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The electromagnetic form factors of the three-nucleon bound states were calculated in complete impulse
approximation in the framework of the Covariant Spectator Theory for the new high-precision two-nucleon
interaction models WJC-1 and WJC-2. The calculations use an approximation for the three-nucleon vertex
functions with two nucleons off mass shell. The form factors with WJC-2 are close to the ones obtained with
the older model W16 and to nonrelativistic potential calculations with lowest-order relativistic corrections, while
the form factors with the most precise two-nucleon model WJC-1 exhibit larger differences. These results can be
understood when the effect of the different types of pion-nucleon coupling used in the various models is examined.
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I. INTRODUCTION

The electromagnetic form factors of nuclei provide impor-
tant information about their internal structure. They have been
used extensively to test models of the nuclear dynamics and of
the associated electromagnetic currents. As electron scattering
experiments, such as the ones performed at Jefferson Lab,
reach larger and larger values of the momentum transferred by
a virtual photon to the struck nucleus, it becomes increasingly
important to incorporate the requirements of special relativity
in a reliable way into the theoretical description of the process.

The Covariant Spectator Theory (CST) [1] was designed
as a manifestly covariant theory, especially suited for the
description of few-nucleon problems. In a recent article [2],
we presented the first CST calculations of the electromagnetic
three-nucleon (3N ) form factors in complete impulse approx-
imation (CIA), which is defined as the complete CST 3N

current [3] except for interaction currents (i.e., diagrams where
the photon couples to an intermediate interacting two-nucleon
(NN ) system). However, the term “impulse approximation”
can be misleading because it depends on the framework used.

For instance, in a very successful approach used by the
Pisa-Jefferson Lab collaboration [4,5], the dynamics is based
on the nonrelativistic Schrödinger equation, and relativistic
corrections are added perturbatively. We call the corresponding
impulse approximation with relativistic corrections “IARC”.
In this framework, two- and three-body interaction currents
are later added to the IARC results. These include first-order
γπNN contact interactions that are equivalent to those already
at the CIA level automatically—and to all orders—included
“Z-graphs” in the CST. This is an example of a more general
observation: what counts as interaction current in one approach
may be part of the impulse approximation in another.

In Ref. [2], our focus was to study the model dependence
of the electromagnetic 3N form factors in CST. We performed
calculations for a family of closely related relativistic two-

nucleon interaction models and found that the CST results
behave very reasonably. In most cases, a direct comparison of
our CIA results with experimental data is not useful because
we expect interaction currents to be significant. However, the
comparison with IARC results is instructive, and it appears that
the surprisingly close agreement between the two approaches
(at least for Q � 4 fm−1), when models are compared that
yield the same 3N binding energy, is no coincidence. The main
reason seems to be that all CST models used in the comparison
employ pseudovector coupling for the pion-nucleon vertices.
This kind of coupling suppresses negative-energy states (cor-
responding to Z-graphs), which are included in CIA but not in
IARC. It is therefore understandable that no large differences
between the two calculations emerge, as long as other aspects
of the dynamics in the two approaches are comparable.

It would be interesting to submit this interpretation to a
test. One only needs to perform two calculations in CIA with
two NN models that are as similar as possible in their ability
to describe the NN data and the 3N binding energy. One
of them should be based on pure pseudovector pion-nucleon
coupling, whereas the other should include an admixture of
pseudoscalar pion-nucleon coupling and thus increase the
weight of Z-graphs. If the above interpretation is correct,
the model with pure pseudovector coupling will be close
to the IARC result, whereas there should be larger deviations
in the case of the model with some pseudoscalar coupling.

We are indeed in a position to perform this test. In a recent
article [6], we published two realistic CST models for the
neutron-proton interaction, both of which describe the np

scattering observables with χ2/Ndata ∼ 1 for the most recent
2007 database. The first model, WJC-1, based on the exchange
of eight bosons and fitted with 27 adjustable parameters,
features a mixture of pseudovector and pseudoscalar
pion-nucleon coupling. The second model, WJC-2, based
on the exchange of six mesons and with only 15 adjustable
parameters, uses pure pseudovector pion-nucleon coupling.
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The two models can be considered to be essentially on-shell
equivalent, and both also reproduce the experimental value of
the triton binding energy of 8.48 MeV.

There is, however, one obstacle to performing the CIA
calculations with models WJC-1 and WJC-2: Some of the
diagrams that comprise the CIA 3N current depend on the 3N

vertex function with two nucleons off mass shell. A computer
code for the calculation of these vertex functions for the new
models WJC-1 and WJC-2 is at present in development, but not
yet ready to be used in the calculation of the 3N form factors.

This obstacle can be overcome if we apply an approxima-
tion in which 3N vertex functions with two nucleons off mass
shell are appropriately replaced by vertex functions with only
one nucleon off mass shell. We can test the quality of this
approximation, which we call “CIA-0,” by applying it to one
of the models previously used in Ref. [2] and comparing the
approximate form factors to the respective full CIA result.

Of course, if it turns out that CIA-0 is a reliable
approximation, the 3N form factors obtained from the
realistic models WJC-1 and WJC-2 will be of high interest
by themselves, not just as a means to evaluate the effect of
Z-graphs. Although the family of models used in Ref. [2]
gives a good description of the NN data, it cannot compete
in precision with our new models.

This article is divided into four sections. After the introduc-
tion, Sec. II describes the 3N current and defines the CIA-0
approximation. Sec. III presents and discusses the numerical
results obtained, and in Sec. IV we draw our conclusions.

II. THE 3N CURRENT IN CIA AND CIA-0

The complete form of the electromagnetic 3N current in
CST was derived in Ref. [3], and used in Ref. [2] for the first
time to calculate the 3N form factors in CIA. Similar (and
equivalent) expressions for the 3N current were also derived
in Refs. [7] and [8]. Figure 1 displays the complete current,
and CIA is defined through diagrams (A)–(F).
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FIG. 1. (Color online) The electromagnetic 3N current in CST
for elastic electron scattering from the 3N bound state. A cross on
a nucleon line indicates that the particle is on mass shell. Diagrams
(A)–(F) define the complete impulse approximation (CIA), in which
the photon couples to single nucleons, which can be off shell [(A) and
(D)] or on shell before or after the photon-nucleon vertex [(B), (C),
(E), and (F)]. The approximation denoted CIA-0 replaces the vertex
function with two nucleons off mass shell in diagrams (B), (C), (E),
and (F) by a vertex function with only one nucleon off mass shell. The
interaction diagrams [(G)–(J)] describe processes in which the photon
couples to two-body currents associated with the two-nucleon kernel.

We denote the photon four-momentum by q, and we label
the nucleon four-momenta ki such that always k2

1 = k2
2 = m2,

where m is the nucleon mass. For the cases where a nucleon
absorbs a photon, we introduce the notation k±

i ≡ ki ± q.
The momentum k3 is not an independent variable; in CST,
the energy-momentum four-vector is conserved and k3 is
determined through the momenta of nucleons 1 and 2 and
the total 3N momenta Pt in the initial and P ′

t = Pt + q in the
final state.

The 3N current in CIA is given in algebraic form by

J
µ

CIA = 3e

∫∫
m2 d3k1d

3k2

E(k1)E(k2) (2π )6

∑
λ1λ2

[
�̄λ1λ2α′(k1, k2; P ′

t )

× (1 + 2 ζP12) j
µ

α′α(k+
3 , k3) �λ1λ2α(k1, k2; Pt )

+ �̄λ1β ′α(k1, k
+
2 ; P ′

t ) Gβ ′β(k+
2 ) j

µ
βγ (k+

2 , k2) uγ (k2, λ2)

× (1 + 2 ζP12) �λ1λ2α(k1, k2; Pt ) + �̄λ1λ2α(k1, k2; P ′
t )

× (1 + 2 ζP12) ūγ (k2, λ2) j
µ

γβ ′(k2, k
−
2 )

×Gβ ′β(k−
2 ) �λ1βα(k1, k

−
2 ; Pt )

]
, (1)

where E(k) =
√

m2 + k2, P12 is a permutation operator that
interchanges particles 1 and 2, ζ is a phase with ζ = +1(−1)
for bosons (fermions), Gβ ′β(k) is the propagator of an off-shell
nucleon with four-momentum k,

Gβ ′β(k) =
(

m + k/

m2 − k2 − iε

)
β ′β

, (2)

and jα′α(k′, k) is the single nucleon current for off-shell
nucleons with incoming (outgoing) four-momentum k (k′).
Summation over repeated Dirac indices is implied.

The “relativistic wave functions” � are defined in terms of
the 3N vertex functions � as

�λ1λ2α(k1, k2; Pt ) = Gαα′ (k3)�λ1λ2α′ (k1, k2; Pt ), (3)

and we use a shorthand for the contraction of Dirac indices
with nucleon helicity spinors with helicity λi ,

�λ1λ2α′ (k1, k2; Pt ) ≡ ūα1 (k1, λ1)ūα2 (k2, λ2)�α1α2α′ (k1, k2; Pt ).

(4)

This notation is used throughout this work, such that the
replacement of a Dirac index (αi , βi , . . .) by a helicity
index (λi) always indicates a corresponding contraction with
a positive-energy helicity spinor.

The 3N vertex functions are solutions of Faddeev-type CST
integral equations [9]

�λ1λ2α(k1, k2; P ) = −
∫

m d3k′
2

E(k′
2) (2π )3

×
∑
λ′

2

Mλ2α,λ′
2α

′ (k2, k
′
2; P23)2 ζ P12 �λ1λ

′
2α

′ (k1, k
′
2; P ). (5)

Here, Mλ2α,λ′
2α

′(k2, k
′
2; P23) is the scattering amplitude of

nucleons 2 and 3 with total pair momentum P23. It satisfies
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the CST two-body equation

Mλ2α,λ′
2α

′ (k2, k
′
2; P23) = Vλ2α,λ′

2α
′ (k2, k

′
2; P23)

−
∫

m d3k′′
2

E(k′′
2 ) (2π )3

∑
λ′′

2

Vλ2α,λ′′
2β

(k2, k
′′
2 ; P23)

×Gββ ′ (P23 − k′′
2 )Mλ′′

2β
′,λ′

2α
′ (k′′

2 , k′
2; P23), (6)

where V is the NN interaction kernel. In the case of the NN

interaction models considered in this work, V is of one-boson-
exchange form [6,10].

In the second and third lines of Eq. (1), corresponding to
the diagrams in Figs. 1(B), 1(C), 1(E), and 1(F), the vertex
function appears with two nucleon momenta off mass shell.
The solutions of the CST equation for the 3N bound state (5)
have only one nucleon (nucleon 3, by convention) off mass
shell, but one can obtain vertex functions with two off-shell
particles through an iteration of the 3N equation with an off-
shell two-nucleon scattering amplitude,

�λ1βα(k1, k
−
2 ; Pt ) = −

∫
m d3k′

2

E(k′
2) (2π )3

×
∑
λ′

2

Mβα,λ′
2α

′(k−
2 , k′

2; P23)2 ζ P12 �λ1λ
′
2α

′ (k1, k
′
2; Pt ). (7)

In Eq. (7), the final-state momentum of particle 2, k−
2 , is off

mass shell, whereas its initial-state momentum, k′
2, is on mass

shell (nucleon 3 is off shell in either state).
As pointed out in Sec. I, the 3N vertex functions with

both nucleons off shell in the final state are not available at
this time for the new NN interactions WJC-1 and WJC-2.
Moreover, it is rather awkward to calculate and manipulate
these double-off-shell vertex functions numerically because,
with one additional continuous variable (the off-shell energy
of nucleon 2), they occupy much more computer storage space
and slow down the calculations.

For these practical reasons, we introduce here a simple
approximation that replaces the vertex functions with two
nucleons off mass shell by others with only one nucleon off
mass shell.

To motivate this approximation consider, for instance,
Figs. 1(C) and 1(F). The vertex function in the initial state,
�λ1βα(k1, k

−
2 ; Pt ), depends on the off-shell momentum k−

2 =
k2 − q. Because k2 is on mass shell, for small photon momenta
q the momentum k−

2 is also almost on mass shell. We may
therefore expand the vertex function in the off-shell energy
of nucleon 2 around its on-shell value. If we keep only
the zeroth-order term of the expansion and eliminate the
corresponding negative-energy channel of nucleon 2 (with
negative ρ-spin), we obtain a known vertex function with two
nucleons on mass shell. We call this approximation “CIA-0,”
referring to the zeroth-order expansion involved.

Although this approximation is easy to apply, its formula-
tion is somewhat awkward because of its frame dependence. In
our numerical calculations, the 3N vertex function is expressed
in terms of variables for nucleons 2 and 3, which are defined
in the rest frame of the (23) pair where the CST equation for
the two-nucleon scattering amplitudes is solved numerically.

We can write

�λ1βα(k1, k
−
2 ; Pt ) = �λ1βα[k1, L(k−

23)k̃−
2 ; Pt ], (8)

where the Lorentz transformation L(k−
23) takes the system of

nucleons 2 and 3 from its rest frame, where their momenta
are k̃−

2 and k̃3, to the 3N rest frame, where their momenta
are k−

2 = L(k−
23)k̃−

2 and k3 = L(k−
23)k̃3, and where their total

two-body momentum is k−
23 = k−

2 + k3 = Pt − k1.
We now define the four-momentum r̃−

2 to have the same
three-vector part as k̃−

2 but to be on mass shell, that is, r̃−
2 =

[E(k̃−
2 ), k̃−

2 ], and we replace the momentum k̃−
2 by r̃−

2 in the
vertex function (8).

To eliminate the negative-energy states of nucleon 2, we
first write the propagator of nucleon 2 in terms of its form in
the pair rest frame,

Gβ ′β(k−
2 ) = Sβ ′β1 [L(k−

23)]

×
[

m + k̃/
−
2

m2 − (k̃−
2 )2 − iε

]
β1β2

S−1
β2β

[L(k−
23)], (9)

where S[L(k−
23)] is the Dirac space representation of the

Lorentz transformation L(k−
23).

Now we keep only the component with positive ρ-spin in
the pair rest frame,

m + k̃/
−
2

m2 − (k̃−
2 )2 − iε

−→ m

E(k̃−
2 )

�+(r̃−
2 )

k̃−
20 − E(k̃−

2 ) − iε
, (10)

with the positive-energy projector

�+(r̃−
2 ) = m + ˜� r−

2

2m
. (11)

The approximation CIA-0 can then be defined as the
replacement,

Gβ ′β(k−
2 )�λ1βα(k1, k

−
2 ; Pt )

−→ Sβ ′β1 [L(k−
23)]

m

E(k̃−
2 )

[
�+(r̃−

2 )
]
β1β2

k̃−
20 − E(k̃−

2 ) − iε

× S−1
β2β

[L(k−
23)]�λ1βα[k1, L(k−

23)r̃−
2 ; Pt ], (12)

in Eq. (1), as well as an analogous replacement for
�̄λ1β ′α(k1, k

+
2 ; P ′

t )Gβ ′β(k+
2 ), which occurs in the diagrams of

Figs. 1(B) and 1(E).
Note that the projector �+ eliminates negative-energy

states of nucleon 2 in the two-body rest frame, but this does
not eliminate all Z-graph contributions from the calculation.
They are still present through the negative-energy states of
nucleon 3, and they are also regenerated to some extent when
the state of nucleon 2 is boosted to other frames.

The approximation (12) may look complicated, but it is
actually easy to implement in our numerical calculations.
For instance, in the case of Fig. 1(C), it merely amounts
to replacing in Eq. (B64) of Ref. [2] the off-shell en-
ergy p̃0 of nucleon 2 by the corresponding on-shell value
E(p̃) in the argument of the partial wave vertex function
C(qp̃0p̃Mjmλ1λ2λ3ρ2ρ3T Tz), and restricting the summation
over the ρ-spins of nucleon 2 to the positive-energy value
ρ2 = + only.
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The electromagnetic current for an off-shell nucleon can be
written in the form

j
µ

N (k′, k) = f0(k′2, k2) F1N (Q2) γ µ

+ f ′
0(k′2, k2) F2N (Q2)

iσµνqν

2m

+ g0(k′2, k2)F3N (Q2)�−(k′)γ µ�−(k), (13)

where f0, f ′
0, and g0 are nucleon off-shell form factors

associated with the boson-nucleon vertices, and F1N and F2N

are the usual electromagnetic Dirac and Pauli form factors.
Because �− projects onto negative-energy states, the form
factor F3N belongs to a term that contributes only if the nucleon
is in a negative-energy state before and after the photon-
nucleon vertex. We adopt the usual convention Q2 = −q2.

The isospin dependence of the electromagnetic form factors
is, for i = {1, 2, 3} and the nucleon isospin projection τ 3,

FiN (Q2) = Fip(Q2)
1 + τ 3

2
+ Fin(Q2)

1 − τ 3

2
. (14)

In previous calculations [2], we found that the 3N form
factors are quite insensitive to the inclusion and variations
of the off-shell nucleon form factors. Therefore, we employ
in the calculations of this work the simpler on-shell nucleon
current, with f0 = f ′

0 = 1 and g0 = 0. For the Dirac and Pauli
form factors, we chose the parametrization of Galster [11] to
compare with IARC results provided to us by Marcucci [12]
who used the same parametrization.

With the CIA-0 approximation in place, the electromagnetic
3N form factors are calculated numerically from the 3N

vertex functions, which were obtained by solving the 3N CST
equation in helicity partial wave form. The applied techniques
are described in detail in Ref. [2].

III. PRESENTATION AND DISCUSSION OF THE RESULTS

We calculated the electromagnetic 3N form factors for
three NN interaction models, W16, WJC-1, and WJC-2,
for momentum transfer up to Q = 9 fm−1. The results are
displayed in Figs. 2 and 3.

Because the form factors fall several orders of magnitude,
and the traditional log plots tend to obscure differences in some
places and overemphasize them in others, we divide them by
simple scaling functions of the form

Fs(Q) = F0e
−Q/k . (15)

TABLE I. Parameters F0 and k (in fm−1) of the scaling functions
Fs(Q) of Eq. (15) by which the electromagnetic 3N form factors (f.f.)
are divided in the figures with linear scale.

Form factor Charge f.f. Magnetic f.f.

F0 k F0 k

3H 1 0.760488 1 0.871664
3He 1 0.799411 1 0.912562
Isoscalar 1.5 0.778026 0.423 0.765425
Isovector 0.5 0.842695 2.13 0.889873

TABLE II. Magnetic moments in nuclear magnetons (n.m.). The
experimental values are from Ref. [23].

Model µ(3H) µ(3He) µS µV

W16 (CIA) 2.544 −1.747 0.400 −2.144
W16 (CIA-0) 2.543 −1.743 0.400 −2.143
WJC-1 (CIA-0) 2.441 −1.648 0.396 −2.044
WJC-2 (CIA-0) 2.525 −1.742 0.391 −2.134
IARC 2.572 −1.763 0.404 −2.168

Experiment 2.979 −2.128 0.426 −2.553

Table I shows the parameters of the scaling function for each
case. We also list the magnetic moments in Table II, and the
charge and magnetic radii in Table III.

First, we start with a comparison of the curves for W16
in CIA and in CIA-0, which clearly demonstrates the high
quality of the approximation. The differences between the
exact calculation and the approximation are hardly noticeable
up to values of Q around 7 fm−1, and in general appear to
be insignificant. We may therefore assume that the results for
WJC-1 and WJC-2 obtained here only in CIA-0 should also
be very close to the exact CIA result.

Note that there are caveats to this conclusion: The quality
of CIA-0 compared to CIA was really tested only for W16, a
model with a very smooth choice for the definition of the kernel
(and hence the vertex function) when both nucleons are off
shell. The WJC models have a more complex off-shell structure
(corresponding to the prescription C discussed in Ref. [6]) and
their off-shell extrapolations will not be as smooth. In addition,
WJC-1 has a mixed pseudoscalar-pseudovector pion-nucleon
coupling, and it is conceivable that the pseudoscalar part of this
coupling might introduce further differences between CIA and
CIA-0 to which W16 is not sensitive. Our conclusions must
therefore be taken with these particular grains of salt. In any
case, CIA-0 should be a better approximation to CIA at smaller
Q, simply because the nucleon involved is taken less far off
mass shell.

We turn now to a comparison of the form factors for
different models of the NN interaction. The figures show
that the WJC-2 form factors stay close to those of W16,
whereas, in most cases, WJC-1 begins to deviate somewhat
already at smaller values of Q. WJC-2 and W16 are also
close to the IARC results, typically up to about Q = 6 fm−1.
This supports the conjecture made in Sec. I, namely that

TABLE III. Root-mean-square charge and magnetic radii in fm.
The experimental values are from Ref. [13].

Model rch(3H) rch(3He) rmag(3H) rmag(3He)

W16 (CIA) 1.718 1.900 1.915 2.001
W16 (CIA-0) 1.720 1.901 1.915 2.001
WJC-1 (CIA-0) 1.700 1.879 1.901 2.035
WJC-2 (CIA-0) 1.722 1.904 1.904 2.027

Experiment 1.755 1.959 1.840 1.965
±0.086 ±0.030 ±0.181 ±0.153
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FIG. 2. (Color online) Charge form factors of the 3N bound states, 3H (first row), 3He (second row), and the isoscalar (third row) and
isovector (fourth row) combinations. In each case, the figure on the left shows the form factor in the traditional semilog plot, whereas the figure
on the right shows the same form factor divided by a scaling function of Eq. (15) [2] on a linear scale. The solid line is the result for NN model
W16 in CIA; the dotted line is the approximation CIA-0 for the same model. The dashed line is model WJC-1, and the dash-dotted line is
model WJC-2, both in CIA-0. For comparison, the solid line with theoretical error bars is the result of an IARC calculation by Marcucci [12]
based on the AV18/UIX potential. All calculations employ the on-shell single-nucleon current, with the Galster parametrization of the nucleon
form factors [11]. The solid circles represent the experimental data [13–22].

014007-5



PINTO, STADLER, AND GROSS PHYSICAL REVIEW C 81, 014007 (2010)

0 1 2 3 4 5 6 7 8 9
Q (fm

-1
)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

|F
M

|

3
H

0 1 2 3 4 5 6 7 8 9
Q (fm

-1
)

0

1

2

F
M

/F
sc

al
e

3
H

0 1 2 3 4 5 6 7 8 9
Q (fm

-1
)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

|F
M

|

3
He

0 1 2 3 4 5 6 7 8 9
Q (fm

-1
)

-1

0

1

F
M

/F
sc

al
e

3
He

0 1 2 3 4 5 6 7 8 9
Q (fm

-1
)

10
-710
-610
-510
-410
-310
-210
-110
0

|F
S

M
|

0 1 2 3 4 5 6 7 8 9
Q (fm

-1
)

-2
-1
0
1
2
3

F
S

M
/F

sc
al

e

0 1 2 3 4 5 6 7 8 9
Q (fm

-1
)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

|F
V

M
|

0 1 2 3 4 5 6 7 8 9
Q (fm

-1
)

-2

-1

0

F
V

M
/F

sc
al

e

FIG. 3. (Color online) Magnetic form factors of the 3N bound states, 3H (first row), 3He (second row), and the isoscalar (third row) and
isovector (fourth row) combinations. In each case, the figure on the left shows the form factor in the traditional semilog plot, whereas the figure
on the right shows the same form factor divided by a scaling function [2] on a linear scale. The meaning of the various curves is the same as in
Fig. 2.

the suppression of Z-graphs through the use of pseudovector
pion-nucleon coupling is mainly responsible for the close
agreement between the CST and IARC.

Apart from the issue of the type of pion-nucleon coupling,
the CST models include other boson exchanges with off-shell
coupling. Most notably, those due to scalar isoscalar (σ0) and
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isovector (σ1) exchanges have been found to have a very strong
influence on the quality of the NN fits and on the triton binding
[10]. One might expect them to have a strong influence on the
3N form factors as well.

The results indicate that this is only indirectly the case,
namely through their effect on the binding energy. When
the scalar off-shell coupling strength is varied without con-
straining the triton binding energy, the 3N form factors show
substantial variations [2]. On the other hand, models W16 and
WJC-2 have quite different scalar off-shell coupling constants,
but yield the same triton binding energy. The close similarity
of the 3N form factors, at least up to intermediate values
of Q, implies that the electromagnetic structure of the 3N

bound state is not modified too much by the scalar off-shell
coupling. This conclusion receives even stronger support from
the observation that the IARC calculation, which of course
has no off-shell couplings at all, also essentially coincides
with both W16 and WJC-2 up to about Q = 6 fm−1 in the
charge form factors, and up to somewhat smaller values of Q

for the magnetic form factors.
It follows then that most of the different behavior of the

WJC-1 form factors cannot be attributed to the model’s larger
scalar off-shell couplings [6], unless the dependence turns out
to be highly nonlinear.

What about the contributions of Z-diagrams and pion
exchange currents? In Ref. [4] it was shown that pion exchange
currents bring the calculations closer to the experimental data.
The form of these exchange currents depends on the structure
of the πNN coupling. For pseudoscalar coupling there is no
γπNN contact interaction, but there are large contributions
from Z-diagrams. The opposite is true for pseudovector
coupling. Here, the minimal substitution qπ → qπ − eA into
the momentum-dependent interaction, gπNNγ 5 �qπ/2m (where
qπ is the pion momentum), leads to the contact interaction,
egπNNγ 5γ µ/2m, but the Z-diagrams that are produced by
a pseudovector interaction are strongly suppressed (and
vanish in the nonrelativistic limit). Furthermore, there is an
equivalence theorem that has been known for many decades
[24]: In the nonrelativistic limit, the Z-diagrams derived from
pseudoscalar coupling are identical to the contact interaction
derived from pseudovector coupling (and the pseudovector
Z-diagrams vanish). The pseudovector contact interaction
equals the pseudoscalar Z-diagram.

This discussion is helpful in interpreting the difference
between our results for WJC-1 and WJC-2/W16/IARC. The
CIA calculations reported here include Z-diagrams (to all
orders) but do not include contact interactions. These are
included in the diagrams in Figs. 1(G–J), and are excluded
from both the CIA and CIA-0 calculations. They must be
added separately, just as in the work of Ref. [4]. Now,
the pion-nucleon vertex can be written in the general form
gπNN [λγ 5 + (1 − λ)γ 5 �qπ/2m], where λ is the pseudoscalar-
pseudovector mixing parameter [6]. The NN models used in
Ref. [2] such as W16, as well as WJC-2, use pure pseudovector
coupling, with λ = 0. Hence the Z-diagram contributions of
these models are very small, and it is not surprising that
they are quite close to the IARC result. However, in WJC-1
the neutral and charged pions are treated separately, and the
mixing parameter for the charged pions is λπ± = −0.312. The

Z-diagram contributions from this model should be large, but
of the opposite sign from those from a pure pseudoscalar
theory (corresponding to λπ± = +1). Hence, we can expect
the Z-diagram contributions from WJC-1 to move the theory
farther away from the data, which is what we observe. We
expect this effect to be more than canceled once the contact
interactions are included, which, for WJC-1, will have a
strength 1.312 times a pure pseudovector coupling.

It is certainly not possible to draw very strong conclusions
based on these results alone. There are simply too many
variables in play, and it would require many more test
calculations to try to disentangle them. However, it is a very
interesting situation to have essentially on-shell equivalent
interactions, which even agree in the 3N binding energy, but
lead to different 3N form factors. It has often been argued
that electromagnetic probes provide a means to distinguish
otherwise equivalent NN interaction models, and in this case
we can actually see it happening. From this point of view, it
is perhaps less surprising that WJC-1 differs somewhat from
the other models, but rather that WJC-2, W16, and IARC are
so close to each other. After all, IARC is calculated from
the largely phenomenological nonrelativistic Argonne AV18
two-nucleon and UIX irreducible 3N force, where the latter
is needed to make up for the missing 3N binding energy
of the AV18 potential alone. In contrast, the CST models
do not add any irreducible 3N forces, and it is through
off-shell couplings—purely relativistic effects—that effective
3N forces are implicitly generated. Moreover, relativity is
implemented in very different ways. It is not at all obvious
that the two approaches should yield so similar results.

It would be premature to favor one or the other of
the models, WJC-1 or WJC-2, at this time. Their ability
to reproduce the data can only be judged rigorously after
all—or at least the dominant—interaction currents are added.
Compared to the interaction currents of Ref. [4], some are
already accounted for in CIA; others need to be added as well,
such as the boson-in-flight terms. Probably more important
than the latter, there are interaction currents induced by
total-momentum dependencies in the vertices from off-shell
boson-nucleon coupling, which have never been evaluated. It
may very well turn out that they have a stronger effect with
WJC-1 than with WJC-2.

IV. CONCLUSIONS

We have performed the first calculations of the elec-
tromagnetic 3N form factors with the new covariant two-
nucleon interaction models WJC-1 and WJC-2, which yield an
excellent description of the neutron-proton observables below
350 MeV for the most recent 2007 database [6]. The form
factors were calculated in complete impulse approximation,
in which—for practical reasons—we replaced 3N vertex
functions with two off-mass-shell nucleons by corresponding
vertex functions with only one nucleon off mass shell. This
procedure of approximating the full CIA results, denoted as
“CIA-0,” was tested with the older two-nucleon model W16,
for which the full CIA result is also available, and found to be
of very good quality.
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We compare the form factors of WJC-1 and WJC-2 to those
of W16, and also to calculations of nonrelativistic impulse
approximation with relativistic corrections by Marcucci and
collaborators [4,12]. Relating the observed differences in the
various results to the underlying nuclear dynamics, we reach
the following principal conclusions:

(i) The 3N binding energy determines the electromagnetic
3N form factors in impulse approximation up to un-
expectedly large values of the transferred momentum.
The closely related family of models investigated in
Ref. [2], where variations in the strengths of the scalar
off-shell coupling led to significantly different 3N

binding energies, showed much larger changes in the
form factors than the models considered here, which all
have the same binding energy.

(ii) The scalar off-shell coupling does not directly exert
strong influence on the shape of the form factors. When
the 3N binding energy is constrained to be equal,
different scalar off-shell coupling strength can yield
very similar form factors, as one can see comparing
WJC-2 and W16.

(iii) In some cases, model WJC-1 deviates moderately
from the others. This appears to be due to its
mixed pseudoscalar-pseudovector pion-nucleon cou-
pling (WJC-2 and W16 have pure pseudovector pion-
nucleon coupling, whereas in the nonrelativistic frame-
work of IARC the two couplings are equivalent). In
CST, pseudoscalar pion-nucleon coupling automati-
cally includes Z-diagrams, whereas they are suppres-
sed for pseudovector coupling. When Z-diagrams are
effectively added to IARC in the form of γπNN

contact interactions [4], the calculated form factors

move closer to the experimental data, whereas the
WJC-1 form factors lie farther away than the models
with pure pseudovector coupling. This is consistent
because the sign of the pseudoscalar coupling in WJC-1
is opposite to the one used in Ref. [4].

(iv) The results of this work confirm the conjecture formu-
lated in Sec. I, namely that the reason for the good
agreement of the CST models with the IARC results
is the suppression of Z-diagrams through pseudovector
pion-nucleon coupling.

(v) The CST two-nucleon interaction models WJC-1 and
WJC-2 not only give an excellent fit to the available
two-nucleon scattering observables, but also provide a
solid basis for a relativistic theory of the 3N system.
Without additional irreducible 3N forces, the 3N

binding energy is reproduced, and the electromagnetic
3N form factors turn out very similar to previous
nonrelativistic results. No unusually large interaction
currents seem to be required to achieve a quantitative
description of the experimental data.
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