�,0)S(Z(q))

× S(Rφ̃,θ̃,0)uρ2 (p̃, λ2), (B65)

F
(22)ντ

λ′
2ρ2λ2

= p̃0 + ρ2E(p̃)

E2(p̃) − (p̃0)2

m

E(p̃)
ū+(p̃′, λ′

2)

× S−1(Rφ̃′,θ̃ ′,0)S−1(Z(q ′))S−1(R0,�′,0)

× S−1(B(ηê3))iσ ντ S(R0,�,0)S(Z(q))

× S(Rφ̃,θ̃,0)uρ2 (p̃, λ2), (B66)

F
(33)
ρ ′

3λ
′
3ρ3λ3

= m

E(p̃′)
gρ ′

3 (q ′, p̃′)
(

m

E(p̃)

)2

×
∑
σ3=±

Oρ3σ3 (p̃, λ3)ūρ ′
3 (p̃′, λ′

3)

× S−1(Rπ,π,0)S−1(Rφ̃′,θ̃ ′,0)S−1(Z(q ′))S−1(R0,�′,0)

× S−1(B(ηê3))S(R0,�,0)

× S(Z(q))S(Rφ̃,θ̃,0)S(Rπ,π,0)uσ3 (p̃, λ3), (B67)

and the isospin dependent factors are

F
(1)
T ′T Tz

= f̃
(
m2, q2

2

) (
F1p(Q2)〈T ′Tz|1 + τ 3

2

2
|T Tz〉

+F1n(Q2)〈T ′Tz|1 − τ 3
2

2
|T Tz〉

)
, (B68)

F
(2)
T ′T Tz

= g̃
(
m2, q2

2

) (
F2p(Q2)〈T ′Tz|1 + τ 3

2

2
|T Tz〉

+F2n(Q2)〈T ′Tz|1 − τ 3
2

2
|T Tz〉

)
, (B69)

with

q2 = (p̃0, 0, 0, p̃). (B70)

The matrix elements involving the isospin z-projection of
nucleon 2, τ 3

2 , are

〈0Tz|1 ± τ 3
2

2
|0Tz〉 = 1

2
, 〈1Tz|1 ± τ 3

2

2
|1Tz〉 = 1

2
± 2

3
Tz,

〈1Tz|1 ± τ 3
2

2
|0Tz〉 = ∓ 1√

3
Tz, 〈0Tz|1 ± τ 3

2

2
|1Tz〉 = ∓ 1√

3
Tz.

(B71)
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Just as it was shown for Eq. (B38), the integrations over � and
φ̄ in Eq. (B64) can again be done analytically.

We turn our attention now to the integration over θ̄ . This
is complicated due to the moving singularity contained in
the factor (p̃0 + ρ2E(p̃))/(E2(p̃) − (p̃0)2) in Eqs. (B65) and
(B66), which has its origin in the off-shell propagator of
nucleon 2. In this work, we calculate diagram C separately
from B, but eliminate the imaginary part of the propagator
singularity, which cancels with the corresponding one of
diagram B, and keep only the principal value integral. The
energy denominator can be written as

E2(p̃) − (p̃0)2 = AE(p̃′) − Bp̃′ cos θ̄ − C, (B72)

where

A = 2W (q ′) − 2W (q)

√
m2 + s2

2

m
,

(B73)

B = 2W (q)
s2

m
, C = A2 − B2

4
.

A, B, and C do not depend on p̃′ nor on θ̄ , and B > |A|. The
location of the singularity depends on the relations between
A,B, and p̃′, and we have to distinguish between several cases.
We define

p± = BC ± |A|
√

C2 + m2(B2 − A2)

A2 − B2
(B74)

and, for p̃′ �= 0,

D(p̃′) = −C + AE(p̃′)
Bp̃′ . (B75)

We find that the equation E2(p̃) − (p̃0)2 = 0 in the unknown
θ̄ has at least one solution if and only if one of the following
conditions is satisfied:

A � 0, p̃′ � p−, (B76)

A < 0, B <
√

A2 + 4m|A| p̃′ � −p+, (B77)

A < 0, B =
√

A2 + 4m|A| p̃′ > 0, (B78)

A < 0, B >
√

A2 + 4m|A| p̃′ � p+, (B79)

p̃′ = 0. (B80)

The respective minimum values p−,−p+, and p+ of p̃′ in
Eqs. (B76), (B77), and (B79) are all positive. In any of
the cases (B77)–(B79), the equation E2(p̃) − (p̃0)2 = 0 has
only one solution, namely θ̄ = arccos D(p̃′). In the case of
Eq. (B80), the set of solutions of E2(p̃) − (p̃0)2 = 0 is the
interval [0, π ].

Now that the location of the singularity has been deter-
mined, one can divide the integration region into subintervals
according to the four cases (B76)–(B79) and apply standard

numerical techniques (we used a subtraction method) to
perform the principal value integration.

Diagram B does not need to be calculated once diagram C
is known, since it can be obtained from the latter using time
reversal and parity transformation properties. It can be shown
that the components of diagram B are given by

〈M ′|J 0
B |M〉 = (B(ηê3))0

0〈M ′|J 0
C |M〉

− (B(ηê3))0
3〈M ′|J 3

C |M〉, (B81)

〈M ′|J 1
B |M〉 = 〈M ′|J 1

C |M〉, (B82)

〈M ′|J 2
B |M〉 = 〈M ′|J 2

C |M〉, (B83)

〈M ′|J 3
B |M〉 = −(B(ηê3))3

3〈M ′|J 3
C |M〉

+ (B(ηê3))3
0〈M ′|J 0

C |M〉. (B84)

3. Calculation of diagram D

The product of momentum conserving Dirac delta functions
in diagram D is

δ3(B(ηê3)R�′,�′,0Z(q ′)Rφ̃′,θ̃ ′,0B(ξ (p̃′)ê3)v(m, 0)

−R�,�,0Rπ,π,0B(ξ (q)ê3)v(m, 0))

× δ3(B(ηê3)R�′,�′,0Rπ,π,0B(ξ (q ′)ê3)v(m, 0)

−R�,�,0Z(q)Rφ̃,θ̃,0B(ξ (p̃)ê3)v(m, 0)). (B85)

From the first Dirac delta function in Eq. (B85) we obtain
φ̃′ = ϕ3, θ̃

′ = ϑ6, and p̃′ = s2, where ϕ3, ϑ6, s2 are defined by
applying Eqs. (B9) and (B17):

Z(−q ′)R0,−�′,0B(−ηê3) = R0,ϑ1,0B(ξ (s1)ê3)R0,ϑ2,0,

(B86)

R0,ϑ2,0R�−�′+π,π−�,0 = Rϕ1,ϑ3,ϕ2 , (B87)

B(ξ (s1)ê3)R0,ϑ3,0B(ξ (q)ê3) = R0,ϑ4,0B(ξ (s2)ê3)R0,ϑ5,0,

(B88)

R0,ϑ1,ϕ1R0,ϑ4,0 = Rϕ3,ϑ6,ϕ4 . (B89)

The second delta function leads to φ̃ = φ3, θ̃ = θ6, and p̃ = r2,
where—again by using Eqs. (B9) and (B17)—φ3, θ6, r2 are
determined through

Z(−q)R0,−�,0B(ηê3) = R0,θ1,0B(ξ (r1)ê3)R0,θ2,0,

(B90)

R0,θ2,0R�′−�+π,π−�′,0 = Rφ1,θ3,φ2 , (B91)

B(ξ (r1)ê3)R0,θ3,0B(ξ (q ′)ê3) = R0,θ4,0B(ξ (r2)ê3)R0,θ5,0,

(B92)

R0,θ1,0Rφ1,θ4,0 = Rφ3,θ6,φ4 . (B93)

We can write the current given by diagram D in the form

〈M ′|Jµ

D |M〉 = − 3m2

(2π )8

∫ qs

0
dq

q2

E(q)

∫ qs

0
dq ′ q ′2

E(q ′)

∫ π

0
d� sin �

∫ π

0
d�′ sin �′

∫ 2π

0
d�′
∫ 2π

0
d�

×
∑

T ′j ′m′λ′
1λ′

2λ′
3ρ′

3
Tjmλ1λ2λ3ρ3

√
2j ′ + 1

√
2j + 1D(1/2)

M ′,m′−λ′
1
(�′,�′, 0)D(1/2)∗

M,m−λ1
(�,�, 0)D(j ′)

m′,λ′
2−λ′

3
(φ̃′, θ̃ ′, 0)

054006-23



PINTO, STADLER, AND GROSS PHYSICAL REVIEW C 79, 054006 (2009)

×D(j )∗
m,λ2−λ3

(φ̃, θ̃ , 0)C(q ′E(p̃′)p̃′M ′j ′m′λ′
1λ

′
2λ

′
3 + ρ ′

3T
′Tz)C(qE(p̃)p̃Mjmλ1λ2λ3 + ρ3T Tz)

×F
(12)
λ′

1λ2
F

(21)
λ′

2λ1

(
R�+�′

2 ,0,0

)µ
ν

(
F

(1)
T ′T Tz

F
(33)ν
ρ ′

3λ
′
3ρ3λ3

+ F
(2)
T ′T Tz

F
(33)ντ

ρ ′
3λ

′
3ρ3λ3

qτ + F
(3)
T ′T Tz

G
(33)ν
ρ ′

3λ
′
3ρ3λ3

)
, (B94)

with the spinor matrix elements

F
(12)
λ′

1λ2
= ū+(0, λ′

1)S−1(B(ξ (q ′)ê3))S−1(Rπ,π,0)S−1(R0,�′,0)S−1(B(ηê3))S(R�−�′,�,0)

× S(Z(q))S(Rφ̃,θ̃,0)S(B(ξ (p̃)ê3))u+(0, λ2), (B95)

F
(21)
λ′

2λ1
= ū+(0, λ′

2)S−1(B(ξ (p̃′)ê3))S−1(Rφ̃′,θ̃ ′,0)S−1(Z(q ′))S−1(R0,�′,0)S−1(B(ηê3))

× S(R�−�′,�,0)S(Rπ,π,0)S(B(ξ (q)ê3))u+(0, λ1), (B96)

F
(33)ν
ρ ′

3λ
′
3ρ3λ3

= m

E(p̃′)
gρ ′

3 (q ′, p̃′)
m

E(p̃)
gρ3 (q, p̃)ūρ ′

3 (p̃′, λ′
3)

× S−1(Rπ,π,0)S−1(Rφ̃′,θ̃ ′,0)S−1(Z(q ′))S−1(R0,�′,0)S−1(B(ηê3))S
(
R�−�′

2 ,0,0

)
× γ νS

(
R�−�′

2 ,0,0

)
S(R0,�,0)S(Z(q))S(Rφ̃,θ̃,0)S(Rπ,π,0)uρ3 (p̃, λ3), (B97)

F
(33)ντ

ρ ′
3λ

′
3ρ3λ3

= m

E(p̃′)
gρ ′

3 (q ′, p̃′)
m

E(p̃)
gρ3 (q, p̃)ūρ ′

3 (p̃′, λ′
3)

× S−1(Rπ,π,0)S−1(Rφ̃′,θ̃ ′,0)S−1(Z(q ′))S−1(R0,�′,0)S−1(B(ηê3))S
(
R�−�′

2 ,0,0

)
× iσ ντ S

(
R�−�′

2 ,0,0

)
S(R0,�,0)S(Z(q))S(Rφ̃,θ̃,0)S(Rπ,π,0)uρ3 (p̃, λ3), (B98)

G
(33)ν
ρ ′

3λ
′
3ρ3λ3

= 1

(2m)2

(
m

E(p̃′)

)2 (
m

E(p̃)

)2 ∑
σ ′σ=±

Oρ ′
3σ

′(p̃′, λ′
3)Oρ3σ (p̃, λ3)ūσ ′

(p̃′, λ′
3)

× S−1(Rπ,π,0)S−1(Rφ̃′,θ̃ ′,0)S−1(Z(q ′))S−1(R0,�′,0)S−1(B(ηê3))

× S
(
R�−�′

2 ,0,0

)
γ νS
(
R�−�′

2 ,0,0

)
S(R0,�,0)S(Z(q))S(Rφ̃,θ̃,0)S(Rπ,π,0)uσ (p̃, λ3), (B99)

and the isospin-dependent factors

F
(1)
T ′T Tz

= f̃
(
q ′2

3 , q2
3

)(
F1p(Q2)〈T ′Tz|P iso

12
1 + τ 3

3

2
|T Tz〉

+F1n(Q2)〈T ′Tz|P iso
12

1 − τ 3
3

2
|T Tz〉

)
, (B100)

F
(2)
T ′T Tz

= g̃
(
q ′2

3 , q2
3

)(
F2p(Q2)〈T ′Tz|P iso

12
1 + τ 3

3

2
|T Tz〉

+F2n(Q2)〈T ′Tz|P iso
12

1 − τ 3
3

2
|T Tz〉

)
, (B101)

F
(3)
T ′T Tz

= h̃
(
q ′2

3 , q2
3

)(
F3p(Q2)〈T ′Tz|P iso

12
1 + τ 3

3

2
|T Tz〉

+F3n(Q2)〈T ′Tz|P iso
12

1 − τ 3
3

2
|T Tz〉

)
. (B102)

The four-momenta q ′
3 and q3 are defined in Eq. (B47), where

now q ′ is an independent variable, and we have p̃′ = s2 and
p̃ = r2. P iso

12 is the operator that interchanges the isospin states

of nucleons 1 and 2, with the matrix elements

〈0Tz|P iso
12

1 ± τ 3
3

2
|0Tz〉 = 1

4
∓ 1

2
Tz,

〈1Tz|P iso
12

1 ± τ 3
3

2
|1Tz〉 = −1

4
∓ 5

6
Tz,

(B103)

〈1Tz|P iso
12

1 ± τ 3
3

2
|0Tz〉 = −

√
3

4
∓

√
3

6
Tz,

〈0Tz|P iso
12

1 ± τ 3
3

2
|1Tz〉 = −

√
3

4
∓

√
3

6
Tz.

In Eq. (B94), we change now integration variables from �′
and � to φ and ϕ, with

φ = � − �′

2
, ϕ = � + �′

2
, (B104)

which implies

∫ 2π

0
d�′
∫ 2π

0
d� = 2

∫ π

−π

dφ

∫ −|φ|+2π

|φ|
dϕ. (B105)
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The only ϕ-dependence in the integrand comes from
D(1/2)

M ′,m′−λ′
1
(�′,�′, 0)D(1/2)∗

M,m−λ1
(�,�, 0), which yields a factor

e−i(M ′−M)ϕ(Rϕ,0,0)µν and can be integrated analytically. The
three different cases are

if M ′ = M

∫ −|φ|+2π

|φ|
dϕe−i(M ′−M)ϕRϕ,0,0 =

⎛
⎜⎜⎜⎝

2π − 2|φ| 0 0 0

0 −2 sin |φ| 0 0

0 0 −2 sin |φ| 0

0 0 0 2π − 2|φ|

⎞
⎟⎟⎟⎠ , (B106)

if M ′ = −M = 1/2

∫ −|φ|+2π

|φ|
dϕe−i(M ′−M)ϕRϕ,0,0 =

⎛
⎜⎜⎜⎝

−2 sin |φ| 0 0 0

0 −|φ| + π − 1
2 sin(2|φ|) i[−|φ| + π + 1

2 sin(2|φ|)] 0

0 −i[−|φ| + π + 1
2 sin(2|φ|)] −|φ| + π − 1

2 sin(2|φ|) 0

0 0 0 −2 sin |φ|

⎞
⎟⎟⎟⎠ , (B107)

if M ′ = −M = −1/2

∫ −|φ|+2π

|φ|
dϕe−i(M ′−M)ϕRϕ,0,0 =

⎛
⎜⎜⎜⎝

−2 sin |φ| 0 0 0

0 −|φ| + π − 1
2 sin(2|φ|) −i[−|φ| + π + 1

2 sin(2|φ|)] 0

0 i[−|φ| + π + 1
2 sin(2|φ|)] −|φ| + π − 1

2 sin(2|φ|) 0

0 0 0 −2 sin |φ|

⎞
⎟⎟⎟⎠ . (B108)

As in the case of diagram A, there is no problem with
propagator singularities and the numerical integrations can
be performed in a straightforward manner.

4. Calculation of the sum of diagrams E and F

In close analogy to diagrams B and C, also diagrams E and
F are related by symmetry. We start with the calculation of
diagram F and relate it later to diagram E. Here, the product
of momentum conserving delta functions is

δ3(B(ηê3)R�′,�′,0Z(q ′)Rφ̃′,θ̃ ′,0B(ξ (p̃′)ê3)v(m, 0) − R�,�,0Rπ,π,0B(ξ (q)ê3)v(m, 0))

× δ4(R�,�,0Z(q)Rφ̃,θ̃,0v(p̃0, p̃) − B(ηê3)R�′,�′,0Rπ,π,0B(ξ (q ′)ê3)v(m, 0) + q
)
. (B109)

The first delta function is the same as the one in Eq. (B85),
hence φ̃′ = ϕ3, θ̃

′ = ϑ6 and p̃′ = s2.
We define r1 and θ1 as

r1 =

√√√√
q ′2 sin2 �′ +

(
K

Mt

E(q ′) −
√

M2
t + K2

Mt

q ′ cos �′ − K

)2

, (B110)

r1 cos θ1 = K

Mt

E(q ′) −
√

M2
t + K2

Mt

q ′ cos �′ − K, (0 � θ1 � π ), (B111)
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and introduce φ1, φ2, θ2 by applying Eq. (B17),

R0,−�,−�+�′+πR0,θ1,0 = Rφ1,θ2,φ2 . (B112)

From the second Dirac delta function in Eq. (B109) we obtain

p̃0 =
√

W 2(q) + q2

W (q)

(
E(q ′)

√
M2

t + K2

Mt

− q ′ cos �′ K

Mt

−
√

K2 − Q2

)
− q

W (q)
r1 cos θ2, (B113)

as well as φ̃ = φ1, θ̃ = θ3, and p̃ = r2, where

r2 =
[
r2

1 sin2 θ2 +
(

− q

W (q)

(
E(q ′)

√
M2

t + K2

Mt

− q ′ cos �′ K

Mt

−
√

K2 − Q2

)
+
√

W 2(q) + q2

W (q)
r1 cos θ2

)2]1/2

,

(B114)

r2 cos θ3 = − q

W (q)

(
E(q ′)

√
M2

t + K2

Mt

− q ′ cos �′ K

Mt

−
√

K2 − Q2

)
+
√

W 2(q) + q2

W (q)
r1 cos θ2, (0 � θ3 � π ). (B115)

The current matrix elements of diagram F are given by

〈M ′|Jµ

F |M〉 = − 3m2

(2π )8

∫ qs

0
dq

q2

E(q)

∫ π

0
d� sin �

∫ 2π

0
d�′
∫ 2π

0
d�

∫ qs

0
dq ′ q ′2

E(q ′)

∫ π

0
d�′ sin �′

×
∑

T ′j ′m′λ′
1λ′

2λ′
3ρ′

3
Tjmλ1λ2λ3ρ2ρ3

√
2j ′ + 1

√
2j + 1D(1/2)

M ′,m′−λ′
1
(�′,�′, 0)D(1/2)∗

M,m−λ1
(�,�, 0)D(j ′)

m′,λ′
2−λ′

3
(φ̃′, θ̃ ′, 0)

×D(j )∗
m,λ2−λ3

(φ̃, θ̃ , 0)C(q ′E(p̃′)p̃′M ′j ′m′λ′
1λ

′
2λ

′
3 + ρ ′

3T
′Tz)C(qp̃0p̃Mjmλ1λ2λ3ρ2ρ3T Tz)

×F
(21)
λ′

2λ1

(
R�+�′

2 ,0,0

)µ
ν

(
F

(1)
T ′T Tz

F
(12)ν
λ′

1ρ2λ2
+ F

(2)
T ′T Tz

F
(12)ντ

λ′
1ρ2λ2

qτ

)
F

(33)
ρ ′

3λ
′
3ρ3λ3

, (B116)

where F
(21)
λ′

2λ1
is defined in Eq. (B96), and the remaining spinor

matrix elements are

F
(12)ν
λ′

1ρ2λ2
= m

E(p̃)

p̃0 + ρ2E(p̃)

E2(p̃) − (p̃0)2
ū+(q ′, λ′

1)S−1(Rπ,π,0)S−1
(
R�′−�

2 ,�′,0

)
S−1(B(ηê3))γ ν

× S
(
R�−�′

2 ,�,0

)
S(Z(q))S(Rφ̃,θ̃,0)uρ2 (p̃, λ2), (B117)

F
(12)ντ

λ′
1ρ2λ2

= m

E(p̃)

p̃0 + ρ2E(p̃)

E2(p̃) − (p̃0)2
ū+(q ′, λ′

1)S−1(Rπ,π,0)S−1
(
R�′−�

2 ,�′,0

)
S−1(B(ηê3))iσ ντ

× S
(
R�−�′

2 ,�,0

)
S(Z(q))S(Rφ̃,θ̃,0)uρ2 (p̃, λ2), (B118)

F
(33)
ρ ′

3λ
′
3ρ3λ3

= m

E(p̃′)
gρ ′

3 (q ′, p̃′)
(

m

E(p̃)

)2 ∑
σ3=±

Oρ3σ3 (p̃, λ3)ūρ ′
3 (p̃′, λ′

3)

× S−1(Rπ,π,0)S−1(Rφ̃′,θ̃ ′,0)S−1(Z(q ′))S−1(R0,�′,0)S−1(B(ηê3))

× S(R�−�′,�,0)S(Z(q))S(Rφ̃,θ̃,0)S(Rπ,π,0)uσ3 (p̃, λ3). (B119)
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The isospin dependent factors are given by

F
(1)
T ′T Tz

= f̃ (m2, q2
2 )

(
F1p(Q2)〈T ′Tz|P iso

12
1 + τ 3

2

2
|T Tz〉 + F1n(Q2)〈T ′Tz|P iso

12
1 − τ 3

2

2
|T Tz〉

)
, (B120)

F
(2)
T ′T Tz

= g̃(m2, q2
2 )

(
F2p(Q2)〈T ′Tz|P iso

12
1 + τ 3

2

2
|T Tz〉 + F2n(Q2)〈T ′Tz|P iso

12
1 − τ 3

2

2
|T Tz〉

)
, (B121)

where q2 is defined in Eq. (B70), its component p̃0 now being
determined in Eq. (B113), and p̃ = r2. The matrix elements
involving the isospin projections of nucleon 2 are

〈0Tz|P iso
12

1 ± τ 3
2

2
|0Tz〉 = 1

4
± 1

2
Tz,

〈1Tz|P iso
12

1 ± τ 3
2

2
|1Tz〉 = −1

4
± 1

6
Tz,

(B122)

〈1Tz|P iso
12

1 ± τ 3
2

2
|0Tz〉 = −

√
3

4
±

√
3

6
Tz,

〈0Tz|P iso
12

1 ± τ 3
2

2
|1Tz〉 = −

√
3

4
∓

√
3

2
Tz.

It is again useful to change integration variables in Eq. (B116)
from �′ and � to φ and ϕ, according to Eqs. (B104)
and (B105). The integration over ϕ can then be carried
out analytically, in analogy to the integration over ϕ in
diagram D.

As in the case of diagrams B and C, we encounter
propagator singularities, whose location needs to be de-
termined. For this purpose, the denominator of the factor
(p̃0 + ρ2E(p̃))/(E2(p̃) − (p̃0)2) which appears in Eqs. (B117)
and (B118), is written as

E2(p̃) − (p̃0)2 = Q2 − 2Q(sinh(ζ + η)E(q ′)
− cosh(ζ + η)q ′ cos �′), (B123)

with

sinh ζ = −
√

K2 − Q2

Q2
. (B124)

We find that E2(p̃) − (p̃0)2 = 0 if and only if a � q ′ < qs and
�′ = �′

s , where

a =
√

−m2 +
[
cosh(ζ + η)E

(
Q

2

)
− sinh(ζ + η)

Q

2

]2

,

(B125)

B(q ′) = sinh(ζ + η)E(q ′) − Q

2

q ′ cosh(ζ + η)
, �′

s = arccos B(q ′).

(B126)

With this information it is now possible to carry out the
principal value integration over �′. The remaining integrations
are straightforward.

Finally, diagram E is obtained from diagram F in complete
analogy to the way diagram B is calculated from diagram C,
namely,

〈M ′|J 0
E|M〉 = (B(ηê3))0

0〈M ′|J 0
F |M〉

− (B(ηê3))0
3〈M ′|J 3

F |M〉, (B127)

〈M ′|J 1
E|M〉 = 〈M ′|J 1

F |M〉, (B128)

〈M ′|J 2
E|M〉 = 〈M ′|J 2

F |M〉, (B129)

〈M ′|J 3
E|M〉 = −(B(ηê3))3

3〈M ′|J 3
F |M〉

+ (B(ηê3))3
0〈M ′|J 0

F |M〉. (B130)
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